/* SPDX-License-Identifier: GPL-2.0 */ /* * S390 version * Copyright IBM Corp. 1999, 2000 * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H #include #include #include #include #include #include #include #include #include extern pgd_t swapper_pg_dir[]; extern pgd_t invalid_pg_dir[]; extern void paging_init(void); extern struct ctlreg s390_invalid_asce; enum { PG_DIRECT_MAP_4K = 0, PG_DIRECT_MAP_1M, PG_DIRECT_MAP_2G, PG_DIRECT_MAP_MAX }; extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; static inline void update_page_count(int level, long count) { if (IS_ENABLED(CONFIG_PROC_FS)) atomic_long_add(count, &direct_pages_count[level]); } /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, ptep) do { } while (0) #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0) #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero; used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define ZERO_PAGE(vaddr) \ (virt_to_page((void *)(empty_zero_page + \ (((unsigned long)(vaddr)) &zero_page_mask)))) #define __HAVE_COLOR_ZERO_PAGE /* TODO: s390 cannot support io_remap_pfn_range... */ #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * The vmalloc and module area will always be on the topmost area of the * kernel mapping. 512GB are reserved for vmalloc by default. * At the top of the vmalloc area a 2GB area is reserved where modules * will reside. That makes sure that inter module branches always * happen without trampolines and in addition the placement within a * 2GB frame is branch prediction unit friendly. */ extern unsigned long VMALLOC_START; extern unsigned long VMALLOC_END; #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) extern struct page *vmemmap; extern unsigned long vmemmap_size; extern unsigned long MODULES_VADDR; extern unsigned long MODULES_END; #define MODULES_VADDR MODULES_VADDR #define MODULES_END MODULES_END #define MODULES_LEN (1UL << 31) static inline int is_module_addr(void *addr) { BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); if (addr < (void *)MODULES_VADDR) return 0; if (addr > (void *)MODULES_END) return 0; return 1; } #ifdef CONFIG_KMSAN #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START) #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE) #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE) #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN) #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN) #endif #ifdef CONFIG_RANDOMIZE_BASE #define KASLR_LEN (1UL << 31) #else #define KASLR_LEN 0UL #endif void setup_protection_map(void); /* * A 64 bit pagetable entry of S390 has following format: * | PFRA |0IPC| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * C Change-bit override: HW is not required to set change bit * * A 64 bit segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A 64 bit region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table length * * The 64 bit regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Hardware bits in the page table entry */ #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ #define _PAGE_PROTECT 0x200 /* HW read-only bit */ #define _PAGE_INVALID 0x400 /* HW invalid bit */ #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ /* Software bits in the page table entry */ #define _PAGE_PRESENT 0x001 /* SW pte present bit */ #define _PAGE_YOUNG 0x004 /* SW pte young bit */ #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ #define _PAGE_READ 0x010 /* SW pte read bit */ #define _PAGE_WRITE 0x020 /* SW pte write bit */ #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ #else #define _PAGE_SOFT_DIRTY 0x000 #endif #define _PAGE_SW_BITS 0xffUL /* All SW bits */ #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ /* Set of bits not changed in pte_modify */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ _PAGE_YOUNG | _PAGE_SOFT_DIRTY) /* * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT * HW bit and all SW bits. */ #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS) /* * handle_pte_fault uses pte_present and pte_none to find out the pte type * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to * distinguish present from not-present ptes. It is changed only with the page * table lock held. * * The following table gives the different possible bit combinations for * the pte hardware and software bits in the last 12 bits of a pte * (. unassigned bit, x don't care, t swap type): * * 842100000000 * 000084210000 * 000000008421 * .IR.uswrdy.p * empty .10.00000000 * swap .11..ttttt.0 * prot-none, clean, old .11.xx0000.1 * prot-none, clean, young .11.xx0001.1 * prot-none, dirty, old .11.xx0010.1 * prot-none, dirty, young .11.xx0011.1 * read-only, clean, old .11.xx0100.1 * read-only, clean, young .01.xx0101.1 * read-only, dirty, old .11.xx0110.1 * read-only, dirty, young .01.xx0111.1 * read-write, clean, old .11.xx1100.1 * read-write, clean, young .01.xx1101.1 * read-write, dirty, old .10.xx1110.1 * read-write, dirty, young .00.xx1111.1 * HW-bits: R read-only, I invalid * SW-bits: p present, y young, d dirty, r read, w write, s special, * u unused, l large * * pte_none is true for the bit pattern .10.00000000, pte == 0x400 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 */ /* Bits in the segment/region table address-space-control-element */ #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ #define _ASCE_REAL_SPACE 0x20 /* real space control */ #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ /* Bits in the region table entry */ #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \ _REGION3_ENTRY_PRESENT) #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) #define _REGION3_ENTRY_HARDWARE_BITS 0xfffffffffffff6ffUL #define _REGION3_ENTRY_HARDWARE_BITS_LARGE 0xffffffff8001073cUL #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ #define _REGION3_ENTRY_COMM 0x0010 /* Common-Region, marks swap entry */ #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ #define _REGION3_ENTRY_WRITE 0x8000 /* SW region write bit */ #define _REGION3_ENTRY_READ 0x4000 /* SW region read bit */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */ #else #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ #endif #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL /* * SW region present bit. For non-leaf region-third-table entries, bits 62-63 * indicate the TABLE LENGTH and both must be set to 1. But such entries * would always be considered as present, so it is safe to use bit 63 as * PRESENT bit for PUD. */ #define _REGION3_ENTRY_PRESENT 0x0001 /* Bits in the segment table entry */ #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe3fUL #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe3cUL #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff1073cUL #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PRESENT) #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ #define _SEGMENT_ENTRY_COMM 0x0010 /* Common-Segment, marks swap entry */ #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ #define _SEGMENT_ENTRY_WRITE 0x8000 /* SW segment write bit */ #define _SEGMENT_ENTRY_READ 0x4000 /* SW segment read bit */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */ #else #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ #endif #define _SEGMENT_ENTRY_PRESENT 0x0001 /* SW segment present bit */ /* Common bits in region and segment table entries, for swap entries */ #define _RST_ENTRY_COMM 0x0010 /* Common-Region/Segment, marks swap entry */ #define _RST_ENTRY_INVALID 0x0020 /* invalid region/segment table entry */ #define _CRST_ENTRIES 2048 /* number of region/segment table entries */ #define _PAGE_ENTRIES 256 /* number of page table entries */ #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) #define _REGION1_SHIFT 53 #define _REGION2_SHIFT 42 #define _REGION3_SHIFT 31 #define _SEGMENT_SHIFT 20 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) #define _PAGE_INDEX (0xffUL << PAGE_SHIFT) #define _REGION1_SIZE (1UL << _REGION1_SHIFT) #define _REGION2_SIZE (1UL << _REGION2_SHIFT) #define _REGION3_SIZE (1UL << _REGION3_SHIFT) #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) #define _REGION1_MASK (~(_REGION1_SIZE - 1)) #define _REGION2_MASK (~(_REGION2_SIZE - 1)) #define _REGION3_MASK (~(_REGION3_SIZE - 1)) #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) #define PMD_SHIFT _SEGMENT_SHIFT #define PUD_SHIFT _REGION3_SHIFT #define P4D_SHIFT _REGION2_SHIFT #define PGDIR_SHIFT _REGION1_SHIFT #define PMD_SIZE _SEGMENT_SIZE #define PUD_SIZE _REGION3_SIZE #define P4D_SIZE _REGION2_SIZE #define PGDIR_SIZE _REGION1_SIZE #define PMD_MASK _SEGMENT_MASK #define PUD_MASK _REGION3_MASK #define P4D_MASK _REGION2_MASK #define PGDIR_MASK _REGION1_MASK #define PTRS_PER_PTE _PAGE_ENTRIES #define PTRS_PER_PMD _CRST_ENTRIES #define PTRS_PER_PUD _CRST_ENTRIES #define PTRS_PER_P4D _CRST_ENTRIES #define PTRS_PER_PGD _CRST_ENTRIES /* * Segment table and region3 table entry encoding * (R = read-only, I = invalid, y = young bit): * dy..R...I...wr * prot-none, clean, old 00..1...1...00 * prot-none, clean, young 01..1...1...00 * prot-none, dirty, old 10..1...1...00 * prot-none, dirty, young 11..1...1...00 * read-only, clean, old 00..1...1...01 * read-only, clean, young 01..1...0...01 * read-only, dirty, old 10..1...1...01 * read-only, dirty, young 11..1...0...01 * read-write, clean, old 00..1...1...11 * read-write, clean, young 01..1...0...11 * read-write, dirty, old 10..0...1...11 * read-write, dirty, young 11..0...0...11 * The segment table origin is used to distinguish empty (origin==0) from * read-write, old segment table entries (origin!=0) * HW-bits: R read-only, I invalid * SW-bits: y young, d dirty, r read, w write */ /* Page status table bits for virtualization */ #define PGSTE_ACC_BITS 0xf000000000000000UL #define PGSTE_FP_BIT 0x0800000000000000UL #define PGSTE_PCL_BIT 0x0080000000000000UL #define PGSTE_HR_BIT 0x0040000000000000UL #define PGSTE_HC_BIT 0x0020000000000000UL #define PGSTE_GR_BIT 0x0004000000000000UL #define PGSTE_GC_BIT 0x0002000000000000UL #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ /* Guest Page State used for virtualization */ #define _PGSTE_GPS_ZERO 0x0000000080000000UL #define _PGSTE_GPS_NODAT 0x0000000040000000UL #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK /* * A user page table pointer has the space-switch-event bit, the * private-space-control bit and the storage-alteration-event-control * bit set. A kernel page table pointer doesn't need them. */ #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ _ASCE_ALT_EVENT) /* * Page protection definitions. */ #define __PAGE_NONE (_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) #define __PAGE_RO (_PAGE_PRESENT | _PAGE_READ | \ _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) #define __PAGE_RX (_PAGE_PRESENT | _PAGE_READ | \ _PAGE_INVALID | _PAGE_PROTECT) #define __PAGE_RW (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) #define __PAGE_RWX (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_INVALID | _PAGE_PROTECT) #define __PAGE_SHARED (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) #define __PAGE_KERNEL (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) #define __PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ _PAGE_PROTECT | _PAGE_NOEXEC) extern unsigned long page_noexec_mask; #define __pgprot_page_mask(x) __pgprot((x) & page_noexec_mask) #define PAGE_NONE __pgprot_page_mask(__PAGE_NONE) #define PAGE_RO __pgprot_page_mask(__PAGE_RO) #define PAGE_RX __pgprot_page_mask(__PAGE_RX) #define PAGE_RW __pgprot_page_mask(__PAGE_RW) #define PAGE_RWX __pgprot_page_mask(__PAGE_RWX) #define PAGE_SHARED __pgprot_page_mask(__PAGE_SHARED) #define PAGE_KERNEL __pgprot_page_mask(__PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot_page_mask(__PAGE_KERNEL_RO) /* * Segment entry (large page) protection definitions. */ #define __SEGMENT_NONE (_SEGMENT_ENTRY_PRESENT | \ _SEGMENT_ENTRY_INVALID | \ _SEGMENT_ENTRY_PROTECT) #define __SEGMENT_RO (_SEGMENT_ENTRY_PRESENT | \ _SEGMENT_ENTRY_PROTECT | \ _SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_NOEXEC) #define __SEGMENT_RX (_SEGMENT_ENTRY_PRESENT | \ _SEGMENT_ENTRY_PROTECT | \ _SEGMENT_ENTRY_READ) #define __SEGMENT_RW (_SEGMENT_ENTRY_PRESENT | \ _SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_WRITE | \ _SEGMENT_ENTRY_NOEXEC) #define __SEGMENT_RWX (_SEGMENT_ENTRY_PRESENT | \ _SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_WRITE) #define __SEGMENT_KERNEL (_SEGMENT_ENTRY | \ _SEGMENT_ENTRY_LARGE | \ _SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_WRITE | \ _SEGMENT_ENTRY_YOUNG | \ _SEGMENT_ENTRY_DIRTY | \ _SEGMENT_ENTRY_NOEXEC) #define __SEGMENT_KERNEL_RO (_SEGMENT_ENTRY | \ _SEGMENT_ENTRY_LARGE | \ _SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_YOUNG | \ _SEGMENT_ENTRY_PROTECT | \ _SEGMENT_ENTRY_NOEXEC) extern unsigned long segment_noexec_mask; #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask) #define SEGMENT_NONE __pgprot_segment_mask(__SEGMENT_NONE) #define SEGMENT_RO __pgprot_segment_mask(__SEGMENT_RO) #define SEGMENT_RX __pgprot_segment_mask(__SEGMENT_RX) #define SEGMENT_RW __pgprot_segment_mask(__SEGMENT_RW) #define SEGMENT_RWX __pgprot_segment_mask(__SEGMENT_RWX) #define SEGMENT_KERNEL __pgprot_segment_mask(__SEGMENT_KERNEL) #define SEGMENT_KERNEL_RO __pgprot_segment_mask(__SEGMENT_KERNEL_RO) /* * Region3 entry (large page) protection definitions. */ #define __REGION3_KERNEL (_REGION_ENTRY_TYPE_R3 | \ _REGION3_ENTRY_PRESENT | \ _REGION3_ENTRY_LARGE | \ _REGION3_ENTRY_READ | \ _REGION3_ENTRY_WRITE | \ _REGION3_ENTRY_YOUNG | \ _REGION3_ENTRY_DIRTY | \ _REGION_ENTRY_NOEXEC) #define __REGION3_KERNEL_RO (_REGION_ENTRY_TYPE_R3 | \ _REGION3_ENTRY_PRESENT | \ _REGION3_ENTRY_LARGE | \ _REGION3_ENTRY_READ | \ _REGION3_ENTRY_YOUNG | \ _REGION_ENTRY_PROTECT | \ _REGION_ENTRY_NOEXEC) extern unsigned long region_noexec_mask; #define __pgprot_region_mask(x) __pgprot((x) & region_noexec_mask) #define REGION3_KERNEL __pgprot_region_mask(__REGION3_KERNEL) #define REGION3_KERNEL_RO __pgprot_region_mask(__REGION3_KERNEL_RO) static inline bool mm_p4d_folded(struct mm_struct *mm) { return mm->context.asce_limit <= _REGION1_SIZE; } #define mm_p4d_folded(mm) mm_p4d_folded(mm) static inline bool mm_pud_folded(struct mm_struct *mm) { return mm->context.asce_limit <= _REGION2_SIZE; } #define mm_pud_folded(mm) mm_pud_folded(mm) static inline bool mm_pmd_folded(struct mm_struct *mm) { return mm->context.asce_limit <= _REGION3_SIZE; } #define mm_pmd_folded(mm) mm_pmd_folded(mm) static inline int mm_has_pgste(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(mm->context.has_pgste)) return 1; #endif return 0; } static inline int mm_is_protected(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(atomic_read(&mm->context.protected_count))) return 1; #endif return 0; } static inline int mm_alloc_pgste(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(mm->context.alloc_pgste)) return 1; #endif return 0; } static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) { return __pte(pte_val(pte) & ~pgprot_val(prot)); } static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) { return __pte(pte_val(pte) | pgprot_val(prot)); } static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) { return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); } static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) { return __pmd(pmd_val(pmd) | pgprot_val(prot)); } static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) { return __pud(pud_val(pud) & ~pgprot_val(prot)); } static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) { return __pud(pud_val(pud) | pgprot_val(prot)); } /* * As soon as the guest uses storage keys or enables PV, we deduplicate all * mapped shared zeropages and prevent new shared zeropages from getting * mapped. */ #define mm_forbids_zeropage mm_forbids_zeropage static inline int mm_forbids_zeropage(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (!mm->context.allow_cow_sharing) return 1; #endif return 0; } static inline int mm_uses_skeys(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (mm->context.uses_skeys) return 1; #endif return 0; } static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) { union register_pair r1 = { .even = old, .odd = new, }; unsigned long address = (unsigned long)ptr | 1; asm volatile( " csp %[r1],%[address]" : [r1] "+&d" (r1.pair), "+m" (*ptr) : [address] "d" (address) : "cc"); } /** * cspg() - Compare and Swap and Purge (CSPG) * @ptr: Pointer to the value to be exchanged * @old: The expected old value * @new: The new value * * Return: True if compare and swap was successful, otherwise false. */ static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new) { union register_pair r1 = { .even = old, .odd = new, }; unsigned long address = (unsigned long)ptr | 1; asm volatile( " cspg %[r1],%[address]" : [r1] "+&d" (r1.pair), "+m" (*ptr) : [address] "d" (address) : "cc"); return old == r1.even; } #define CRDTE_DTT_PAGE 0x00UL #define CRDTE_DTT_SEGMENT 0x10UL #define CRDTE_DTT_REGION3 0x14UL #define CRDTE_DTT_REGION2 0x18UL #define CRDTE_DTT_REGION1 0x1cUL /** * crdte() - Compare and Replace DAT Table Entry * @old: The expected old value * @new: The new value * @table: Pointer to the value to be exchanged * @dtt: Table type of the table to be exchanged * @address: The address mapped by the entry to be replaced * @asce: The ASCE of this entry * * Return: True if compare and replace was successful, otherwise false. */ static inline bool crdte(unsigned long old, unsigned long new, unsigned long *table, unsigned long dtt, unsigned long address, unsigned long asce) { union register_pair r1 = { .even = old, .odd = new, }; union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" : [r1] "+&d" (r1.pair) : [r2] "d" (r2.pair), [asce] "a" (asce) : "memory", "cc"); return old == r1.even; } /* * pgd/p4d/pud/pmd/pte query functions */ static inline int pgd_folded(pgd_t pgd) { return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; } static inline int pgd_present(pgd_t pgd) { if (pgd_folded(pgd)) return 1; return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int pgd_none(pgd_t pgd) { if (pgd_folded(pgd)) return 0; return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; } static inline int pgd_bad(pgd_t pgd) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) return 0; return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; } static inline unsigned long pgd_pfn(pgd_t pgd) { unsigned long origin_mask; origin_mask = _REGION_ENTRY_ORIGIN; return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; } static inline int p4d_folded(p4d_t p4d) { return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; } static inline int p4d_present(p4d_t p4d) { if (p4d_folded(p4d)) return 1; return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int p4d_none(p4d_t p4d) { if (p4d_folded(p4d)) return 0; return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; } static inline unsigned long p4d_pfn(p4d_t p4d) { unsigned long origin_mask; origin_mask = _REGION_ENTRY_ORIGIN; return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; } static inline int pud_folded(pud_t pud) { return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; } static inline int pud_present(pud_t pud) { if (pud_folded(pud)) return 1; return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0; } static inline int pud_none(pud_t pud) { if (pud_folded(pud)) return 0; return pud_val(pud) == _REGION3_ENTRY_EMPTY; } #define pud_leaf pud_leaf static inline bool pud_leaf(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) return 0; return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0); } static inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0; } #define pmd_leaf pmd_leaf static inline bool pmd_leaf(pmd_t pmd) { return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0); } static inline int pmd_bad(pmd_t pmd) { if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd)) return 1; return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; } static inline int pud_bad(pud_t pud) { unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud)) return 1; if (type < _REGION_ENTRY_TYPE_R3) return 0; return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; } static inline int p4d_bad(p4d_t p4d) { unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; if (type > _REGION_ENTRY_TYPE_R2) return 1; if (type < _REGION_ENTRY_TYPE_R2) return 0; return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; } #define pud_write pud_write static inline int pud_write(pud_t pud) { return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; } #define pmd_dirty pmd_dirty static inline int pmd_dirty(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; } static inline int pte_present(pte_t pte) { /* Bit pattern: (pte & 0x001) == 0x001 */ return (pte_val(pte) & _PAGE_PRESENT) != 0; } static inline int pte_none(pte_t pte) { /* Bit pattern: pte == 0x400 */ return pte_val(pte) == _PAGE_INVALID; } static inline int pte_swap(pte_t pte) { /* Bit pattern: (pte & 0x201) == 0x200 */ return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) == _PAGE_PROTECT; } static inline int pte_special(pte_t pte) { return (pte_val(pte) & _PAGE_SPECIAL); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return pte_val(a) == pte_val(b); } #ifdef CONFIG_NUMA_BALANCING static inline int pte_protnone(pte_t pte) { return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); } static inline int pmd_protnone(pmd_t pmd) { /* pmd_leaf(pmd) implies pmd_present(pmd) */ return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); } #endif static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); } static inline int pte_soft_dirty(pte_t pte) { return pte_val(pte) & _PAGE_SOFT_DIRTY; } #define pte_swp_soft_dirty pte_soft_dirty static inline pte_t pte_mksoft_dirty(pte_t pte) { return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); } #define pte_swp_mksoft_dirty pte_mksoft_dirty static inline pte_t pte_clear_soft_dirty(pte_t pte) { return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); } #define pte_swp_clear_soft_dirty pte_clear_soft_dirty static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); } /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_WRITE) != 0; } static inline int pte_dirty(pte_t pte) { return (pte_val(pte) & _PAGE_DIRTY) != 0; } static inline int pte_young(pte_t pte) { return (pte_val(pte) & _PAGE_YOUNG) != 0; } #define __HAVE_ARCH_PTE_UNUSED static inline int pte_unused(pte_t pte) { return pte_val(pte) & _PAGE_UNUSED; } /* * Extract the pgprot value from the given pte while at the same time making it * usable for kernel address space mappings where fault driven dirty and * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID * must not be set. */ #define pte_pgprot pte_pgprot static inline pgprot_t pte_pgprot(pte_t pte) { unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; if (pte_write(pte)) pte_flags |= pgprot_val(PAGE_KERNEL); else pte_flags |= pgprot_val(PAGE_KERNEL_RO); pte_flags |= pte_val(pte) & mio_wb_bit_mask; return __pgprot(pte_flags); } /* * pgd/pmd/pte modification functions */ static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pgd); } static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { WRITE_ONCE(*p4dp, p4d); } static inline void set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void pgd_clear(pgd_t *pgd) { if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); } static inline void p4d_clear(p4d_t *p4d) { if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); } static inline void pud_clear(pud_t *pud) { if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte(ptep, __pte(_PAGE_INVALID)); } /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); pte = set_pte_bit(pte, newprot); /* * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX * has the invalid bit set, clear it again for readable, young pages */ if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); /* * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page * protection bit set, clear it again for writable, dirty pages */ if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); } static inline pte_t pte_mkwrite_novma(pte_t pte) { pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); if (pte_val(pte) & _PAGE_DIRTY) pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); } static inline pte_t pte_mkdirty(pte_t pte) { pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); if (pte_val(pte) & _PAGE_WRITE) pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); } static inline pte_t pte_mkyoung(pte_t pte) { pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); if (pte_val(pte) & _PAGE_READ) pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); return pte; } static inline pte_t pte_mkspecial(pte_t pte) { return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); } #ifdef CONFIG_HUGETLB_PAGE static inline pte_t pte_mkhuge(pte_t pte) { return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); } #endif #define IPTE_GLOBAL 0 #define IPTE_LOCAL 1 #define IPTE_NODAT 0x400 #define IPTE_GUEST_ASCE 0x800 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, unsigned long opt, unsigned long asce, int local) { unsigned long pto; pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1); asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]" : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt), [asce] "a" (asce), [m4] "i" (local)); } static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, unsigned long opt, unsigned long asce, int local) { unsigned long pto = __pa(ptep); if (__builtin_constant_p(opt) && opt == 0) { /* Invalidation + TLB flush for the pte */ asm volatile( " ipte %[r1],%[r2],0,%[m4]" : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), [m4] "i" (local)); return; } /* Invalidate ptes with options + TLB flush of the ptes */ opt = opt | (asce & _ASCE_ORIGIN); asm volatile( " ipte %[r1],%[r2],%[r3],%[m4]" : [r2] "+a" (address), [r3] "+a" (opt) : [r1] "a" (pto), [m4] "i" (local) : "memory"); } static __always_inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep, int local) { unsigned long pto = __pa(ptep); /* Invalidate a range of ptes + TLB flush of the ptes */ do { asm volatile( " ipte %[r1],%[r2],%[r3],%[m4]" : [r2] "+a" (address), [r3] "+a" (nr) : [r1] "a" (pto), [m4] "i" (local) : "memory"); } while (nr != 255); } /* * This is hard to understand. ptep_get_and_clear and ptep_clear_flush * both clear the TLB for the unmapped pte. The reason is that * ptep_get_and_clear is used in common code (e.g. change_pte_range) * to modify an active pte. The sequence is * 1) ptep_get_and_clear * 2) set_pte_at * 3) flush_tlb_range * On s390 the tlb needs to get flushed with the modification of the pte * if the pte is active. The only way how this can be implemented is to * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range * is a nop. */ pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); return pte_young(pte); } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { return ptep_test_and_clear_young(vma, address, ptep); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t res; res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); /* At this point the reference through the mapping is still present */ if (mm_is_protected(mm) && pte_present(res)) uv_convert_from_secure_pte(res); return res; } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, pte_t *, pte_t, pte_t); #define __HAVE_ARCH_PTEP_CLEAR_FLUSH static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t res; res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); /* At this point the reference through the mapping is still present */ if (mm_is_protected(vma->vm_mm) && pte_present(res)) uv_convert_from_secure_pte(res); return res; } /* * The batched pte unmap code uses ptep_get_and_clear_full to clear the * ptes. Here an optimization is possible. tlb_gather_mmu flushes all * tlbs of an mm if it can guarantee that the ptes of the mm_struct * cannot be accessed while the batched unmap is running. In this case * full==1 and a simple pte_clear is enough. See tlb.h. */ #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t res; if (full) { res = *ptep; set_pte(ptep, __pte(_PAGE_INVALID)); } else { res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); } /* Nothing to do */ if (!mm_is_protected(mm) || !pte_present(res)) return res; /* * At this point the reference through the mapping is still present. * The notifier should have destroyed all protected vCPUs at this * point, so the destroy should be successful. */ if (full && !uv_destroy_pte(res)) return res; /* * If something went wrong and the page could not be destroyed, or * if this is not a mm teardown, the slower export is used as * fallback instead. */ uv_convert_from_secure_pte(res); return res; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; if (pte_write(pte)) ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); } /* * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE * bits in the comparison. Those might change e.g. because of dirty and young * tracking. */ static inline int pte_allow_rdp(pte_t old, pte_t new) { /* * Only allow changes from RO to RW */ if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT) return 0; return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK); } static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* * RDP might not have propagated the PTE protection reset to all CPUs, * so there could be spurious TLB protection faults. * NOTE: This will also be called when a racing pagetable update on * another thread already installed the correct PTE. Both cases cannot * really be distinguished. * Therefore, only do the local TLB flush when RDP can be used, and the * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead. * A local RDP can be used to do the flush. */ if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT)) __ptep_rdp(address, ptep, 0, 0, 1); } #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t new); #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS static inline int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t entry, int dirty) { if (pte_same(*ptep, entry)) return 0; if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry)) ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry); else ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); return 1; } /* * Additional functions to handle KVM guest page tables */ void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t entry); void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long bits); int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, pte_t *ptep, int prot, unsigned long bit); void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, pte_t *ptep , int reset); void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *sptep, pte_t *tptep, pte_t pte); void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, pte_t *ptep); int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, unsigned char key, bool nq); int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, unsigned char key, unsigned char *oldkey, bool nq, bool mr, bool mc); int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, unsigned char *key); int set_pgste_bits(struct mm_struct *mm, unsigned long addr, unsigned long bits, unsigned long value); int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, unsigned long *oldpte, unsigned long *oldpgste); void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); #define pgprot_writecombine pgprot_writecombine pgprot_t pgprot_writecombine(pgprot_t prot); #define pgprot_writethrough pgprot_writethrough pgprot_t pgprot_writethrough(pgprot_t prot); #define PFN_PTE_SHIFT PAGE_SHIFT /* * Set multiple PTEs to consecutive pages with a single call. All PTEs * are within the same folio, PMD and VMA. */ static inline void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t entry, unsigned int nr) { if (pte_present(entry)) entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); if (mm_has_pgste(mm)) { for (;;) { ptep_set_pte_at(mm, addr, ptep, entry); if (--nr == 0) break; ptep++; entry = __pte(pte_val(entry) + PAGE_SIZE); addr += PAGE_SIZE; } } else { for (;;) { set_pte(ptep, entry); if (--nr == 0) break; ptep++; entry = __pte(pte_val(entry) + PAGE_SIZE); } } } #define set_ptes set_ptes /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; __pte = __pte(physpage | pgprot_val(pgprot)); return pte_mkyoung(__pte); } static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) { unsigned long physpage = page_to_phys(page); pte_t __pte = mk_pte_phys(physpage, pgprot); if (pte_write(__pte) && PageDirty(page)) __pte = pte_mkdirty(__pte); return __pte; } #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) static inline unsigned long pmd_deref(pmd_t pmd) { unsigned long origin_mask; origin_mask = _SEGMENT_ENTRY_ORIGIN; if (pmd_leaf(pmd)) origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; return (unsigned long)__va(pmd_val(pmd) & origin_mask); } static inline unsigned long pmd_pfn(pmd_t pmd) { return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_deref(pud_t pud) { unsigned long origin_mask; origin_mask = _REGION_ENTRY_ORIGIN; if (pud_leaf(pud)) origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; return (unsigned long)__va(pud_val(pud) & origin_mask); } #define pud_pfn pud_pfn static inline unsigned long pud_pfn(pud_t pud) { return __pa(pud_deref(pud)) >> PAGE_SHIFT; } /* * The pgd_offset function *always* adds the index for the top-level * region/segment table. This is done to get a sequence like the * following to work: * pgdp = pgd_offset(current->mm, addr); * pgd = READ_ONCE(*pgdp); * p4dp = p4d_offset(&pgd, addr); * ... * The subsequent p4d_offset, pud_offset and pmd_offset functions * only add an index if they dereferenced the pointer. */ static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) { unsigned long rste; unsigned int shift; /* Get the first entry of the top level table */ rste = pgd_val(*pgd); /* Pick up the shift from the table type of the first entry */ shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); } #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) return (p4d_t *) pgd_deref(pgd) + p4d_index(address); return (p4d_t *) pgdp; } #define p4d_offset_lockless p4d_offset_lockless static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) { return p4d_offset_lockless(pgdp, *pgdp, address); } static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) { if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) return (pud_t *) p4d_deref(p4d) + pud_index(address); return (pud_t *) p4dp; } #define pud_offset_lockless pud_offset_lockless static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) { return pud_offset_lockless(p4dp, *p4dp, address); } #define pud_offset pud_offset static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) return (pmd_t *) pud_deref(pud) + pmd_index(address); return (pmd_t *) pudp; } #define pmd_offset_lockless pmd_offset_lockless static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) { return pmd_offset_lockless(pudp, *pudp, address); } #define pmd_offset pmd_offset static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long) pmd_deref(pmd); } static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { return end <= current->mm->context.asce_limit; } #define gup_fast_permitted gup_fast_permitted #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); } static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) { pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); return pmd; } static inline pmd_t pmd_mkclean(pmd_t pmd) { pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); return pmd; } static inline pud_t pud_wrprotect(pud_t pud) { pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); } static inline pud_t pud_mkwrite(pud_t pud) { pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); if (pud_val(pud) & _REGION3_ENTRY_DIRTY) pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); return pud; } static inline pud_t pud_mkclean(pud_t pud) { pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); } static inline pud_t pud_mkdirty(pud_t pud) { pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); if (pud_val(pud) & _REGION3_ENTRY_WRITE) pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); return pud; } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) { /* * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX * (see __Pxxx / __Sxxx). Convert to segment table entry format. */ if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) return pgprot_val(SEGMENT_NONE); if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) return pgprot_val(SEGMENT_RO); if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) return pgprot_val(SEGMENT_RX); if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) return pgprot_val(SEGMENT_RW); return pgprot_val(SEGMENT_RWX); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); return pmd; } static inline pmd_t pmd_mkold(pmd_t pmd) { pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { unsigned long mask; mask = _SEGMENT_ENTRY_ORIGIN_LARGE; mask |= _SEGMENT_ENTRY_DIRTY; mask |= _SEGMENT_ENTRY_YOUNG; mask |= _SEGMENT_ENTRY_LARGE; mask |= _SEGMENT_ENTRY_SOFT_DIRTY; pmd = __pmd(pmd_val(pmd) & mask); pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); return pmd; } static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) { return __pmd(physpage + massage_pgprot_pmd(pgprot)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ static inline void __pmdp_csp(pmd_t *pmdp) { csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); } #define IDTE_GLOBAL 0 #define IDTE_LOCAL 1 #define IDTE_PTOA 0x0800 #define IDTE_NODAT 0x1000 #define IDTE_GUEST_ASCE 0x2000 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, unsigned long opt, unsigned long asce, int local) { unsigned long sto; sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); if (__builtin_constant_p(opt) && opt == 0) { /* flush without guest asce */ asm volatile( " idte %[r1],0,%[r2],%[m4]" : "+m" (*pmdp) : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), [m4] "i" (local) : "cc" ); } else { /* flush with guest asce */ asm volatile( " idte %[r1],%[r3],%[r2],%[m4]" : "+m" (*pmdp) : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), [r3] "a" (asce), [m4] "i" (local) : "cc" ); } } static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, unsigned long opt, unsigned long asce, int local) { unsigned long r3o; r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); r3o |= _ASCE_TYPE_REGION3; if (__builtin_constant_p(opt) && opt == 0) { /* flush without guest asce */ asm volatile( " idte %[r1],0,%[r2],%[m4]" : "+m" (*pudp) : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), [m4] "i" (local) : "cc"); } else { /* flush with guest asce */ asm volatile( " idte %[r1],%[r3],%[r2],%[m4]" : "+m" (*pudp) : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), [r3] "a" (asce), [m4] "i" (local) : "cc" ); } } pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PGTABLE_DEPOSIT void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #define __HAVE_ARCH_PGTABLE_WITHDRAW pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, pmd_t entry, int dirty) { VM_BUG_ON(addr & ~HPAGE_MASK); entry = pmd_mkyoung(entry); if (dirty) entry = pmd_mkdirty(entry); if (pmd_val(*pmdp) == pmd_val(entry)) return 0; pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); return 1; } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); return pmd_young(pmd); } #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { VM_BUG_ON(addr & ~HPAGE_MASK); return pmdp_test_and_clear_young(vma, addr, pmdp); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t entry) { set_pmd(pmdp, entry); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, int full) { if (full) { pmd_t pmd = *pmdp; set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); return pmd; } return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); } #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); } #define __HAVE_ARCH_PMDP_INVALIDATE static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { pmd_t pmd; VM_WARN_ON_ONCE(!pmd_present(*pmdp)); pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = *pmdp; if (pmd_write(pmd)) pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); } static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #define pmdp_collapse_flush pmdp_collapse_flush #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) static inline int pmd_trans_huge(pmd_t pmd) { return pmd_leaf(pmd); } #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return MACHINE_HAS_EDAT1 ? 1 : 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * 64 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte * as invalid. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 * | offset |E11XX|type |S0| * |0000000000111111111122222222223333333333444444444455|55555|55566|66| * |0123456789012345678901234567890123456789012345678901|23456|78901|23| * * Bits 0-51 store the offset. * Bit 52 (E) is used to remember PG_anon_exclusive. * Bits 57-61 store the type. * Bit 62 (S) is used for softdirty tracking. * Bits 55 and 56 (X) are unused. */ #define __SWP_OFFSET_MASK ((1UL << 52) - 1) #define __SWP_OFFSET_SHIFT 12 #define __SWP_TYPE_MASK ((1UL << 5) - 1) #define __SWP_TYPE_SHIFT 2 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { unsigned long pteval; pteval = _PAGE_INVALID | _PAGE_PROTECT; pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; return __pte(pteval); } static inline unsigned long __swp_type(swp_entry_t entry) { return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; } static inline unsigned long __swp_offset(swp_entry_t entry) { return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; } static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) { return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; } #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE) * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste * as invalid. * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010 * | offset |Xtype |11TT|S0| * |0000000000111111111122222222223333333333444444444455|555555|5566|66| * |0123456789012345678901234567890123456789012345678901|234567|8901|23| * * Bits 0-51 store the offset. * Bits 53-57 store the type. * Bit 62 (S) is used for softdirty tracking. * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT. * Bit 52 (X) is unused. */ #define __SWP_OFFSET_MASK_RSTE ((1UL << 52) - 1) #define __SWP_OFFSET_SHIFT_RSTE 12 #define __SWP_TYPE_MASK_RSTE ((1UL << 5) - 1) #define __SWP_TYPE_SHIFT_RSTE 6 /* * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3 * bits 0x01. See also __set_huge_pte_at(). */ static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset) { unsigned long rste; rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM; rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE; rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE; return rste; } static inline unsigned long __swp_type_rste(swp_entry_t entry) { return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE; } static inline unsigned long __swp_offset_rste(swp_entry_t entry) { return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE; } #define __rste_to_swp_entry(rste) ((swp_entry_t) { rste }) extern int vmem_add_mapping(unsigned long start, unsigned long size); extern void vmem_remove_mapping(unsigned long start, unsigned long size); extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); extern void vmem_unmap_4k_page(unsigned long addr); extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); extern int s390_enable_sie(void); extern int s390_enable_skey(void); extern void s390_reset_cmma(struct mm_struct *mm); /* s390 has a private copy of get unmapped area to deal with cache synonyms */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define pmd_pgtable(pmd) \ ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) #endif /* _S390_PAGE_H */