// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation * */ #include "i915_reg.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_vrr.h" #include "intel_vrr_regs.h" #define FIXED_POINT_PRECISION 100 #define CMRR_PRECISION_TOLERANCE 10 bool intel_vrr_is_capable(struct intel_connector *connector) { struct intel_display *display = to_intel_display(connector); const struct drm_display_info *info = &connector->base.display_info; struct intel_dp *intel_dp; /* * DP Sink is capable of VRR video timings if * Ignore MSA bit is set in DPCD. * EDID monitor range also should be atleast 10 for reasonable * Adaptive Sync or Variable Refresh Rate end user experience. */ switch (connector->base.connector_type) { case DRM_MODE_CONNECTOR_eDP: if (!connector->panel.vbt.vrr) return false; fallthrough; case DRM_MODE_CONNECTOR_DisplayPort: intel_dp = intel_attached_dp(connector); if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd)) return false; break; default: return false; } return HAS_VRR(display) && info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; } bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) { const struct drm_display_info *info = &connector->base.display_info; return intel_vrr_is_capable(connector) && vrefresh >= info->monitor_range.min_vfreq && vrefresh <= info->monitor_range.max_vfreq; } bool intel_vrr_possible(const struct intel_crtc_state *crtc_state) { return crtc_state->vrr.flipline; } void intel_vrr_check_modeset(struct intel_atomic_state *state) { int i; struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->uapi.vrr_enabled != old_crtc_state->uapi.vrr_enabled) new_crtc_state->uapi.mode_changed = true; } } static int intel_vrr_real_vblank_delay(const struct intel_crtc_state *crtc_state) { return crtc_state->hw.adjusted_mode.crtc_vblank_start - crtc_state->hw.adjusted_mode.crtc_vdisplay; } static int intel_vrr_extra_vblank_delay(struct intel_display *display) { /* * On ICL/TGL VRR hardware inserts one extra scanline * just after vactive, which pushes the vmin decision * boundary ahead accordingly. We'll include the extra * scanline in our vblank delay estimates to make sure * that we never underestimate how long we have until * the delayed vblank has passed. */ return DISPLAY_VER(display) < 13 ? 1 : 0; } int intel_vrr_vblank_delay(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); return intel_vrr_real_vblank_delay(crtc_state) + intel_vrr_extra_vblank_delay(display); } static int intel_vrr_flipline_offset(struct intel_display *display) { /* ICL/TGL hardware imposes flipline>=vmin+1 */ return DISPLAY_VER(display) < 13 ? 1 : 0; } static int intel_vrr_vmin_flipline(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); return crtc_state->vrr.vmin + intel_vrr_flipline_offset(display); } /* * Without VRR registers get latched at: * vblank_start * * With VRR the earliest registers can get latched is: * intel_vrr_vmin_vblank_start(), which if we want to maintain * the correct min vtotal is >=vblank_start+1 * * The latest point registers can get latched is the vmax decision boundary: * intel_vrr_vmax_vblank_start() * * Between those two points the vblank exit starts (and hence registers get * latched) ASAP after a push is sent. * * framestart_delay is programmable 1-4. */ static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); if (DISPLAY_VER(display) >= 13) return crtc_state->vrr.guardband; else /* hardware imposes one extra scanline somewhere */ return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1; } int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); /* Min vblank actually determined by flipline */ if (DISPLAY_VER(display) >= 13) return intel_vrr_vmin_flipline(crtc_state); else return intel_vrr_vmin_flipline(crtc_state) + intel_vrr_real_vblank_delay(crtc_state); } int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); if (DISPLAY_VER(display) >= 13) return crtc_state->vrr.vmax; else return crtc_state->vrr.vmax + intel_vrr_real_vblank_delay(crtc_state); } int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) { return intel_vrr_vmin_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state); } int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) { return intel_vrr_vmax_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state); } static bool is_cmrr_frac_required(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line; struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!HAS_CMRR(display)) return false; actual_refresh_k = drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION; pixel_clock_per_line = adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal; calculated_refresh_k = pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal; if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE) return false; return true; } static unsigned int cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required) { int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate; u64 adjusted_pixel_rate; struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; desired_refresh_rate = drm_mode_vrefresh(adjusted_mode); if (video_mode_required) { multiplier_m = 1001; multiplier_n = 1000; } crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal, multiplier_n); vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n), crtc_state->cmrr.cmrr_n); adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m); crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n); return vtotal; } void intel_vrr_compute_config(struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct intel_dp *intel_dp = intel_attached_dp(connector); bool is_edp = intel_dp_is_edp(intel_dp); struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; const struct drm_display_info *info = &connector->base.display_info; int vmin, vmax; /* * FIXME all joined pipes share the same transcoder. * Need to account for that during VRR toggle/push/etc. */ if (crtc_state->joiner_pipes) return; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return; crtc_state->vrr.in_range = intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode)); if (!crtc_state->vrr.in_range) return; if (HAS_LRR(display)) crtc_state->update_lrr = true; vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000, adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq); vmax = adjusted_mode->crtc_clock * 1000 / (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal); vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); if (vmin >= vmax) return; crtc_state->vrr.vmin = vmin; crtc_state->vrr.vmax = vmax; crtc_state->vrr.flipline = crtc_state->vrr.vmin; /* * flipline determines the min vblank length the hardware will * generate, and on ICL/TGL flipline>=vmin+1, hence we reduce * vmin by one to make sure we can get the actual min vblank length. */ crtc_state->vrr.vmin -= intel_vrr_flipline_offset(display); /* * When panel is VRR capable and userspace has * not enabled adaptive sync mode then Fixed Average * Vtotal mode should be enabled. */ if (crtc_state->uapi.vrr_enabled) { crtc_state->vrr.enable = true; crtc_state->mode_flags |= I915_MODE_FLAG_VRR; } else if (is_cmrr_frac_required(crtc_state) && is_edp) { crtc_state->vrr.enable = true; crtc_state->cmrr.enable = true; /* * TODO: Compute precise target refresh rate to determine * if video_mode_required should be true. Currently set to * false due to uncertainty about the precise target * refresh Rate. */ crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false); crtc_state->vrr.vmin = crtc_state->vrr.vmax; crtc_state->vrr.flipline = crtc_state->vrr.vmin; crtc_state->mode_flags |= I915_MODE_FLAG_VRR; } if (HAS_AS_SDP(display)) { crtc_state->vrr.vsync_start = (crtc_state->hw.adjusted_mode.crtc_vtotal - crtc_state->hw.adjusted_mode.vsync_start); crtc_state->vrr.vsync_end = (crtc_state->hw.adjusted_mode.crtc_vtotal - crtc_state->hw.adjusted_mode.vsync_end); } } void intel_vrr_compute_config_late(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!intel_vrr_possible(crtc_state)) return; if (DISPLAY_VER(display) >= 13) { crtc_state->vrr.guardband = crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start; } else { /* hardware imposes one extra scanline somewhere */ crtc_state->vrr.pipeline_full = min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start - crtc_state->framestart_delay - 1); /* * vmin/vmax/flipline also need to be adjusted by * the vblank delay to maintain correct vtotals. */ crtc_state->vrr.vmin -= intel_vrr_real_vblank_delay(crtc_state); crtc_state->vrr.vmax -= intel_vrr_real_vblank_delay(crtc_state); crtc_state->vrr.flipline -= intel_vrr_real_vblank_delay(crtc_state); } } static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); if (DISPLAY_VER(display) >= 13) return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); else return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | VRR_CTL_PIPELINE_FULL_OVERRIDE; } void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; /* * This bit seems to have two meanings depending on the platform: * TGL: generate VRR "safe window" for DSB vblank waits * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR */ if (IS_DISPLAY_VER(display, 12, 13)) intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), 0, PIPE_VBLANK_WITH_DELAY); if (!intel_vrr_possible(crtc_state)) { intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), 0); return; } if (crtc_state->cmrr.enable) { intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder), upper_32_bits(crtc_state->cmrr.cmrr_m)); intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder), lower_32_bits(crtc_state->cmrr.cmrr_m)); intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder), upper_32_bits(crtc_state->cmrr.cmrr_n)); intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder), lower_32_bits(crtc_state->cmrr.cmrr_n)); } intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), crtc_state->vrr.vmin - 1); intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), crtc_state->vrr.vmax - 1); intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), trans_vrr_ctl(crtc_state)); intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), crtc_state->vrr.flipline - 1); if (HAS_AS_SDP(display)) intel_de_write(display, TRANS_VRR_VSYNC(display, cpu_transcoder), VRR_VSYNC_END(crtc_state->vrr.vsync_end) | VRR_VSYNC_START(crtc_state->vrr.vsync_start)); } void intel_vrr_send_push(struct intel_dsb *dsb, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return; if (dsb) intel_dsb_nonpost_start(dsb); intel_de_write_dsb(display, dsb, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_EN | TRANS_PUSH_SEND); if (dsb) intel_dsb_nonpost_end(dsb); } void intel_vrr_check_push_sent(struct intel_dsb *dsb, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return; /* * Make sure the push send bit has cleared. This should * already be the case as long as the caller makes sure * this is called after the delayed vblank has occurred. */ if (dsb) { int wait_us, count; wait_us = 2; count = 1; /* * If the bit hasn't cleared the DSB will * raise the poll error interrupt. */ intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_SEND, 0, wait_us, count); } else { if (intel_vrr_is_push_sent(crtc_state)) drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n", crtc->base.base.id, crtc->base.name); } } bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return false; return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND; } void intel_vrr_enable(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return; intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_EN); if (crtc_state->cmrr.enable) { intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), VRR_CTL_VRR_ENABLE | VRR_CTL_CMRR_ENABLE | trans_vrr_ctl(crtc_state)); } else { intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state)); } } void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_display *display = to_intel_display(old_crtc_state); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; if (!old_crtc_state->vrr.enable) return; intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), trans_vrr_ctl(old_crtc_state)); intel_de_wait_for_clear(display, TRANS_VRR_STATUS(display, cpu_transcoder), VRR_STATUS_VRR_EN_LIVE, 1000); intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0); } void intel_vrr_get_config(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 trans_vrr_ctl, trans_vrr_vsync; trans_vrr_ctl = intel_de_read(display, TRANS_VRR_CTL(display, cpu_transcoder)); crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; if (HAS_CMRR(display)) crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE); if (crtc_state->cmrr.enable) { crtc_state->cmrr.cmrr_n = intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder), TRANS_CMRR_N_HI(display, cpu_transcoder)); crtc_state->cmrr.cmrr_m = intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder), TRANS_CMRR_M_HI(display, cpu_transcoder)); } if (DISPLAY_VER(display) >= 13) crtc_state->vrr.guardband = REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); else if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) crtc_state->vrr.pipeline_full = REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { crtc_state->vrr.flipline = intel_de_read(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1; crtc_state->vrr.vmax = intel_de_read(display, TRANS_VRR_VMAX(display, cpu_transcoder)) + 1; crtc_state->vrr.vmin = intel_de_read(display, TRANS_VRR_VMIN(display, cpu_transcoder)) + 1; if (HAS_AS_SDP(display)) { trans_vrr_vsync = intel_de_read(display, TRANS_VRR_VSYNC(display, cpu_transcoder)); crtc_state->vrr.vsync_start = REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync); crtc_state->vrr.vsync_end = REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync); } } if (crtc_state->vrr.enable) crtc_state->mode_flags |= I915_MODE_FLAG_VRR; }