/* print.c * Routines for printing packet analysis trees. * * Gilbert Ramirez * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PDML_VERSION "0" #define PSML_VERSION "0" typedef struct { int level; print_stream_t *stream; bool success; GSList *src_list; print_dissections_e print_dissections; bool print_hex_for_data; packet_char_enc encoding; GHashTable *output_only_tables; /* output only these protocols */ } print_data; typedef struct { int level; FILE *fh; GSList *src_list; wmem_map_t *filter; } write_pdml_data; typedef struct { GSList *src_list; wmem_map_t *filter; bool print_hex; bool print_text; proto_node_children_grouper_func node_children_grouper; json_dumper *dumper; } write_json_data; typedef struct { output_fields_t *fields; epan_dissect_t *edt; } write_field_data_t; struct _output_fields { bool print_bom; bool print_header; char separator; char occurrence; char aggregator; GPtrArray *fields; GPtrArray *field_dfilters; GHashTable *field_indicies; GPtrArray **field_values; wmem_map_t *protocolfilter; char quote; bool escape; bool includes_col_fields; }; static char *get_field_hex_value(GSList *src_list, field_info *fi); static void proto_tree_print_node(proto_node *node, void *data); static void proto_tree_write_node_pdml(proto_node *node, void *data); static void proto_tree_write_node_ek(proto_node *node, write_json_data *data); static const uint8_t *get_field_data(GSList *src_list, field_info *fi); static void pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi); static void json_write_field_hex_value(write_json_data *pdata, field_info *fi); static bool print_hex_data_buffer(print_stream_t *stream, const unsigned char *cp, unsigned length, packet_char_enc encoding, unsigned hexdump_options); static void write_specified_fields(fields_format format, output_fields_t *fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh, json_dumper *dumper); static void print_escaped_xml(FILE *fh, const char *unescaped_string); static void print_escaped_csv(FILE *fh, const char *unescaped_string, char delimiter, char quote_char, bool escape_wsp); typedef void (*proto_node_value_writer)(proto_node *, write_json_data *); static void write_json_index(json_dumper *dumper, epan_dissect_t *edt); static void write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *data); static void write_json_proto_node(GSList *node_values_head, const char *suffix, proto_node_value_writer value_writer, write_json_data *data); static void write_json_proto_node_value_list(GSList *node_values_head, proto_node_value_writer value_writer, write_json_data *data); static void write_json_proto_node_filtered(proto_node *node, write_json_data *data); static void write_json_proto_node_hex_dump(proto_node *node, write_json_data *data); static void write_json_proto_node_dynamic(proto_node *node, write_json_data *data); static void write_json_proto_node_children(proto_node *node, write_json_data *data); static void write_json_proto_node_value(proto_node *node, write_json_data *data); static void write_json_proto_node_no_value(proto_node *node, write_json_data *data); static const char *proto_node_to_json_key(proto_node *node); static void print_pdml_geninfo(epan_dissect_t *edt, FILE *fh); static void write_ek_summary(column_info *cinfo, write_json_data *pdata); static void proto_tree_get_node_field_values(proto_node *node, void *data); /* Cache the protocols and field handles that the print functionality needs This helps break explicit dependency on the dissectors. */ static int proto_data; static int proto_frame; void print_cache_field_handles(void) { proto_data = proto_get_id_by_short_name("Data"); proto_frame = proto_get_id_by_short_name("Frame"); } bool proto_tree_print(print_dissections_e print_dissections, bool print_hex, epan_dissect_t *edt, GHashTable *output_only_tables, print_stream_t *stream) { print_data data; /* Create the output */ data.level = 0; data.stream = stream; data.success = true; data.src_list = edt->pi.data_src; data.encoding = (packet_char_enc)edt->pi.fd->encoding; data.print_dissections = print_dissections; /* If we're printing the entire packet in hex, don't print uninterpreted data fields in hex as well. */ data.print_hex_for_data = !print_hex; data.output_only_tables = output_only_tables; proto_tree_children_foreach(edt->tree, proto_tree_print_node, &data); return data.success; } /* Print a tree's data, and any child nodes. */ static void proto_tree_print_node(proto_node *node, void *data) { field_info *fi = PNODE_FINFO(node); print_data *pdata = (print_data*) data; const uint8_t *pd; char label_str[ITEM_LABEL_LENGTH]; char *label_ptr; /* dissection with an invisible proto tree? */ ws_assert(fi); /* Don't print invisible entries. */ if (proto_item_is_hidden(node) && (prefs.display_hidden_proto_items == false)) return; /* Give up if we've already gotten an error. */ if (!pdata->success) return; /* was a free format label produced? */ if (fi->rep) { label_ptr = fi->rep->representation; } else { /* no, make a generic label */ label_ptr = label_str; proto_item_fill_label(fi, label_str, NULL); } if (proto_item_is_generated(node)) label_ptr = g_strconcat("[", label_ptr, "]", NULL); pdata->success = print_line(pdata->stream, pdata->level, label_ptr); if (proto_item_is_generated(node)) g_free(label_ptr); if (!pdata->success) return; /* * If -O is specified, only display the protocols which are in the * lookup table. Only check on the first level: once we start printing * a tree, print the rest of the subtree. Otherwise we won't print * subitems whose abbreviation doesn't match the protocol--for example * text items (whose abbreviation is simply "text"). */ if ((pdata->output_only_tables != NULL) && (pdata->level == 0) && (g_hash_table_lookup(pdata->output_only_tables, fi->hfinfo->abbrev) == NULL)) { return; } /* If it's uninterpreted data, dump it (unless our caller will be printing the entire packet in hex). */ if ((fi->hfinfo->id == proto_data) && (pdata->print_hex_for_data)) { /* * Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { if (!print_line(pdata->stream, 0, "")) { pdata->success = false; return; } if (!print_hex_data_buffer(pdata->stream, pd, fi->length, pdata->encoding, HEXDUMP_ASCII_INCLUDE)) { pdata->success = false; return; } } } /* If we're printing all levels, or if this node is one with a subtree and its subtree is expanded, recurse into the subtree, if it exists. */ ws_assert((fi->tree_type >= -1) && (fi->tree_type < num_tree_types)); if ((pdata->print_dissections == print_dissections_expanded) || ((pdata->print_dissections == print_dissections_as_displayed) && (fi->tree_type >= 0) && tree_expanded(fi->tree_type))) { if (node->first_child != NULL) { pdata->level++; proto_tree_children_foreach(node, proto_tree_print_node, pdata); pdata->level--; if (!pdata->success) return; } } } #define PDML2HTML_XSL "pdml2html.xsl" #define PDML2HTML_URL "https://gitlab.com/wireshark/wireshark/-/tree/master/resources/share/doc/wireshark/" void write_pdml_preamble(FILE *fh, const char *filename) { time_t t = time(NULL); struct tm * timeinfo; char *fmt_ts; const char *ts; /* Create the output */ timeinfo = localtime(&t); if (timeinfo != NULL) { fmt_ts = asctime(timeinfo); fmt_ts[strlen(fmt_ts)-1] = 0; /* overwrite \n */ ts = fmt_ts; } else ts = "Not representable"; fprintf(fh, "\n"); fprintf(fh, "\n"); fprintf(fh, "\n", get_doc_dir()); fprintf(fh, "\n"); } /* Check if the str matches the protocolfilter. * * @param[in] protocolfilter a map of field abbreviations that pass the filter * to the flags for that field, or NULL if no filter (so all fields pass) * @param[in] str the field abbreviation to lookup in the map. * @param[out] flags if not NULL, gets set to the value in the map for * the given key if found (undefined if return is false.) * @return true if the filter passes the string, false if the filter * filters out the string. */ static bool check_protocolfilter(wmem_map_t *protocolfilter, const char *str, pf_flags *flags) { bool res = false; void *value; if (protocolfilter == NULL) { if (flags) { *flags = PF_NONE; } return true; } if (str == NULL) { return false; } res = wmem_map_lookup_extended(protocolfilter, str, NULL, &value); if (res && flags) { *flags = GPOINTER_TO_UINT(value); } return res; } void write_pdml_proto_tree(output_fields_t* fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh, bool use_color) { write_pdml_data data; const color_filter_t *cfp; ws_assert(edt); ws_assert(fh); cfp = edt->pi.fd->color_filter; /* Create the output */ if (use_color && (cfp != NULL)) { fprintf(fh, "\n", color_t_to_rgb(&cfp->fg_color), color_t_to_rgb(&cfp->bg_color)); } else { fprintf(fh, "\n"); } /* Print a "geninfo" protocol as required by PDML */ print_pdml_geninfo(edt, fh); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.level = 0; data.fh = fh; data.src_list = edt->pi.data_src; data.filter = fields ? fields->protocolfilter : NULL; proto_tree_children_foreach(edt->tree, proto_tree_write_node_pdml, &data); } else { /* Write out specified fields */ write_specified_fields(FORMAT_XML, fields, edt, cinfo, fh, NULL); } fprintf(fh, "\n\n"); } void write_ek_proto_tree(output_fields_t* fields, bool print_summary, bool print_hex, epan_dissect_t *edt, column_info *cinfo, FILE *fh) { ws_assert(edt); ws_assert(fh); write_json_data data; json_dumper dumper = { .output_file = fh, .flags = JSON_DUMPER_DOT_TO_UNDERSCORE }; data.dumper = &dumper; json_dumper_begin_object(&dumper); json_dumper_set_member_name(&dumper, "index"); json_dumper_begin_object(&dumper); write_json_index(&dumper, edt); json_dumper_set_member_name(&dumper, "_type"); json_dumper_value_string(&dumper, "doc"); json_dumper_end_object(&dumper); json_dumper_end_object(&dumper); json_dumper_finish(&dumper); json_dumper_begin_object(&dumper); /* Timestamp added for time indexing in Elasticsearch */ json_dumper_set_member_name(&dumper, "timestamp"); json_dumper_value_anyf(&dumper, "\"%" PRIu64 "%03d\"", (uint64_t)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs/1000000); if (print_summary) write_ek_summary(edt->pi.cinfo, &data); if (edt->tree) { json_dumper_set_member_name(&dumper, "layers"); json_dumper_begin_object(&dumper); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.src_list = edt->pi.data_src; data.filter = fields ? fields->protocolfilter : NULL; data.print_hex = print_hex; proto_tree_write_node_ek(edt->tree, &data); } else { /* Write out specified fields */ write_specified_fields(FORMAT_EK, fields, edt, cinfo, NULL, data.dumper); } json_dumper_end_object(&dumper); } json_dumper_end_object(&dumper); json_dumper_finish(&dumper); } void write_fields_proto_tree(output_fields_t* fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh) { ws_assert(edt); ws_assert(fh); /* Create the output */ write_specified_fields(FORMAT_CSV, fields, edt, cinfo, fh, NULL); } /* Indent to the correct level */ static void print_indent(int level, FILE *fh) { /* Use a buffer pre-filled with spaces */ #define MAX_INDENT 2048 static char spaces[MAX_INDENT]; static bool inited = false; if (!inited) { for (int n=0; n < MAX_INDENT; n++) { spaces[n] = ' '; } inited = true; } if (fh == NULL) { return; } /* Temp terminate at right length and write to fh. */ spaces[MIN(level*2, MAX_INDENT-1)] ='\0'; fputs(spaces, fh); spaces[MIN(level*2, MAX_INDENT-1)] =' '; } /* Write out a tree's data, and any child nodes, as PDML */ static void proto_tree_write_node_pdml(proto_node *node, void *data) { field_info *fi = PNODE_FINFO(node); write_pdml_data *pdata = (write_pdml_data*) data; const char *label_ptr; char label_str[ITEM_LABEL_LENGTH]; char *dfilter_string; bool wrap_in_fake_protocol; /* dissection with an invisible proto tree? */ ws_assert(fi); /* Will wrap up top-level field items inside a fake protocol wrapper to preserve the PDML schema */ wrap_in_fake_protocol = (((fi->hfinfo->type != FT_PROTOCOL) || (fi->hfinfo->id == proto_data)) && (pdata->level == 0)); print_indent(pdata->level + 1, pdata->fh); if (wrap_in_fake_protocol) { /* Open fake protocol wrapper */ fputs("\n", pdata->fh); pdata->level++; print_indent(pdata->level + 1, pdata->fh); } /* Text label. It's printed as a field with no name. */ if (fi->hfinfo->id == hf_text_only) { /* Get the text */ if (fi->rep) { label_ptr = fi->rep->representation; } else { label_ptr = ""; } /* Show empty name since it is a required field */ fputs("fh); fputs("\" show=\"", pdata->fh); print_escaped_xml(pdata->fh, label_ptr); fprintf(pdata->fh, "\" size=\"%d", fi->length); if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) { fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start); } else { fprintf(pdata->fh, "\" pos=\"%d", fi->start); } if (fi->length > 0) { fputs("\" value=\"", pdata->fh); pdml_write_field_hex_value(pdata, fi); } if (node->first_child != NULL) { fputs("\">\n", pdata->fh); } else { fputs("\"/>\n", pdata->fh); } } /* Uninterpreted data, i.e., the "Data" protocol, is * printed as a field instead of a protocol. */ else if (fi->hfinfo->id == proto_data) { /* Write out field with data */ fputs("fh); pdml_write_field_hex_value(pdata, fi); fputs("\">\n", pdata->fh); } else { /* Normal protocols and fields */ if ((fi->hfinfo->type == FT_PROTOCOL) && (fi->hfinfo->id != proto_expert)) { fputs("fh); } else { fputs("fh); } print_escaped_xml(pdata->fh, fi->hfinfo->abbrev); #if 0 /* PDML spec, see: * https://wayback.archive.org/web/20150330045501/http://www.nbee.org/doku.php?id=netpdl:pdml_specification * * the show fields contains things in 'human readable' format * showname: contains only the name of the field * show: contains only the data of the field * showdtl: contains additional details of the field data * showmap: contains mappings of the field data (e.g. the hostname to an IP address) * * XXX - the showname shouldn't contain the field data itself * (like it's contained in the fi->rep->representation). * Unfortunately, we don't have the field data representation for * all fields, so this isn't currently possible */ fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, fi->hfinfo->name); #endif if (fi->rep) { fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, fi->rep->representation); } else { label_ptr = label_str; proto_item_fill_label(fi, label_str, NULL); fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, label_ptr); } if (proto_item_is_hidden(node) && (prefs.display_hidden_proto_items == false)) fprintf(pdata->fh, "\" hide=\"yes"); fprintf(pdata->fh, "\" size=\"%d", fi->length); if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) { fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start); } else { fprintf(pdata->fh, "\" pos=\"%d", fi->start); } /* fprintf(pdata->fh, "\" id=\"%d", fi->hfinfo->id);*/ /* show, value, and unmaskedvalue attributes */ switch (fi->hfinfo->type) { case FT_PROTOCOL: break; case FT_NONE: fputs("\" show=\"\" value=\"", pdata->fh); break; default: dfilter_string = fvalue_to_string_repr(NULL, fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { fputs("\" show=\"", pdata->fh); print_escaped_xml(pdata->fh, dfilter_string); } wmem_free(NULL, dfilter_string); /* * XXX - should we omit "value" for any fields? * What should we do for fields whose length is 0? * They might come from a pseudo-header or from * the capture header (e.g., time stamps), or * they might be generated fields. */ if (fi->length > 0) { fputs("\" value=\"", pdata->fh); if (fi->hfinfo->bitmask!=0) { switch (fvalue_type_ftenum(fi->value)) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: fprintf(pdata->fh, "%X", (unsigned) fvalue_get_sinteger(fi->value)); break; case FT_CHAR: case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: fprintf(pdata->fh, "%X", fvalue_get_uinteger(fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: fprintf(pdata->fh, "%" PRIX64, fvalue_get_sinteger64(fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: fprintf(pdata->fh, "%" PRIX64, fvalue_get_uinteger64(fi->value)); break; default: ws_assert_not_reached(); } fputs("\" unmaskedvalue=\"", pdata->fh); pdml_write_field_hex_value(pdata, fi); } else { pdml_write_field_hex_value(pdata, fi); } } } if (node->first_child != NULL) { fputs("\">\n", pdata->fh); } else if (fi->hfinfo->id == proto_data) { fputs("\">\n", pdata->fh); } else { fputs("\"/>\n", pdata->fh); } } /* We print some levels for PDML. Recurse here. */ if (node->first_child != NULL) { pf_flags filter_flags = PF_NONE; if (pdata->filter == NULL || check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) { wmem_map_t *_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } pdata->level++; proto_tree_children_foreach(node, proto_tree_write_node_pdml, pdata); pdata->level--; /* Put protocol filter back */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { print_indent(pdata->level + 2, pdata->fh); /* print dummy field */ fputs("fh); print_escaped_xml(pdata->fh, fi->hfinfo->abbrev); fputs("\" />\n", pdata->fh); } } /* Take back the extra level we added for fake wrapper protocol */ if (wrap_in_fake_protocol) { pdata->level--; } if (node->first_child != NULL) { print_indent(pdata->level + 1, pdata->fh); /* Close off current element */ /* Data and expert "protocols" use simple tags */ if ((fi->hfinfo->id != proto_data) && (fi->hfinfo->id != proto_expert)) { if (fi->hfinfo->type == FT_PROTOCOL) { fputs("\n", pdata->fh); } else { fputs("\n", pdata->fh); } } else { fputs("\n", pdata->fh); } } /* Close off fake wrapper protocol */ if (wrap_in_fake_protocol) { print_indent(pdata->level + 1, pdata->fh); fputs("\n", pdata->fh); } } json_dumper write_json_preamble(FILE *fh) { json_dumper dumper = { .output_file = fh, .flags = JSON_DUMPER_FLAGS_PRETTY_PRINT }; json_dumper_begin_array(&dumper); return dumper; } void write_json_finale(json_dumper *dumper) { json_dumper_end_array(dumper); json_dumper_finish(dumper); } static void write_json_index(json_dumper *dumper, epan_dissect_t *edt) { char ts[30]; struct tm * timeinfo; char* str; timeinfo = localtime(&edt->pi.abs_ts.secs); if (timeinfo != NULL) { strftime(ts, sizeof(ts), "%Y-%m-%d", timeinfo); } else { (void) g_strlcpy(ts, "XXXX-XX-XX", sizeof(ts)); /* XXX - better way of saying "Not representable"? */ } json_dumper_set_member_name(dumper, "_index"); str = ws_strdup_printf("packets-%s", ts); json_dumper_value_string(dumper, str); g_free(str); } void write_json_proto_tree(output_fields_t* fields, print_dissections_e print_dissections, bool print_hex, epan_dissect_t *edt, column_info *cinfo, proto_node_children_grouper_func node_children_grouper, json_dumper *dumper) { write_json_data data; data.dumper = dumper; json_dumper_begin_object(dumper); write_json_index(dumper, edt); json_dumper_set_member_name(dumper, "_type"); json_dumper_value_string(dumper, "doc"); json_dumper_set_member_name(dumper, "_score"); json_dumper_value_string(dumper, NULL); json_dumper_set_member_name(dumper, "_source"); json_dumper_begin_object(dumper); json_dumper_set_member_name(dumper, "layers"); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.src_list = edt->pi.data_src; data.filter = fields ? fields->protocolfilter : NULL; data.print_hex = print_hex; data.print_text = true; if (print_dissections == print_dissections_none) { data.print_text = false; } data.node_children_grouper = node_children_grouper; write_json_proto_node_children(edt->tree, &data); } else { write_specified_fields(FORMAT_JSON, fields, edt, cinfo, NULL, dumper); } json_dumper_end_object(dumper); json_dumper_end_object(dumper); } /** * Returns a boolean telling us whether that node list contains any node which has children */ static bool any_has_children(GSList *node_values_list) { GSList *current_node = node_values_list; while (current_node != NULL) { proto_node *current_value = (proto_node *) current_node->data; if (current_value->first_child != NULL) { return true; } current_node = current_node->next; } return false; } /** * Write a json object containing a list of key:value pairs where each key:value pair corresponds to a different json * key and its associated nodes in the proto_tree. * @param proto_node_list_head A 2-dimensional list containing a list of values for each different node json key. The * elements themselves are a linked list of values associated with the same json key. * @param pdata json writing metadata */ static void write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *pdata) { GSList *current_node = proto_node_list_head; json_dumper_begin_object(pdata->dumper); // Loop over each list of nodes (differentiated by json key) and write the associated json key:value pair in the // output. while (current_node != NULL) { // Get the list of values for the current json key. GSList *node_values_list = (GSList *) current_node->data; // Retrieve the json key from the first value. proto_node *first_value = (proto_node *) node_values_list->data; const char *json_key = proto_node_to_json_key(first_value); // Check if the current json key is filtered from the output with the "-j" cli option. pf_flags filter_flags = PF_NONE; bool is_filtered = pdata->filter != NULL && !check_protocolfilter(pdata->filter, json_key, &filter_flags); field_info *fi = first_value->finfo; char *value_string_repr = fvalue_to_string_repr(NULL, fi->value, FTREPR_JSON, fi->hfinfo->display); bool has_children = any_has_children(node_values_list); // We assume all values of a json key have roughly the same layout. Thus we can use the first value to derive // attributes of all the values. bool has_value = value_string_repr != NULL; bool is_pseudo_text_field = fi->hfinfo->id == hf_text_only; wmem_free(NULL, value_string_repr); // fvalue_to_string_repr returns allocated buffer // "-x" command line option. A "_raw" suffix is added to the json key so the textual value can be printed // with the original json key. If both hex and text writing are enabled the raw information of fields whose // length is equal to 0 is not written to the output. If the field is a special text pseudo field no raw // information is written either. if (pdata->print_hex && (!pdata->print_text || fi->length > 0) && !is_pseudo_text_field) { write_json_proto_node(node_values_list, "_raw", write_json_proto_node_hex_dump, pdata); } if (pdata->print_text && has_value) { write_json_proto_node(node_values_list, "", write_json_proto_node_value, pdata); } if (has_children) { // If a node has both a value and a set of children we print the value and the children in separate // key:value pairs. These can't have the same key so whenever a value is already printed with the node // json key we print the children with the same key with a "_tree" suffix added. char *suffix = has_value ? "_tree": ""; if (is_filtered) { write_json_proto_node(node_values_list, suffix, write_json_proto_node_filtered, pdata); } else { // Remove protocol filter for children, if children should be included. This functionality is enabled // with the "-J" command line option. We save the filter so it can be reenabled when we are done with // the current key:value pair. wmem_map_t *_filter = NULL; if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } // has_children is true if any of the nodes have children. So we're not 100% sure whether this // particular node has children or not => use the 'dynamic' version of 'write_json_proto_node' write_json_proto_node(node_values_list, suffix, write_json_proto_node_dynamic, pdata); // Put protocol filter back if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } } if (!has_value && !has_children && (pdata->print_text || (pdata->print_hex && is_pseudo_text_field))) { write_json_proto_node(node_values_list, "", write_json_proto_node_no_value, pdata); } current_node = current_node->next; } json_dumper_end_object(pdata->dumper); } /** * Writes a single node as a key:value pair. The value_writer param can be used to specify how the node's value should * be written. * @param node_values_head Linked list containing all nodes associated with the same json key in this object. * @param suffix Suffix that should be added to the json key. * @param value_writer A function which writes the actual values of the node json key. * @param pdata json writing metadata */ static void write_json_proto_node(GSList *node_values_head, const char *suffix, proto_node_value_writer value_writer, write_json_data *pdata) { // Retrieve json key from first value. proto_node *first_value = (proto_node *) node_values_head->data; const char *json_key = proto_node_to_json_key(first_value); char* json_key_suffix = ws_strdup_printf("%s%s", json_key, suffix); json_dumper_set_member_name(pdata->dumper, json_key_suffix); g_free(json_key_suffix); write_json_proto_node_value_list(node_values_head, value_writer, pdata); } /** * Writes a list of values of a single json key. If multiple values are passed they are wrapped in a json array. * @param node_values_head Linked list containing all values that should be written. * @param value_writer Function which writes the separate values. * @param pdata json writing metadata */ static void write_json_proto_node_value_list(GSList *node_values_head, proto_node_value_writer value_writer, write_json_data *pdata) { GSList *current_value = node_values_head; // Write directly if only a single value is passed. Wrap in json array otherwise. if (current_value->next == NULL) { value_writer((proto_node *) current_value->data, pdata); } else { json_dumper_begin_array(pdata->dumper); while (current_value != NULL) { value_writer((proto_node *) current_value->data, pdata); current_value = current_value->next; } json_dumper_end_array(pdata->dumper); } } /** * Writes the value for a node that's filtered from the output. */ static void write_json_proto_node_filtered(proto_node *node, write_json_data *pdata) { const char *json_key = proto_node_to_json_key(node); json_dumper_begin_object(pdata->dumper); json_dumper_set_member_name(pdata->dumper, "filtered"); json_dumper_value_string(pdata->dumper, json_key); json_dumper_end_object(pdata->dumper); } /** * Writes the hex dump of a node. A json array is written containing the hex dump, position, length, bitmask and type of * the node. */ static void write_json_proto_node_hex_dump(proto_node *node, write_json_data *pdata) { field_info *fi = node->finfo; json_dumper_begin_array(pdata->dumper); if (fi->hfinfo->bitmask!=0) { switch (fvalue_type_ftenum(fi->value)) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: json_dumper_value_anyf(pdata->dumper, "\"%X\"", (unsigned) fvalue_get_sinteger(fi->value)); break; case FT_CHAR: case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: json_dumper_value_anyf(pdata->dumper, "\"%X\"", fvalue_get_uinteger(fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_sinteger64(fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_uinteger64(fi->value)); break; default: ws_assert_not_reached(); } } else { json_write_field_hex_value(pdata, fi); } /* Dump raw hex-encoded dissected information including position, length, bitmask, type */ json_dumper_value_anyf(pdata->dumper, "%" PRId32, fi->start); json_dumper_value_anyf(pdata->dumper, "%" PRId32, fi->length); json_dumper_value_anyf(pdata->dumper, "%" PRIu64, fi->hfinfo->bitmask); json_dumper_value_anyf(pdata->dumper, "%" PRId32, (int32_t)fvalue_type_ftenum(fi->value)); json_dumper_end_array(pdata->dumper); } /** * Writes the value of a node, which may be a simple node with no value and no children, * or a node with children -- this will be determined dynamically */ static void write_json_proto_node_dynamic(proto_node *node, write_json_data *data) { if (node->first_child == NULL) { write_json_proto_node_no_value(node, data); } else { write_json_proto_node_children(node, data); } } /** * Writes the children of a node. Calls write_json_proto_node_list internally which recursively writes children of nodes * to the output. */ static void write_json_proto_node_children(proto_node *node, write_json_data *data) { GSList *grouped_children_list = data->node_children_grouper(node); write_json_proto_node_list(grouped_children_list, data); g_slist_free_full(grouped_children_list, (GDestroyNotify) g_slist_free); } /** * Writes the value of a node to the output. */ static void write_json_proto_node_value(proto_node *node, write_json_data *pdata) { field_info *fi = node->finfo; // Get the actual value of the node as a string. char *value_string_repr = fvalue_to_string_repr(NULL, fi->value, FTREPR_JSON, fi->hfinfo->display); //TODO: Have FTREPR_JSON include quotes where appropriate and use json_dumper_value_anyf() here, // so we can output booleans and numbers and not only strings. json_dumper_value_string(pdata->dumper, value_string_repr); wmem_free(NULL, value_string_repr); } /** * Write the value for a node that has no value and no children. This is the empty string for all nodes except those of * type FT_PROTOCOL for which the full name is written instead. */ static void write_json_proto_node_no_value(proto_node *node, write_json_data *pdata) { field_info *fi = node->finfo; if (fi->hfinfo->type == FT_PROTOCOL) { if (fi->rep) { json_dumper_value_string(pdata->dumper, fi->rep->representation); } else { char label_str[ITEM_LABEL_LENGTH]; proto_item_fill_label(fi, label_str, NULL); json_dumper_value_string(pdata->dumper, label_str); } } else { json_dumper_value_string(pdata->dumper, ""); } } /** * Groups each child of the node separately. * @return Linked list where each element is another linked list containing a single node. */ GSList * proto_node_group_children_by_unique(proto_node *node) { GSList *unique_nodes_list = NULL; proto_node *current_child = node->first_child; while (current_child != NULL) { GSList *unique_node = g_slist_prepend(NULL, current_child); unique_nodes_list = g_slist_prepend(unique_nodes_list, unique_node); current_child = current_child->next; } return g_slist_reverse(unique_nodes_list); } /** * Groups the children of a node by their json key. Children are put in the same group if they have the same json key. * @return Linked list where each element is another linked list of nodes associated with the same json key. */ GSList * proto_node_group_children_by_json_key(proto_node *node) { /** * For each different json key we store a linked list of values corresponding to that json key. These lists are kept * in both a linked list and a hashmap. The hashmap is used to quickly retrieve the values of a json key. The linked * list is used to preserve the ordering of keys as they are encountered which is not guaranteed when only using a * hashmap. */ GSList *same_key_nodes_list = NULL; GHashTable *lookup_by_json_key = g_hash_table_new(g_str_hash, g_str_equal); proto_node *current_child = node->first_child; /** * For each child of the node get the key and get the list of values already associated with that key from the * hashmap. If no list exist yet for that key create a new one and add it to both the linked list and hashmap. If a * list already exists add the node to that list. */ while (current_child != NULL) { char *json_key = (char *) proto_node_to_json_key(current_child); GSList *json_key_nodes = (GSList *) g_hash_table_lookup(lookup_by_json_key, json_key); if (json_key_nodes == NULL) { json_key_nodes = g_slist_append(json_key_nodes, current_child); // Prepending in single linked list is O(1), appending is O(n). Better to prepend here and reverse at the // end than potentially looping to the end of the linked list for each child. same_key_nodes_list = g_slist_prepend(same_key_nodes_list, json_key_nodes); g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes); } else { // Store and insert value again to circumvent unused_variable warning. // Append in this case since most value lists will only have a single value. json_key_nodes = g_slist_append(json_key_nodes, current_child); g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes); } current_child = current_child->next; } // Hash table is not needed anymore since the linked list with the correct ordering is returned. g_hash_table_destroy(lookup_by_json_key); return g_slist_reverse(same_key_nodes_list); } /** * Returns the json key of a node. Tries to use the node's abbreviated name. * If the abbreviated name is not available the representation is used instead. * * XXX: The representation can have spaces or differ depending on the content, * which makes it difficult to match text-only fields with a -j/-J filter in tshark. * (Issue #17125). */ static const char * proto_node_to_json_key(proto_node *node) { const char *json_key; // Check if node has abbreviated name. if (node->finfo->hfinfo->id != hf_text_only) { json_key = node->finfo->hfinfo->abbrev; } else if (node->finfo->rep != NULL) { json_key = node->finfo->rep->representation; } else { json_key = ""; } return json_key; } static bool ek_check_protocolfilter(wmem_map_t *protocolfilter, const char *str, pf_flags *filter_flags) { char *str_escaped = NULL; bool check; int i; if (check_protocolfilter(protocolfilter, str, filter_flags)) return true; /* to to thread the '.' and '_' equally. The '.' is replace by print_escaped_ek for '_' */ if (str != NULL && strlen(str) > 0) { str_escaped = g_strdup(str); i = 0; while (str_escaped[i] != '\0') { if (str_escaped[i] == '.') { str_escaped[i] = '_'; } i++; } } check = check_protocolfilter(protocolfilter, str_escaped, filter_flags); g_free(str_escaped); return check; } /** * Finds a node's descendants to be printed as EK/JSON attributes. */ static void write_ek_summary(column_info *cinfo, write_json_data* pdata) { int i; for (i = 0; i < cinfo->num_cols; i++) { if (!get_column_visible(i)) continue; json_dumper_set_member_name(pdata->dumper, g_ascii_strdown(cinfo->columns[i].col_title, -1)); json_dumper_value_string(pdata->dumper, get_column_text(cinfo, i)); } } /* Write out a tree's data, and any child nodes, as JSON for EK */ static void // NOLINTNEXTLINE(misc-no-recursion) ek_fill_attr(proto_node *node, GHashTable *attr_table, write_json_data *pdata) { field_info *fi = NULL; GSList *attr_instances = NULL; proto_node *current_node = node->first_child; while (current_node != NULL) { fi = PNODE_FINFO(current_node); /* dissection with an invisible proto tree? */ ws_assert(fi); attr_instances = (GSList *) g_hash_table_lookup(attr_table, fi->hfinfo->abbrev); attr_instances = g_slist_append(attr_instances, current_node); // Update instance list for this attr in hash table g_hash_table_insert(attr_table, g_strdup(fi->hfinfo->abbrev), attr_instances); /* Field, recurse through children*/ if (fi->hfinfo->type != FT_PROTOCOL && current_node->first_child != NULL) { if (pdata->filter != NULL) { pf_flags filter_flags = PF_NONE; if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) { wmem_map_t *_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } // We recurse here, but we're limited by our tree depth checks in proto.c ek_fill_attr(current_node, attr_table, pdata); /* Put protocol filter back */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { // Don't traverse children if filtered out } } else { // We recurse here, but we're limited by our tree depth checks in proto.c ek_fill_attr(current_node, attr_table, pdata); } } else { // Will descend into object at another point } current_node = current_node->next; } } static void ek_write_name(proto_node *pnode, char* suffix, write_json_data* pdata) { field_info *fi = PNODE_FINFO(pnode); char *str; if (fi->hfinfo->parent != -1) { header_field_info* parent = proto_registrar_get_nth(fi->hfinfo->parent); str = ws_strdup_printf("%s_%s%s", parent->abbrev, fi->hfinfo->abbrev, suffix ? suffix : ""); json_dumper_set_member_name(pdata->dumper, str); } else { str = ws_strdup_printf("%s%s", fi->hfinfo->abbrev, suffix ? suffix : ""); json_dumper_set_member_name(pdata->dumper, str); } g_free(str); } static void ek_write_hex(field_info *fi, write_json_data *pdata) { if (fi->hfinfo->bitmask != 0) { switch (fvalue_type_ftenum(fi->value)) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: json_dumper_value_anyf(pdata->dumper, "\"%X\"", (unsigned) fvalue_get_sinteger(fi->value)); break; case FT_CHAR: case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: json_dumper_value_anyf(pdata->dumper, "\"%X\"", fvalue_get_uinteger(fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_sinteger64(fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_uinteger64(fi->value)); break; default: ws_assert_not_reached(); } } else { json_write_field_hex_value(pdata, fi); } } static void ek_write_field_value(field_info *fi, write_json_data* pdata) { char label_str[ITEM_LABEL_LENGTH]; char *dfilter_string; char time_buf[NSTIME_ISO8601_BUFSIZE]; size_t time_len; /* Text label */ if (fi->hfinfo->id == hf_text_only && fi->rep) { json_dumper_value_string(pdata->dumper, fi->rep->representation); } else { /* show, value, and unmaskedvalue attributes */ switch(fi->hfinfo->type) { case FT_PROTOCOL: if (fi->rep) { json_dumper_value_string(pdata->dumper, fi->rep->representation); } else { proto_item_fill_label(fi, label_str, NULL); json_dumper_value_string(pdata->dumper, label_str); } break; case FT_NONE: json_dumper_value_string(pdata->dumper, NULL); break; case FT_BOOLEAN: if (fvalue_get_uinteger64(fi->value)) json_dumper_value_anyf(pdata->dumper, "true"); else json_dumper_value_anyf(pdata->dumper, "false"); break; case FT_ABSOLUTE_TIME: time_len = nstime_to_iso8601(time_buf, sizeof(time_buf), fvalue_get_time(fi->value)); if (time_len != 0) { json_dumper_value_anyf(pdata->dumper, "\"%s\"", time_buf); } else { json_dumper_value_anyf(pdata->dumper, "\"Not representable\""); } break; default: dfilter_string = fvalue_to_string_repr(NULL, fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { json_dumper_value_string(pdata->dumper, dfilter_string); } wmem_free(NULL, dfilter_string); break; } } } static void ek_write_attr_hex(GSList *attr_instances, write_json_data *pdata) { GSList *current_node = attr_instances; proto_node *pnode = (proto_node *) current_node->data; field_info *fi = NULL; // Raw name ek_write_name(pnode, "_raw", pdata); if (g_slist_length(attr_instances) > 1) { json_dumper_begin_array(pdata->dumper); } // Raw value(s) while (current_node != NULL) { pnode = (proto_node *) current_node->data; fi = PNODE_FINFO(pnode); ek_write_hex(fi, pdata); current_node = current_node->next; } if (g_slist_length(attr_instances) > 1) { json_dumper_end_array(pdata->dumper); } } static void // NOLINTNEXTLINE(misc-no-recursion) ek_write_attr(GSList *attr_instances, write_json_data *pdata) { GSList *current_node = attr_instances; proto_node *pnode = (proto_node *) current_node->data; field_info *fi = PNODE_FINFO(pnode); pf_flags filter_flags = PF_NONE; // Hex dump -x if (pdata->print_hex && fi && fi->length > 0 && fi->hfinfo->id != hf_text_only) { ek_write_attr_hex(attr_instances, pdata); } // Print attr name ek_write_name(pnode, NULL, pdata); if (g_slist_length(attr_instances) > 1) { json_dumper_begin_array(pdata->dumper); } while (current_node != NULL) { pnode = (proto_node *) current_node->data; fi = PNODE_FINFO(pnode); /* Field */ if (fi->hfinfo->type != FT_PROTOCOL) { if (pdata->filter != NULL && !ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) { /* print dummy field */ json_dumper_begin_object(pdata->dumper); json_dumper_set_member_name(pdata->dumper, "filtered"); json_dumper_value_string(pdata->dumper, fi->hfinfo->abbrev); json_dumper_end_object(pdata->dumper); } else { ek_write_field_value(fi, pdata); } } else { /* Object */ json_dumper_begin_object(pdata->dumper); if (pdata->filter != NULL) { if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) { wmem_map_t *_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } proto_tree_write_node_ek(pnode, pdata); /* Put protocol filter back */ if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { /* print dummy field */ json_dumper_set_member_name(pdata->dumper, "filtered"); json_dumper_value_string(pdata->dumper, fi->hfinfo->abbrev); } } else { proto_tree_write_node_ek(pnode, pdata); } json_dumper_end_object(pdata->dumper); } current_node = current_node->next; } if (g_slist_length(attr_instances) > 1) { json_dumper_end_array(pdata->dumper); } } // NOLINTNEXTLINE(misc-no-recursion) void process_ek_attrs(gpointer key _U_, gpointer value, gpointer pdata) { GSList *attr_instances = (GSList *) value; ek_write_attr(attr_instances, pdata); } /* Write out a tree's data, and any child nodes, as JSON for EK */ static void // NOLINTNEXTLINE(misc-no-recursion) proto_tree_write_node_ek(proto_node *node, write_json_data *pdata) { GHashTable *attr_table = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL); GHashTableIter iter; gpointer key, value; ek_fill_attr(node, attr_table, pdata); // Print attributes g_hash_table_iter_init(&iter, attr_table); while (g_hash_table_iter_next (&iter, &key, &value)) { process_ek_attrs(key, value, pdata); g_hash_table_iter_remove(&iter); /* We lookup a list in the table, append to it, and re-insert it; as * g_slist_append() can change the start pointer of the list we can't * just append to the list without replacing the old value. In turn, * that means we can't set the value_destroy_func when creating * the hash table, because on re-insertion that would destroy the * nodes of the old list, which are still being used by the new list. * So free it here. */ g_slist_free((GSList*)value); } g_hash_table_destroy(attr_table); } /* Print info for a 'geninfo' pseudo-protocol. This is required by * the PDML spec. The information is contained in Wireshark's 'frame' protocol, * but we produce a 'geninfo' protocol in the PDML to conform to spec. * The 'frame' protocol follows the 'geninfo' protocol in the PDML. */ static void print_pdml_geninfo(epan_dissect_t *edt, FILE *fh) { uint32_t num, len, caplen; GPtrArray *finfo_array; field_info *frame_finfo; char *tmp; /* Get frame protocol's finfo. */ finfo_array = proto_find_first_finfo(edt->tree, proto_frame); if (g_ptr_array_len(finfo_array) < 1) { return; } frame_finfo = (field_info *)finfo_array->pdata[0]; g_ptr_array_free(finfo_array, true); /* frame.number, packet_info.num */ num = edt->pi.num; /* frame.frame_len, packet_info.frame_data->pkt_len */ len = edt->pi.fd->pkt_len; /* frame.cap_len --> packet_info.frame_data->cap_len */ caplen = edt->pi.fd->cap_len; /* Print geninfo start */ fprintf(fh, " \n", frame_finfo->length); /* Print geninfo.num */ fprintf(fh, " \n", num, num, frame_finfo->length); /* Print geninfo.len */ fprintf(fh, " \n", len, len, frame_finfo->length); /* Print geninfo.caplen */ fprintf(fh, " \n", caplen, caplen, frame_finfo->length); tmp = abs_time_to_str(NULL, &edt->pi.abs_ts, ABSOLUTE_TIME_LOCAL, true); /* Print geninfo.timestamp */ fprintf(fh, " \n", tmp, (int)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs, frame_finfo->length); wmem_free(NULL, tmp); /* Print geninfo end */ fprintf(fh, " \n"); } void write_pdml_finale(FILE *fh) { fputs("\n", fh); } void write_psml_preamble(column_info *cinfo, FILE *fh) { int i; fprintf(fh, "\n"); fprintf(fh, "\n", PACKAGE, VERSION); fprintf(fh, "\n"); for (i = 0; i < cinfo->num_cols; i++) { if (!get_column_visible(i)) continue; fprintf(fh, "
"); print_escaped_xml(fh, cinfo->columns[i].col_title); fprintf(fh, "
\n"); } fprintf(fh, "
\n\n"); } void write_psml_columns(epan_dissect_t *edt, FILE *fh, bool use_color) { int i; const color_filter_t *cfp = edt->pi.fd->color_filter; if (use_color && (cfp != NULL)) { fprintf(fh, "\n", color_t_to_rgb(&cfp->fg_color), color_t_to_rgb(&cfp->bg_color)); } else { fprintf(fh, "\n"); } for (i = 0; i < edt->pi.cinfo->num_cols; i++) { if (!get_column_visible(i)) continue; fprintf(fh, "
"); print_escaped_xml(fh, get_column_text(edt->pi.cinfo, i)); fprintf(fh, "
\n"); } fprintf(fh, "
\n\n"); } void write_psml_finale(FILE *fh) { fputs("
\n", fh); } static char *csv_massage_str(const char *source, const char *exceptions) { char *csv_str; char *tmp_str; /* In general, our output for any field can contain Unicode characters, so g_strescape (which escapes any non-ASCII) is the wrong thing to do. Unfortunately glib doesn't appear to provide g_unicode_strescape()... */ csv_str = g_strescape(source, exceptions); tmp_str = csv_str; /* Locate the UTF-8 right arrow character and replace it by an ASCII equivalent */ while ( (tmp_str = strstr(tmp_str, UTF8_RIGHTWARDS_ARROW)) != NULL ) { tmp_str[0] = ' '; tmp_str[1] = '>'; tmp_str[2] = ' '; } tmp_str = csv_str; while ( (tmp_str = strstr(tmp_str, "\\\"")) != NULL ) *tmp_str = '\"'; return csv_str; } static void csv_write_str(const char *str, char sep, FILE *fh, bool print_separator) { char *csv_str; /* Do not escape the UTF-8 right arrow character */ csv_str = csv_massage_str(str, UTF8_RIGHTWARDS_ARROW); if (print_separator) { fprintf(fh, "%c\"%s\"", sep, csv_str); } else { fprintf(fh, "\"%s\"", csv_str); } g_free(csv_str); } void write_csv_column_titles(column_info *cinfo, FILE *fh) { int i; bool print_separator = false; // Avoid printing separator for first column for (i = 0; i < cinfo->num_cols; i++) { if (!get_column_visible(i)) continue; csv_write_str(cinfo->columns[i].col_title, ',', fh, print_separator); print_separator = true; } if (print_separator) { // Only add line break if anything was output fprintf(fh, "\n"); } } void write_csv_columns(epan_dissect_t *edt, FILE *fh) { int i; bool print_separator = false; // Avoid printing separator for first column for (i = 0; i < edt->pi.cinfo->num_cols; i++) { if (!get_column_visible(i)) continue; csv_write_str(get_column_text(edt->pi.cinfo, i), ',', fh, print_separator); print_separator = true; } if (print_separator) { // Only add line break if anything was output fprintf(fh, "\n"); } } void write_carrays_hex_data(uint32_t num, FILE *fh, epan_dissect_t *edt) { uint32_t i = 0, src_num = 0; GSList *src_le; tvbuff_t *tvb; char *name; const unsigned char *cp; unsigned length; char ascii[9]; struct data_source *src; for (src_le = edt->pi.data_src; src_le != NULL; src_le = src_le->next) { memset(ascii, 0, sizeof(ascii)); src = (struct data_source *)src_le->data; tvb = get_data_source_tvb(src); length = tvb_captured_length(tvb); if (length == 0) continue; cp = tvb_get_ptr(tvb, 0, length); name = get_data_source_name(src); if (name) { fprintf(fh, "// %s\n", name); wmem_free(NULL, name); } if (src_num) { fprintf(fh, "static const unsigned char pkt%u_%u[%u] = {\n", num, src_num, length); } else { fprintf(fh, "static const unsigned char pkt%u[%u] = {\n", num, length); } src_num++; for (i = 0; i < length; i++) { fprintf(fh, "0x%02x", *(cp + i)); ascii[i % 8] = g_ascii_isprint(*(cp + i)) ? *(cp + i) : '.'; if (i == (length - 1)) { unsigned rem; rem = length % 8; if (rem) { unsigned j; for ( j = 0; j < 8 - rem; j++ ) fprintf(fh, " "); } fprintf(fh, " // |%s|\n};\n\n", ascii); break; } if (!((i + 1) % 8)) { fprintf(fh, ", // |%s|\n", ascii); memset(ascii, 0, sizeof(ascii)); } else { fprintf(fh, ", "); } } } } /* * Find the data source for a specified field, and return a pointer * to the data in it. Returns NULL if the data is out of bounds. */ /* XXX: What am I missing ? * Why bother searching for fi->ds_tvb for the matching tvb * in the data_source list ? * IOW: Why not just use fi->ds_tvb for the arg to tvb_get_ptr() ? */ static const uint8_t * get_field_data(GSList *src_list, field_info *fi) { GSList *src_le; tvbuff_t *src_tvb; int length, tvbuff_length; struct data_source *src; for (src_le = src_list; src_le != NULL; src_le = src_le->next) { src = (struct data_source *)src_le->data; src_tvb = get_data_source_tvb(src); if (fi->ds_tvb == src_tvb) { /* * Found it. * * XXX - a field can have a length that runs past * the end of the tvbuff. Ideally, that should * be fixed when adding an item to the protocol * tree, but checking the length when doing * that could be expensive. Until we fix that, * we'll do the check here. */ tvbuff_length = tvb_captured_length_remaining(src_tvb, fi->start); if (tvbuff_length < 0) { return NULL; } length = fi->length; if (length > tvbuff_length) length = tvbuff_length; return tvb_get_ptr(src_tvb, fi->start, length); } } return NULL; /* not found */ } /* Print a string, escaping out certain characters that need to * escaped out for XML. */ static void print_escaped_xml(FILE *fh, const char *unescaped_string) { const char *p; #define ESCAPED_BUFFER_SIZE 256 #define ESCAPED_BUFFER_LIMIT (ESCAPED_BUFFER_SIZE - (int)sizeof(""")) static char temp_buffer[ESCAPED_BUFFER_SIZE]; int offset = 0; if (fh == NULL || unescaped_string == NULL) { return; } /* XXX: Why not use xml_escape() from epan/strutil.h ? */ for (p = unescaped_string; *p != '\0' && (offset <= ESCAPED_BUFFER_LIMIT); p++) { switch (*p) { case '&': (void) g_strlcpy(&temp_buffer[offset], "&", ESCAPED_BUFFER_SIZE-offset); offset += 5; break; case '<': (void) g_strlcpy(&temp_buffer[offset], "<", ESCAPED_BUFFER_SIZE-offset); offset += 4; break; case '>': (void) g_strlcpy(&temp_buffer[offset], ">", ESCAPED_BUFFER_SIZE-offset); offset += 4; break; case '"': (void) g_strlcpy(&temp_buffer[offset], """, ESCAPED_BUFFER_SIZE-offset); offset += 6; break; case '\'': (void) g_strlcpy(&temp_buffer[offset], "'", ESCAPED_BUFFER_SIZE-offset); offset += 6; break; case '\t': case '\n': case '\r': temp_buffer[offset++] = *p; break; default: /* XML 1.0 doesn't allow ASCII control characters, except * for the three whitespace ones above (which do *not* * include '\v' and '\f', so not the same group as isspace), * even as character references. * There's no official way to escape them, so we'll do this. */ if (g_ascii_iscntrl(*p)) { offset += snprintf(&temp_buffer[offset], ESCAPED_BUFFER_SIZE-offset, "\\x%x", (uint8_t)*p); } else { /* Just copy character */ temp_buffer[offset++] = *p; } } if (offset > ESCAPED_BUFFER_LIMIT) { /* Getting close to end of buffer so flush to fh */ temp_buffer[offset] = '\0'; fputs(temp_buffer, fh); offset = 0; } } if (offset) { /* Flush any outstanding data */ temp_buffer[offset] = '\0'; fputs(temp_buffer, fh); } } static void print_escaped_csv(FILE *fh, const char *unescaped_string, char delimiter, char quote_char, bool escape_wsp) { if (fh == NULL || unescaped_string == NULL) { return; } /* XXX: What about the field aggregator? Should that be escaped? * Should there be an "escape all non-printable" option? * (Instead of or in addition to escape wsp?) * Should there be a "escape all non ASCII?" option, similar * to the Wireshark output? */ char *escaped_string; if (quote_char == '\0') { /* Not quoting, so we must escape the delimiter */ escaped_string = ws_escape_csv(NULL, unescaped_string, false, delimiter, false, escape_wsp); } else { escaped_string = ws_escape_csv(NULL, unescaped_string, true, quote_char, true, escape_wsp); } fputs(escaped_string, fh); wmem_free(NULL, escaped_string); } static void pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi) { int i; const uint8_t *pd; if (!fi->ds_tvb) return; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { fprintf(pdata->fh, "field length invalid!"); return; } /* Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { /* Used fixed buffer where can, otherwise temp malloc */ static char str_static[513]; char *str = str_static; char* str_heap = NULL; if (fi->length > 256) { str_heap = (char*)g_malloc(fi->length*2 + 1); /* no need to zero */ str = str_heap; } static const char hex[] = "0123456789abcdef"; /* Print a simple hex dump */ for (i = 0 ; i < fi->length; i++) { str[2*i] = hex[pd[i] >> 4]; str[2*i+1] = hex[pd[i] & 0xf]; } str[2 * fi->length] = '\0'; fputs(str, pdata->fh); g_free(str_heap); /* harmless/fast if NULL */ } } static void json_write_field_hex_value(write_json_data *pdata, field_info *fi) { const uint8_t *pd; if (!fi->ds_tvb) return; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { json_dumper_value_string(pdata->dumper, "field length invalid!"); return; } /* Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { int i; char* str = (char*)g_malloc(fi->length*2 + 1); /* no need to zero */ static const char hex[] = "0123456789abcdef"; /* Print a simple hex dump */ for (i = 0; i < fi->length; i++) { uint8_t c = pd[i]; str[2 * i] = hex[c >> 4]; str[2 * i + 1] = hex[c & 0xf]; } str[2 * fi->length] = '\0'; json_dumper_value_string(pdata->dumper, str); g_free(str); } else { json_dumper_value_string(pdata->dumper, ""); } } bool print_hex_data(print_stream_t *stream, epan_dissect_t *edt, unsigned hexdump_options) { bool multiple_sources; GSList *src_le; tvbuff_t *tvb; char *line, *name; const unsigned char *cp; unsigned length; struct data_source *src; /* * Set "multiple_sources" iff this frame has more than one * data source; if it does, we need to print the name of * the data source before printing the data from the * data source. */ multiple_sources = (edt->pi.data_src->next != NULL); for (src_le = edt->pi.data_src; src_le != NULL; src_le = src_le->next) { src = (struct data_source *)src_le->data; tvb = get_data_source_tvb(src); if (multiple_sources && (HEXDUMP_SOURCE_OPTION(hexdump_options) == HEXDUMP_SOURCE_MULTI)) { name = get_data_source_name(src); line = ws_strdup_printf("%s:", name); wmem_free(NULL, name); print_line(stream, 0, line); g_free(line); } length = tvb_captured_length(tvb); if (length == 0) return true; cp = tvb_get_ptr(tvb, 0, length); if (!print_hex_data_buffer(stream, cp, length, (packet_char_enc)edt->pi.fd->encoding, HEXDUMP_ASCII_OPTION(hexdump_options))) return false; if (HEXDUMP_SOURCE_OPTION(hexdump_options) == HEXDUMP_SOURCE_PRIMARY) { return true; } } return true; } static bool print_hex_data_line(void *stream, const char *line) { return print_line(stream, 0, line); } static bool print_hex_data_buffer(print_stream_t *stream, const unsigned char *cp, unsigned length, packet_char_enc encoding, unsigned hexdump_options) { return hex_dump_buffer(print_hex_data_line, stream, cp, length, encoding == PACKET_CHAR_ENC_CHAR_EBCDIC ? HEXDUMP_ENC_EBCDIC : HEXDUMP_ENC_ASCII, hexdump_options); } size_t output_fields_num_fields(output_fields_t* fields) { ws_assert(fields); if (NULL == fields->fields) { return 0; } else { return fields->fields->len; } } void output_fields_free(output_fields_t* fields) { ws_assert(fields); if (NULL != fields->fields) { size_t i; if (NULL != fields->field_indicies) { /* Keys are stored in fields->fields, values are * integers. */ g_hash_table_destroy(fields->field_indicies); } if (NULL != fields->field_dfilters) { g_ptr_array_unref(fields->field_dfilters); } if (NULL != fields->field_values) { g_free(fields->field_values); } for (i = 0; i < fields->fields->len; ++i) { char* field = (char *)g_ptr_array_index(fields->fields,i); g_free(field); } g_ptr_array_free(fields->fields, true); } g_free(fields); } void output_fields_add(output_fields_t *fields, const char *field) { char *field_copy; ws_assert(fields); ws_assert(field); if (NULL == fields->fields) { fields->fields = g_ptr_array_new(); } field_copy = g_strdup(field); g_ptr_array_add(fields->fields, field_copy); /* See if we have a column as a field entry */ if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER))) fields->includes_col_fields = true; } /* * Returns true if the field did not exist yet (or existed with the same * filter_flags value), false if the field was in the protocolfilter with * a different flag. */ bool output_fields_add_protocolfilter(output_fields_t* fields, const char* field, pf_flags filter_flags) { void* value; bool ret = true; if (!fields->protocolfilter) { fields->protocolfilter = wmem_map_new(wmem_epan_scope(), wmem_str_hash, g_str_equal); } if (wmem_map_lookup_extended(fields->protocolfilter, field, NULL, &value)) { if (GPOINTER_TO_UINT(value) != (unsigned)filter_flags) { ret = false; } } wmem_map_insert(fields->protocolfilter, field, GINT_TO_POINTER(filter_flags)); /* See if we have a column as a field entry */ if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER))) fields->includes_col_fields = true; return ret; } static void output_field_check(void *data, void *user_data) { char *field = (char *)data; GSList **invalid_fields = (GSList **)user_data; dfilter_t *dfilter; if (dfilter_compile(field, &dfilter, NULL)) { dfilter_free(dfilter); } else { *invalid_fields = g_slist_prepend(*invalid_fields, field); } } static void output_field_check_protocolfilter(void* key, void* value _U_, void* user_data) { output_field_check(key, user_data); } GSList * output_fields_valid(output_fields_t *fields) { GSList *invalid_fields = NULL; if (fields->fields != NULL) { g_ptr_array_foreach(fields->fields, output_field_check, &invalid_fields); } if (fields->protocolfilter != NULL) { wmem_map_foreach(fields->protocolfilter, output_field_check_protocolfilter, &invalid_fields); } return invalid_fields; } bool output_fields_set_option(output_fields_t *info, char *option) { const char *option_name; const char *option_value; ws_assert(info); ws_assert(option); if ('\0' == *option) { return false; /* this happens if we're called from tshark -E '' */ } option_name = strtok(option, "="); if (!option_name) { return false; } option_value = option + strlen(option_name) + 1; if (*option_value == '\0') { return false; } if (0 == strcmp(option_name, "header")) { switch (*option_value) { case 'n': info->print_header = false; break; case 'y': info->print_header = true; break; default: return false; } return true; } else if (0 == strcmp(option_name, "separator")) { switch (*option_value) { case '/': switch (*++option_value) { case 't': info->separator = '\t'; break; case 's': info->separator = ' '; break; default: info->separator = '\\'; } break; default: info->separator = *option_value; break; } return true; } else if (0 == strcmp(option_name, "occurrence")) { switch (*option_value) { case 'f': case 'l': case 'a': info->occurrence = *option_value; break; default: return false; } return true; } else if (0 == strcmp(option_name, "aggregator")) { switch (*option_value) { case '/': switch (*++option_value) { case 's': info->aggregator = ' '; break; default: info->aggregator = '\\'; } break; default: info->aggregator = *option_value; break; } return true; } else if (0 == strcmp(option_name, "quote")) { switch (*option_value) { case 'd': info->quote = '"'; break; case 's': info->quote = '\''; break; case 'n': info->quote = '\0'; break; default: info->quote = '\0'; return false; } return true; } else if (0 == strcmp(option_name, "bom")) { switch (*option_value) { case 'n': info->print_bom = false; break; case 'y': info->print_bom = true; break; default: return false; } return true; } else if (0 == strcmp(option_name, "escape")) { switch (*option_value) { case 'n': info->escape = false; break; case 'y': info->escape = true; break; default: return false; } return true; } return false; } void output_fields_list_options(FILE *fh) { fprintf(fh, "TShark: The available options for field output \"E\" are:\n"); fputs("bom=y|n Prepend output with the UTF-8 BOM (def: N: no)\n", fh); fputs("header=y|n Print field abbreviations as first line of output (def: N: no)\n", fh); fputs("separator=/t|/s| Set the separator to use;\n \"/t\" = tab, \"/s\" = space (def: /t: tab)\n", fh); fputs("occurrence=f|l|a Select the occurrence of a field to use;\n \"f\" = first, \"l\" = last, \"a\" = all (def: a: all)\n", fh); fputs("aggregator=,|/s| Set the aggregator to use;\n \",\" = comma, \"/s\" = space (def: ,: comma)\n", fh); fputs("quote=d|s|n Print either d: double-quotes, s: single quotes or \n n: no quotes around field values (def: n: none)\n", fh); } bool output_fields_has_cols(output_fields_t* fields) { ws_assert(fields); return fields->includes_col_fields; } static void output_field_prime_edt(void *data, void *user_data) { char *field = (char *)data; epan_dissect_t *edt = (epan_dissect_t*)user_data; /* Find a hf. Note in tshark we already converted the protocol from * its alias, if any. */ header_field_info *hfinfo = proto_registrar_get_byname(field); if (hfinfo) { /* Rewind to the first hf of that name. */ while (hfinfo->same_name_prev_id != -1) { hfinfo = proto_registrar_get_nth(hfinfo->same_name_prev_id); } /* Prime all hf's with that name. */ while (hfinfo) { proto_tree_prime_with_hfid_print(edt->tree, hfinfo->id); hfinfo = hfinfo->same_name_next; } } } static void output_field_dfilter_prime_edt(void *data, void *user_data) { dfilter_t *dfilter = (dfilter_t *)data; epan_dissect_t *edt = (epan_dissect_t*)user_data; if (dfilter) { epan_dissect_prime_with_dfilter(edt, dfilter); } } static void dfilter_free_cb(void *data) { dfilter_t *dcode = (dfilter_t*)data; dfilter_free(dcode); } void output_fields_prime_edt(epan_dissect_t *edt, output_fields_t* fields) { if (fields->fields != NULL) { g_ptr_array_foreach(fields->fields, output_field_prime_edt, edt); if (fields->field_dfilters == NULL) { fields->field_dfilters = g_ptr_array_new_full(fields->fields->len, dfilter_free_cb); for (size_t i = 0; i < fields->fields->len; ++i) { char *field = (char *)g_ptr_array_index(fields->fields, i); dfilter_t *dfilter = NULL; /* For now, we only compile a filter for complex expressions. * If it's just a field name, use the previous method. */ if (!proto_registrar_get_byname(field)) { dfilter_compile_full(field, &dfilter, NULL, DF_EXPAND_MACROS|DF_OPTIMIZE|DF_RETURN_VALUES, __func__); } g_ptr_array_add(fields->field_dfilters, dfilter); } } g_ptr_array_foreach(fields->field_dfilters, output_field_dfilter_prime_edt, edt); } } void write_fields_preamble(output_fields_t* fields, FILE *fh) { size_t i; ws_assert(fields); ws_assert(fh); ws_assert(fields->fields); if (fields->print_bom) { fputs(UTF8_BOM, fh); } if (!fields->print_header) { return; } for(i = 0; i < fields->fields->len; ++i) { const char* field = (const char *)g_ptr_array_index(fields->fields,i); if (i != 0 ) { fputc(fields->separator, fh); } fputs(field, fh); } fputc('\n', fh); } static void format_field_values(output_fields_t* fields, void *field_index, char* value) { unsigned indx; GPtrArray* fv_p; if (NULL == value) return; /* Unwrap change made to disambiguate zero / null */ indx = GPOINTER_TO_UINT(field_index) - 1; if (fields->field_values[indx] == NULL) { fields->field_values[indx] = g_ptr_array_new_with_free_func(g_free); } /* Essentially: fieldvalues[indx] is a 'GPtrArray *' with each array entry */ /* pointing to a string which is (part of) the final output string. */ fv_p = fields->field_values[indx]; switch (fields->occurrence) { case 'f': /* print the value of only the first occurrence of the field */ if (g_ptr_array_len(fv_p) != 0) { /* * This isn't the first occurrence, so the value won't be used; * free it. */ g_free(value); return; } break; case 'l': /* print the value of only the last occurrence of the field */ if (g_ptr_array_len(fv_p) != 0) { /* * This isn't the first occurrence, so there's already a * value in the array, which won't be used; remove the * first (only) element in the array (which will free it, * as we created the GPtrArray with a free func) - * this value will replace it. */ g_ptr_array_set_size(fv_p, 0); } break; case 'a': /* print the value of all occurrences of the field */ break; default: ws_assert_not_reached(); break; } g_ptr_array_add(fv_p, (void *)value); } static void proto_tree_get_node_field_values(proto_node *node, void *data) { write_field_data_t *call_data; field_info *fi; void * field_index; call_data = (write_field_data_t *)data; fi = PNODE_FINFO(node); /* check for a faked item with an invisible tree */ if (fi) { field_index = g_hash_table_lookup(call_data->fields->field_indicies, fi->hfinfo->abbrev); if (NULL != field_index) { format_field_values(call_data->fields, field_index, get_node_field_value(fi, call_data->edt) /* g_ alloc'd string */ ); } } /* Recurse here. */ if (node->first_child != NULL) { proto_tree_children_foreach(node, proto_tree_get_node_field_values, call_data); } } static void write_specified_fields(fields_format format, output_fields_t *fields, epan_dissect_t *edt, column_info *cinfo _U_, FILE *fh, json_dumper *dumper) { size_t i; write_field_data_t data; ws_assert(fields); ws_assert(fields->fields); ws_assert(edt); /* JSON formats must go through json_dumper */ if (format == FORMAT_JSON || format == FORMAT_EK) { ws_assert(!fh && dumper); } else { ws_assert(fh && !dumper); } data.fields = fields; data.edt = edt; if (NULL == fields->field_indicies) { /* Prepare a lookup table from string abbreviation for field to its index. */ fields->field_indicies = g_hash_table_new(g_str_hash, g_str_equal); i = 0; while (i < fields->fields->len) { char *field = (char *)g_ptr_array_index(fields->fields, i); /* Store field indicies +1 so that zero is not a valid value, * and can be distinguished from NULL as a pointer. */ ++i; if (proto_registrar_get_byname(field)) { g_hash_table_insert(fields->field_indicies, field, GUINT_TO_POINTER(i)); } } } /* Array buffer to store values for this packet */ /* Allocate an array for the 'GPtrarray *' the first time */ /* ths function is invoked for a file; */ /* Any and all 'GPtrArray *' are freed (after use) each */ /* time (each packet) this function is invoked for a flle. */ /* XXX: ToDo: use packet-scope'd memory & (if/when implemented) wmem ptr_array */ if (NULL == fields->field_values) fields->field_values = g_new0(GPtrArray*, fields->fields->len); /* free'd in output_fields_free() */ i = 0; while(i < fields->fields->len) { dfilter_t *dfilter = (dfilter_t *)g_ptr_array_index(fields->field_dfilters, i); /* Match how the field indices are treated. */ ++i; if (dfilter != NULL) { GPtrArray *fvals = NULL; bool passed = dfilter_apply_full(dfilter, edt->tree, &fvals); char *str; if (fvals != NULL) { int len = g_ptr_array_len(fvals); for (int j = 0; j < len; ++j) { str = fvalue_to_string_repr(NULL, fvals->pdata[j], FTREPR_DISPLAY, BASE_NONE); format_field_values(fields, GUINT_TO_POINTER(i), str); } g_ptr_array_unref(fvals); } else if (passed) { /* XXX - Should this be "1" (and "0" for !passed) like with * FT_NONE fields, or a check mark / nothing like the GUI ? */ //str = g_strdup("1"); str = g_strdup(UTF8_CHECK_MARK); format_field_values(fields, GUINT_TO_POINTER(i), str); } } } proto_tree_children_foreach(edt->tree, proto_tree_get_node_field_values, &data); switch (format) { case FORMAT_CSV: for(i = 0; i < fields->fields->len; ++i) { if (0 != i) { fputc(fields->separator, fh); } if (NULL != fields->field_values[i]) { GPtrArray *fv_p; size_t j; fv_p = fields->field_values[i]; /* Output the array of (partial) field values */ if (g_ptr_array_len(fv_p) != 0) { wmem_strbuf_t *buf = wmem_strbuf_new(NULL, g_ptr_array_index(fv_p, 0)); for (j = 1; j < g_ptr_array_len(fv_p); j++ ) { wmem_strbuf_append_c(buf, fields->aggregator); wmem_strbuf_append(buf, (char *)g_ptr_array_index(fv_p, j)); } print_escaped_csv(fh, wmem_strbuf_get_str(buf), fields->separator, fields->quote, fields->escape); wmem_strbuf_destroy(buf); } g_ptr_array_free(fv_p, true); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; case FORMAT_XML: for(i = 0; i < fields->fields->len; ++i) { char *field = (char *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; char * str; size_t j; fv_p = fields->field_values[i]; /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j++ ) { str = (char *)g_ptr_array_index(fv_p, j); fprintf(fh, " \n", fh); } g_ptr_array_free(fv_p, true); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; case FORMAT_JSON: json_dumper_begin_object(dumper); for(i = 0; i < fields->fields->len; ++i) { char *field = (char *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; char * str; size_t j; fv_p = fields->field_values[i]; json_dumper_set_member_name(dumper, field); json_dumper_begin_array(dumper); /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j++ ) { str = (char *) g_ptr_array_index(fv_p, j); json_dumper_value_string(dumper, str); } json_dumper_end_array(dumper); g_ptr_array_free(fv_p, true); /* get ready for the next packet */ fields->field_values[i] = NULL; } } json_dumper_end_object(dumper); break; case FORMAT_EK: for(i = 0; i < fields->fields->len; ++i) { char *field = (char *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; char * str; size_t j; fv_p = fields->field_values[i]; json_dumper_set_member_name(dumper, field); json_dumper_begin_array(dumper); /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j++ ) { str = (char *)g_ptr_array_index(fv_p, j); json_dumper_value_string(dumper, str); } json_dumper_end_array(dumper); g_ptr_array_free(fv_p, true); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; default: fprintf(stderr, "Unknown fields format %d\n", format); ws_assert_not_reached(); break; } } void write_fields_finale(output_fields_t* fields _U_ , FILE *fh _U_) { /* Nothing to do */ } /* Returns an g_malloced string */ char* get_node_field_value(field_info* fi, epan_dissect_t* edt) { if (fi->hfinfo->id == hf_text_only) { /* Text label. * Get the text */ if (fi->rep) { return g_strdup(fi->rep->representation); } else { return get_field_hex_value(edt->pi.data_src, fi); } } else if (fi->hfinfo->id == proto_data) { /* Uninterpreted data, i.e., the "Data" protocol, is * printed as a field instead of a protocol. */ return get_field_hex_value(edt->pi.data_src, fi); } else { /* Normal protocols and fields */ char *dfilter_string; switch (fi->hfinfo->type) { case FT_PROTOCOL: /* Print out the full details for the protocol. */ if (fi->rep) { return g_strdup(fi->rep->representation); } else { /* Just print out the protocol abbreviation */ return g_strdup(fi->hfinfo->abbrev); } case FT_NONE: /* Return "1" so that the presence of a field of type * FT_NONE can be checked when using -T fields */ return g_strdup("1"); case FT_UINT_BYTES: case FT_BYTES: { char *ret; const uint8_t *bytes = fvalue_get_bytes_data(fi->value); if (bytes) { dfilter_string = (char *)wmem_alloc(NULL, 3*fvalue_length2(fi->value)); switch (fi->hfinfo->display) { case SEP_DOT: ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length2(fi->value), '.'); break; case SEP_DASH: ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length2(fi->value), '-'); break; case SEP_COLON: ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length2(fi->value), ':'); break; case SEP_SPACE: ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length2(fi->value), ' '); break; case BASE_NONE: default: ret = bytes_to_hexstr(dfilter_string, bytes, fvalue_length2(fi->value)); break; } *ret = '\0'; ret = g_strdup(dfilter_string); wmem_free(NULL, dfilter_string); } else { if (fi->hfinfo->display & BASE_ALLOW_ZERO) { ret = g_strdup(""); } else { ret = g_strdup(""); } } return ret; } break; default: dfilter_string = fvalue_to_string_repr(NULL, fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { char* ret = g_strdup(dfilter_string); wmem_free(NULL, dfilter_string); return ret; } else { return get_field_hex_value(edt->pi.data_src, fi); } } } } static char* get_field_hex_value(GSList *src_list, field_info *fi) { const uint8_t *pd; if (!fi->ds_tvb) return NULL; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { return g_strdup("field length invalid!"); } /* Find the data for this field. */ pd = get_field_data(src_list, fi); if (pd) { int i; char *buffer; char *p; int len; const int chars_per_byte = 2; len = chars_per_byte * fi->length; buffer = (char *)g_malloc(sizeof(char)*(len + 1)); buffer[len] = '\0'; /* Ensure NULL termination in bad cases */ p = buffer; /* Print a simple hex dump */ for (i = 0 ; i < fi->length; i++) { snprintf(p, chars_per_byte+1, "%02x", pd[i]); p += chars_per_byte; } return buffer; } else { return NULL; } } output_fields_t* output_fields_new(void) { output_fields_t* fields = g_new(output_fields_t, 1); fields->print_bom = false; fields->print_header = false; fields->separator = '\t'; fields->occurrence = 'a'; fields->aggregator = ','; fields->fields = NULL; /*Do lazy initialisation */ fields->field_dfilters = NULL; fields->field_indicies = NULL; fields->field_values = NULL; fields->protocolfilter = NULL; fields->quote ='\0'; fields->escape = true; fields->includes_col_fields = false; return fields; } /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */