// SPDX-License-Identifier: GPL-2.0-or-later /* * AMD Node helper functions and common defines * * Copyright (c) 2024, Advanced Micro Devices, Inc. * All Rights Reserved. * * Author: Yazen Ghannam */ #include /* * AMD Nodes are a physical collection of I/O devices within an SoC. There can be one * or more nodes per package. * * The nodes are software-visible through PCI config space. All nodes are enumerated * on segment 0 bus 0. The device (slot) numbers range from 0x18 to 0x1F (maximum 8 * nodes) with 0x18 corresponding to node 0, 0x19 to node 1, etc. Each node can be a * multi-function device. * * On legacy systems, these node devices represent integrated Northbridge functionality. * On Zen-based systems, these node devices represent Data Fabric functionality. * * See "Configuration Space Accesses" section in BKDGs or * "Processor x86 Core" -> "Configuration Space" section in PPRs. */ struct pci_dev *amd_node_get_func(u16 node, u8 func) { if (node >= MAX_AMD_NUM_NODES) return NULL; return pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(AMD_NODE0_PCI_SLOT + node, func)); } #define DF_BLK_INST_CNT 0x040 #define DF_CFG_ADDR_CNTL_LEGACY 0x084 #define DF_CFG_ADDR_CNTL_DF4 0xC04 #define DF_MAJOR_REVISION GENMASK(27, 24) static u16 get_cfg_addr_cntl_offset(struct pci_dev *df_f0) { u32 reg; /* * Revision fields added for DF4 and later. * * Major revision of '0' is found pre-DF4. Field is Read-as-Zero. */ if (pci_read_config_dword(df_f0, DF_BLK_INST_CNT, ®)) return 0; if (reg & DF_MAJOR_REVISION) return DF_CFG_ADDR_CNTL_DF4; return DF_CFG_ADDR_CNTL_LEGACY; } struct pci_dev *amd_node_get_root(u16 node) { struct pci_dev *root; u16 cntl_off; u8 bus; if (!cpu_feature_enabled(X86_FEATURE_ZEN)) return NULL; /* * D18F0xXXX [Config Address Control] (DF::CfgAddressCntl) * Bits [7:0] (SecBusNum) holds the bus number of the root device for * this Data Fabric instance. The segment, device, and function will be 0. */ struct pci_dev *df_f0 __free(pci_dev_put) = amd_node_get_func(node, 0); if (!df_f0) return NULL; cntl_off = get_cfg_addr_cntl_offset(df_f0); if (!cntl_off) return NULL; if (pci_read_config_byte(df_f0, cntl_off, &bus)) return NULL; /* Grab the pointer for the actual root device instance. */ root = pci_get_domain_bus_and_slot(0, bus, 0); pci_dbg(root, "is root for AMD node %u\n", node); return root; } static struct pci_dev **amd_roots; /* Protect the PCI config register pairs used for SMN. */ static DEFINE_MUTEX(smn_mutex); #define SMN_INDEX_OFFSET 0x60 #define SMN_DATA_OFFSET 0x64 /* * SMN accesses may fail in ways that are difficult to detect here in the called * functions amd_smn_read() and amd_smn_write(). Therefore, callers must do * their own checking based on what behavior they expect. * * For SMN reads, the returned value may be zero if the register is Read-as-Zero. * Or it may be a "PCI Error Response", e.g. all 0xFFs. The "PCI Error Response" * can be checked here, and a proper error code can be returned. * * But the Read-as-Zero response cannot be verified here. A value of 0 may be * correct in some cases, so callers must check that this correct is for the * register/fields they need. * * For SMN writes, success can be determined through a "write and read back" * However, this is not robust when done here. * * Possible issues: * * 1) Bits that are "Write-1-to-Clear". In this case, the read value should * *not* match the write value. * * 2) Bits that are "Read-as-Zero"/"Writes-Ignored". This information cannot be * known here. * * 3) Bits that are "Reserved / Set to 1". Ditto above. * * Callers of amd_smn_write() should do the "write and read back" check * themselves, if needed. * * For #1, they can see if their target bits got cleared. * * For #2 and #3, they can check if their target bits got set as intended. * * This matches what is done for RDMSR/WRMSR. As long as there's no #GP, then * the operation is considered a success, and the caller does their own * checking. */ static int __amd_smn_rw(u8 i_off, u8 d_off, u16 node, u32 address, u32 *value, bool write) { struct pci_dev *root; int err = -ENODEV; if (node >= amd_num_nodes()) return err; root = amd_roots[node]; if (!root) return err; guard(mutex)(&smn_mutex); err = pci_write_config_dword(root, i_off, address); if (err) { pr_warn("Error programming SMN address 0x%x.\n", address); return pcibios_err_to_errno(err); } err = (write ? pci_write_config_dword(root, d_off, *value) : pci_read_config_dword(root, d_off, value)); return pcibios_err_to_errno(err); } int __must_check amd_smn_read(u16 node, u32 address, u32 *value) { int err = __amd_smn_rw(SMN_INDEX_OFFSET, SMN_DATA_OFFSET, node, address, value, false); if (PCI_POSSIBLE_ERROR(*value)) { err = -ENODEV; *value = 0; } return err; } EXPORT_SYMBOL_GPL(amd_smn_read); int __must_check amd_smn_write(u16 node, u32 address, u32 value) { return __amd_smn_rw(SMN_INDEX_OFFSET, SMN_DATA_OFFSET, node, address, &value, true); } EXPORT_SYMBOL_GPL(amd_smn_write); static int amd_cache_roots(void) { u16 node, num_nodes = amd_num_nodes(); amd_roots = kcalloc(num_nodes, sizeof(*amd_roots), GFP_KERNEL); if (!amd_roots) return -ENOMEM; for (node = 0; node < num_nodes; node++) amd_roots[node] = amd_node_get_root(node); return 0; } static int __init amd_smn_init(void) { int err; if (!cpu_feature_enabled(X86_FEATURE_ZEN)) return 0; guard(mutex)(&smn_mutex); if (amd_roots) return 0; err = amd_cache_roots(); if (err) return err; return 0; } fs_initcall(amd_smn_init);