// SPDX-License-Identifier: MIT /* * Copyright © 2014-2018 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_ccs_mode.h" #include "intel_gt_mcr.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_ring.h" #include "intel_workarounds.h" #include "display/intel_fbc_regs.h" /** * DOC: Hardware workarounds * * Hardware workarounds are register programming documented to be executed in * the driver that fall outside of the normal programming sequences for a * platform. There are some basic categories of workarounds, depending on * how/when they are applied: * * - Context workarounds: workarounds that touch registers that are * saved/restored to/from the HW context image. The list is emitted (via Load * Register Immediate commands) once when initializing the device and saved in * the default context. That default context is then used on every context * creation to have a "primed golden context", i.e. a context image that * already contains the changes needed to all the registers. * * Context workarounds should be implemented in the \*_ctx_workarounds_init() * variants respective to the targeted platforms. * * - Engine workarounds: the list of these WAs is applied whenever the specific * engine is reset. It's also possible that a set of engine classes share a * common power domain and they are reset together. This happens on some * platforms with render and compute engines. In this case (at least) one of * them need to keeep the workaround programming: the approach taken in the * driver is to tie those workarounds to the first compute/render engine that * is registered. When executing with GuC submission, engine resets are * outside of kernel driver control, hence the list of registers involved in * written once, on engine initialization, and then passed to GuC, that * saves/restores their values before/after the reset takes place. See * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. * * Workarounds for registers specific to RCS and CCS should be implemented in * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for * registers belonging to BCS, VCS or VECS should be implemented in * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific * engine's MMIO range but that are part of of the common RCS/CCS reset domain * should be implemented in general_render_compute_wa_init(). The settings * about the CCS load balancing should be added in ccs_engine_wa_mode(). * * - GT workarounds: the list of these WAs is applied whenever these registers * revert to their default values: on GPU reset, suspend/resume [1]_, etc. * * GT workarounds should be implemented in the \*_gt_workarounds_init() * variants respective to the targeted platforms. * * - Register whitelist: some workarounds need to be implemented in userspace, * but need to touch privileged registers. The whitelist in the kernel * instructs the hardware to allow the access to happen. From the kernel side, * this is just a special case of a MMIO workaround (as we write the list of * these to/be-whitelisted registers to some special HW registers). * * Register whitelisting should be done in the \*_whitelist_build() variants * respective to the targeted platforms. * * - Workaround batchbuffers: buffers that get executed automatically by the * hardware on every HW context restore. These buffers are created and * programmed in the default context so the hardware always go through those * programming sequences when switching contexts. The support for workaround * batchbuffers is enabled these hardware mechanisms: * * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default * context, pointing the hardware to jump to that location when that offset * is reached in the context restore. Workaround batchbuffer in the driver * currently uses this mechanism for all platforms. * * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, * pointing the hardware to a buffer to continue executing after the * engine registers are restored in a context restore sequence. This is * currently not used in the driver. * * - Other: There are WAs that, due to their nature, cannot be applied from a * central place. Those are peppered around the rest of the code, as needed. * Workarounds related to the display IP are the main example. * * .. [1] Technically, some registers are powercontext saved & restored, so they * survive a suspend/resume. In practice, writing them again is not too * costly and simplifies things, so it's the approach taken in the driver. */ static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, const char *name, const char *engine_name) { wal->gt = gt; wal->name = name; wal->engine_name = engine_name; } #define WA_LIST_CHUNK (1 << 4) static void wa_init_finish(struct i915_wa_list *wal) { /* Trim unused entries. */ if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { struct i915_wa *list = kmemdup_array(wal->list, wal->count, sizeof(*list), GFP_KERNEL); if (list) { kfree(wal->list); wal->list = list; } } if (!wal->count) return; gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n", wal->wa_count, wal->name, wal->engine_name); } static enum forcewake_domains wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) { enum forcewake_domains fw = 0; struct i915_wa *wa; unsigned int i; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) fw |= intel_uncore_forcewake_for_reg(uncore, wa->reg, FW_REG_READ | FW_REG_WRITE); return fw; } static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) { unsigned int addr = i915_mmio_reg_offset(wa->reg); struct drm_i915_private *i915 = wal->gt->i915; unsigned int start = 0, end = wal->count; const unsigned int grow = WA_LIST_CHUNK; struct i915_wa *wa_; GEM_BUG_ON(!is_power_of_2(grow)); if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ struct i915_wa *list; list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), GFP_KERNEL); if (!list) { drm_err(&i915->drm, "No space for workaround init!\n"); return; } if (wal->list) { memcpy(list, wal->list, sizeof(*wa) * wal->count); kfree(wal->list); } wal->list = list; } while (start < end) { unsigned int mid = start + (end - start) / 2; if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { start = mid + 1; } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { end = mid; } else { wa_ = &wal->list[mid]; if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { drm_err(&i915->drm, "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", i915_mmio_reg_offset(wa_->reg), wa_->clr, wa_->set); wa_->set &= ~wa->clr; } wal->wa_count++; wa_->set |= wa->set; wa_->clr |= wa->clr; wa_->read |= wa->read; return; } } wal->wa_count++; wa_ = &wal->list[wal->count++]; *wa_ = *wa; while (wa_-- > wal->list) { GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == i915_mmio_reg_offset(wa_[1].reg)); if (i915_mmio_reg_offset(wa_[1].reg) > i915_mmio_reg_offset(wa_[0].reg)) break; swap(wa_[1], wa_[0]); } } static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set, u32 read_mask, bool masked_reg) { struct i915_wa wa = { .reg = reg, .clr = clear, .set = set, .read = read_mask, .masked_reg = masked_reg, }; _wa_add(wal, &wa); } static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set, u32 read_mask, bool masked_reg) { struct i915_wa wa = { .mcr_reg = reg, .clr = clear, .set = set, .read = read_mask, .masked_reg = masked_reg, .is_mcr = 1, }; _wa_add(wal, &wa); } static void wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) { wa_add(wal, reg, clear, set, clear | set, false); } static void wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) { wa_mcr_add(wal, reg, clear, set, clear | set, false); } static void wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) { wa_write_clr_set(wal, reg, ~0, set); } static void wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) { wa_write_clr_set(wal, reg, set, set); } static void wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) { wa_mcr_write_clr_set(wal, reg, set, set); } static void wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) { wa_write_clr_set(wal, reg, clr, 0); } static void wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) { wa_mcr_write_clr_set(wal, reg, clr, 0); } /* * WA operations on "masked register". A masked register has the upper 16 bits * documented as "masked" in b-spec. Its purpose is to allow writing to just a * portion of the register without a rmw: you simply write in the upper 16 bits * the mask of bits you are going to modify. * * The wa_masked_* family of functions already does the necessary operations to * calculate the mask based on the parameters passed, so user only has to * provide the lower 16 bits of that register. */ static void wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) { wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); } static void wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); } static void wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) { wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); } static void wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); } static void wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, u32 mask, u32 val) { wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); } static void wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 mask, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); } static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); } static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); } static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); /* WaDisableAsyncFlipPerfMode:bdw,chv */ wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); /* WaDisablePartialInstShootdown:bdw,chv */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* Use Force Non-Coherent whenever executing a 3D context. This is a * workaround for a possible hang in the unlikely event a TLB * invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:bdw,chv */ /* WaHdcDisableFetchWhenMasked:bdw,chv */ wa_masked_en(wal, HDC_CHICKEN0, HDC_DONOT_FETCH_MEM_WHEN_MASKED | HDC_FORCE_NON_COHERENT); /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: * "The Hierarchical Z RAW Stall Optimization allows non-overlapping * polygons in the same 8x4 pixel/sample area to be processed without * stalling waiting for the earlier ones to write to Hierarchical Z * buffer." * * This optimization is off by default for BDW and CHV; turn it on. */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); /* Wa4x4STCOptimizationDisable:bdw,chv */ wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); } static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; gen8_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaDisableDopClockGating:bdw * * Also see the related UCGTCL1 write in bdw_init_clock_gating() * to disable EUTC clock gating. */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, DOP_CLOCK_GATING_DISABLE); wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); wa_masked_en(wal, HDC_CHICKEN0, /* WaForceContextSaveRestoreNonCoherent:bdw */ HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ (INTEL_INFO(i915)->gt == 3 ? HDC_FENCE_DEST_SLM_DISABLE : 0)); } static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen8_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:chv */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* Improve HiZ throughput on CHV. */ wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); } static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; if (HAS_LLC(i915)) { /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl * * Must match Display Engine. See * WaCompressedResourceDisplayNewHashMode. */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN9_PBE_COMPRESSED_HASH_SELECTION); wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); } /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, FLOW_CONTROL_ENABLE | PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, GEN9_ENABLE_YV12_BUGFIX | GEN9_ENABLE_GPGPU_PREEMPTION); /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE | GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, GEN9_CCS_TLB_PREFETCH_ENABLE); /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ wa_masked_en(wal, HDC_CHICKEN0, HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are * both tied to WaForceContextSaveRestoreNonCoherent * in some hsds for skl. We keep the tie for all gen9. The * documentation is a bit hazy and so we want to get common behaviour, * even though there is no clear evidence we would need both on kbl/bxt. * This area has been source of system hangs so we play it safe * and mimic the skl regardless of what bspec says. * * Use Force Non-Coherent whenever executing a 3D context. This * is a workaround for a possible hang in the unlikely event * a TLB invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ wa_masked_en(wal, HDC_CHICKEN0, HDC_FORCE_NON_COHERENT); /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ if (IS_SKYLAKE(i915) || IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); /* * Supporting preemption with fine-granularity requires changes in the * batch buffer programming. Since we can't break old userspace, we * need to set our default preemption level to safe value. Userspace is * still able to use more fine-grained preemption levels, since in * WaEnablePreemptionGranularityControlByUMD we're whitelisting the * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are * not real HW workarounds, but merely a way to start using preemption * while maintaining old contract with userspace. */ /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ if (IS_GEN9_LP(i915)) wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); } static void skl_tune_iz_hashing(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct intel_gt *gt = engine->gt; u8 vals[3] = { 0, 0, 0 }; unsigned int i; for (i = 0; i < 3; i++) { u8 ss; /* * Only consider slices where one, and only one, subslice has 7 * EUs */ if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) continue; /* * subslice_7eu[i] != 0 (because of the check above) and * ss_max == 4 (maximum number of subslices possible per slice) * * -> 0 <= ss <= 3; */ ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; vals[i] = 3 - ss; } if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) return; /* Tune IZ hashing. See intel_device_info_runtime_init() */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN9_IZ_HASHING_MASK(2) | GEN9_IZ_HASHING_MASK(1) | GEN9_IZ_HASHING_MASK(0), GEN9_IZ_HASHING(2, vals[2]) | GEN9_IZ_HASHING(1, vals[1]) | GEN9_IZ_HASHING(0, vals[0])); } static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); skl_tune_iz_hashing(engine, wal); } static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:bxt */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaToEnableHwFixForPushConstHWBug:bxt */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); } static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:kbl */ if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); /* WaDisableSbeCacheDispatchPortSharing:kbl */ wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); } static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:glk */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); } static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:cfl */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); /* WaDisableSbeCacheDispatchPortSharing:cfl */ wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); } static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { /* Wa_1406697149 (WaDisableBankHangMode:icl) */ wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL); /* WaForceEnableNonCoherent:icl * This is not the same workaround as in early Gen9 platforms, where * lacking this could cause system hangs, but coherency performance * overhead is high and only a few compute workloads really need it * (the register is whitelisted in hardware now, so UMDs can opt in * for coherency if they have a good reason). */ wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); /* WaEnableFloatBlendOptimization:icl */ wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 0 /* write-only, so skip validation */, true); /* WaDisableGPGPUMidThreadPreemption:icl */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); /* allow headerless messages for preemptible GPGPU context */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, GEN11_SAMPLER_ENABLE_HEADLESS_MSG); /* Wa_1604278689:icl,ehl */ wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 0, 0xFFFFFFFF); /* Wa_1406306137:icl,ehl */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); } /* * These settings aren't actually workarounds, but general tuning settings that * need to be programmed on dg2 platform. */ static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK, FF_MODE2_TDS_TIMER_128); } static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; /* * Wa_1409142259:tgl,dg1,adl-p * Wa_1409347922:tgl,dg1,adl-p * Wa_1409252684:tgl,dg1,adl-p * Wa_1409217633:tgl,dg1,adl-p * Wa_1409207793:tgl,dg1,adl-p * Wa_1409178076:tgl,dg1,adl-p * Wa_1408979724:tgl,dg1,adl-p * Wa_14010443199:tgl,rkl,dg1,adl-p * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p */ wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); /* WaDisableGPGPUMidThreadPreemption:gen12 */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); /* * Wa_16011163337 - GS_TIMER * * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we * need to program it even on those that don't explicitly list that * workaround. * * Note that the programming of GEN12_FF_MODE2 is further modified * according to the FF_MODE2 guidance given by Wa_1608008084. * Wa_1608008084 tells us the FF_MODE2 register will return the wrong * value when read from the CPU. * * The default value for this register is zero for all fields. * So instead of doing a RMW we should just write the desired values * for TDS and GS timers. Note that since the readback can't be trusted, * the clear mask is just set to ~0 to make sure other bits are not * inadvertently set. For the same reason read verification is ignored. */ wa_add(wal, GEN12_FF_MODE2, ~0, FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224, 0, false); if (!IS_DG1(i915)) { /* Wa_1806527549 */ wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); /* Wa_1606376872 */ wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); } } static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen12_ctx_workarounds_init(engine, wal); /* Wa_1409044764 */ wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); /* Wa_22010493298 */ wa_masked_en(wal, HIZ_CHICKEN, DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); } static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { dg2_ctx_gt_tuning_init(engine, wal); /* Wa_16013271637:dg2 */ wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, MSC_MSAA_REODER_BUF_BYPASS_DISABLE); /* Wa_14014947963:dg2 */ wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); /* Wa_18018764978:dg2 */ wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); /* Wa_18019271663:dg2 */ wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); /* Wa_14019877138:dg2 */ wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); } static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct intel_gt *gt = engine->gt; dg2_ctx_gt_tuning_init(engine, wal); /* * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in * gen12_emit_indirect_ctx_rcs() rather than here on some early * steppings. */ if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))) wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false); } static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct intel_gt *gt = engine->gt; xelpg_ctx_gt_tuning_init(engine, wal); if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { /* Wa_14014947963 */ wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); /* Wa_16013271637 */ wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, MSC_MSAA_REODER_BUF_BYPASS_DISABLE); /* Wa_18019627453 */ wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); /* Wa_18018764978 */ wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); } /* Wa_18019271663 */ wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); /* Wa_14019877138 */ wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); } static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) { /* * This is a "fake" workaround defined by software to ensure we * maintain reliable, backward-compatible behavior for userspace with * regards to how nested MI_BATCH_BUFFER_START commands are handled. * * The per-context setting of MI_MODE[12] determines whether the bits * of a nested MI_BATCH_BUFFER_START instruction should be interpreted * in the traditional manner or whether they should instead use a new * tgl+ meaning that breaks backward compatibility, but allows nesting * into 3rd-level batchbuffers. When this new capability was first * added in TGL, it remained off by default unless a context * intentionally opted in to the new behavior. However Xe_HPG now * flips this on by default and requires that we explicitly opt out if * we don't want the new behavior. * * From a SW perspective, we want to maintain the backward-compatible * behavior for userspace, so we'll apply a fake workaround to set it * back to the legacy behavior on platforms where the hardware default * is to break compatibility. At the moment there is no Linux * userspace that utilizes third-level batchbuffers, so this will avoid * userspace from needing to make any changes. using the legacy * meaning is the correct thing to do. If/when we have userspace * consumers that want to utilize third-level batch nesting, we can * provide a context parameter to allow them to opt-in. */ wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); } static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { u8 mocs; /* * Some blitter commands do not have a field for MOCS, those * commands will use MOCS index pointed by BLIT_CCTL. * BLIT_CCTL registers are needed to be programmed to un-cached. */ if (engine->class == COPY_ENGINE_CLASS) { mocs = engine->gt->mocs.uc_index; wa_write_clr_set(wal, BLIT_CCTL(engine->mmio_base), BLIT_CCTL_MASK, BLIT_CCTL_MOCS(mocs, mocs)); } } /* * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround * defined by the hardware team, but it programming general context registers. * Adding those context register programming in context workaround * allow us to use the wa framework for proper application and validation. */ static void gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) fakewa_disable_nestedbb_mode(engine, wal); gen12_ctx_gt_mocs_init(engine, wal); } static void __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, struct i915_wa_list *wal, const char *name) { struct drm_i915_private *i915 = engine->i915; wa_init_start(wal, engine->gt, name, engine->name); /* Applies to all engines */ /* * Fake workarounds are not the actual workaround but * programming of context registers using workaround framework. */ if (GRAPHICS_VER(i915) >= 12) gen12_ctx_gt_fake_wa_init(engine, wal); if (engine->class != RENDER_CLASS) goto done; if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) xelpg_ctx_workarounds_init(engine, wal); else if (IS_DG2(i915)) dg2_ctx_workarounds_init(engine, wal); else if (IS_DG1(i915)) dg1_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 12) gen12_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 11) icl_ctx_workarounds_init(engine, wal); else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) cfl_ctx_workarounds_init(engine, wal); else if (IS_GEMINILAKE(i915)) glk_ctx_workarounds_init(engine, wal); else if (IS_KABYLAKE(i915)) kbl_ctx_workarounds_init(engine, wal); else if (IS_BROXTON(i915)) bxt_ctx_workarounds_init(engine, wal); else if (IS_SKYLAKE(i915)) skl_ctx_workarounds_init(engine, wal); else if (IS_CHERRYVIEW(i915)) chv_ctx_workarounds_init(engine, wal); else if (IS_BROADWELL(i915)) bdw_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 7) gen7_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 6) gen6_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) < 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); done: wa_init_finish(wal); } void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) { __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); } int intel_engine_emit_ctx_wa(struct i915_request *rq) { struct i915_wa_list *wal = &rq->engine->ctx_wa_list; struct intel_uncore *uncore = rq->engine->uncore; enum forcewake_domains fw; unsigned long flags; struct i915_wa *wa; unsigned int i; u32 *cs; int ret; if (wal->count == 0) return 0; ret = rq->engine->emit_flush(rq, EMIT_BARRIER); if (ret) return ret; if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) cs = intel_ring_begin(rq, (wal->count * 2 + 6)); else cs = intel_ring_begin(rq, (wal->count * 2 + 2)); if (IS_ERR(cs)) return PTR_ERR(cs); fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(wal->gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); *cs++ = MI_LOAD_REGISTER_IMM(wal->count); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 val; /* Skip reading the register if it's not really needed */ if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) { val = wa->set; } else { val = wa->is_mcr ? intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); val &= ~wa->clr; val |= wa->set; } *cs++ = i915_mmio_reg_offset(wa->reg); *cs++ = val; } *cs++ = MI_NOOP; /* Wa_14019789679 */ if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) { *cs++ = CMD_3DSTATE_MESH_CONTROL; *cs++ = 0; *cs++ = 0; *cs++ = MI_NOOP; } intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(wal->gt, flags); intel_ring_advance(rq, cs); ret = rq->engine->emit_flush(rq, EMIT_BARRIER); if (ret) return ret; return 0; } static void gen4_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); } static void g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen4_gt_workarounds_init(gt, wal); /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); } static void ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { g4x_gt_workarounds_init(gt, wal); wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); } static void snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { } static void ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ wa_masked_dis(wal, GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode:ivb */ wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); /* WaForceL3Serialization:ivb */ wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); } static void vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* WaForceL3Serialization:vlv */ wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); /* * WaIncreaseL3CreditsForVLVB0:vlv * This is the hardware default actually. */ wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); } static void hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* L3 caching of data atomics doesn't work -- disable it. */ wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); wa_add(wal, HSW_ROW_CHICKEN3, 0, _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 0 /* XXX does this reg exist? */, true); /* WaVSRefCountFullforceMissDisable:hsw */ wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); } static void gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; unsigned int slice, subslice; u32 mcr, mcr_mask; GEM_BUG_ON(GRAPHICS_VER(i915) != 9); /* * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml * Before any MMIO read into slice/subslice specific registers, MCR * packet control register needs to be programmed to point to any * enabled s/ss pair. Otherwise, incorrect values will be returned. * This means each subsequent MMIO read will be forwarded to an * specific s/ss combination, but this is OK since these registers * are consistent across s/ss in almost all cases. In the rare * occasions, such as INSTDONE, where this value is dependent * on s/ss combo, the read should be done with read_subslice_reg. */ slice = ffs(sseu->slice_mask) - 1; GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); GEM_BUG_ON(!subslice); subslice--; /* * We use GEN8_MCR..() macros to calculate the |mcr| value for * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads */ mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); } static void gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ gen9_wa_init_mcr(i915, wal); /* WaDisableKillLogic:bxt,skl,kbl */ if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) wa_write_or(wal, GAM_ECOCHK, ECOCHK_DIS_TLB); if (HAS_LLC(i915)) { /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl * * Must match Display Engine. See * WaCompressedResourceDisplayNewHashMode. */ wa_write_or(wal, MMCD_MISC_CTRL, MMCD_PCLA | MMCD_HOTSPOT_EN); } /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ wa_write_or(wal, GAM_ECOCHK, BDW_DISABLE_HDC_INVALIDATION); } static void skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableGafsUnitClkGating:skl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:skl */ if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableDynamicCreditSharing:kbl */ if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) wa_write_or(wal, GAMT_CHKN_BIT_REG, GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); /* WaDisableGafsUnitClkGating:kbl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:kbl */ wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); } static void cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableGafsUnitClkGating:cfl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:cfl */ wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void __set_mcr_steering(struct i915_wa_list *wal, i915_reg_t steering_reg, unsigned int slice, unsigned int subslice) { u32 mcr, mcr_mask; mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); } static void debug_dump_steering(struct intel_gt *gt) { struct drm_printer p = drm_dbg_printer(>->i915->drm, DRM_UT_DRIVER, "MCR Steering:"); if (drm_debug_enabled(DRM_UT_DRIVER)) intel_gt_mcr_report_steering(&p, gt, false); } static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, unsigned int slice, unsigned int subslice) { __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); gt->default_steering.groupid = slice; gt->default_steering.instanceid = subslice; debug_dump_steering(gt); } static void icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = >->info.sseu; unsigned int subslice; GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); /* * Although a platform may have subslices, we need to always steer * reads to the lowest instance that isn't fused off. When Render * Power Gating is enabled, grabbing forcewake will only power up a * single subslice (the "minconfig") if there isn't a real workload * that needs to be run; this means that if we steer register reads to * one of the higher subslices, we run the risk of reading back 0's or * random garbage. */ subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); /* * If the subslice we picked above also steers us to a valid L3 bank, * then we can just rely on the default steering and won't need to * worry about explicitly re-steering L3BANK reads later. */ if (gt->info.l3bank_mask & BIT(subslice)) gt->steering_table[L3BANK] = NULL; __add_mcr_wa(gt, wal, 0, subslice); } static void xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = >->info.sseu; unsigned long slice, subslice = 0, slice_mask = 0; u32 lncf_mask = 0; int i; /* * On Xe_HP the steering increases in complexity. There are now several * more units that require steering and we're not guaranteed to be able * to find a common setting for all of them. These are: * - GSLICE (fusable) * - DSS (sub-unit within gslice; fusable) * - L3 Bank (fusable) * - MSLICE (fusable) * - LNCF (sub-unit within mslice; always present if mslice is present) * * We'll do our default/implicit steering based on GSLICE (in the * sliceid field) and DSS (in the subsliceid field). If we can * find overlap between the valid MSLICE and/or LNCF values with * a suitable GSLICE, then we can just re-use the default value and * skip and explicit steering at runtime. * * We only need to look for overlap between GSLICE/MSLICE/LNCF to find * a valid sliceid value. DSS steering is the only type of steering * that utilizes the 'subsliceid' bits. * * Also note that, even though the steering domain is called "GSlice" * and it is encoded in the register using the gslice format, the spec * says that the combined (geometry | compute) fuse should be used to * select the steering. */ /* Find the potential gslice candidates */ slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, GEN_DSS_PER_GSLICE); /* * Find the potential LNCF candidates. Either LNCF within a valid * mslice is fine. */ for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) lncf_mask |= (0x3 << (i * 2)); /* * Are there any sliceid values that work for both GSLICE and LNCF * steering? */ if (slice_mask & lncf_mask) { slice_mask &= lncf_mask; gt->steering_table[LNCF] = NULL; } /* How about sliceid values that also work for MSLICE steering? */ if (slice_mask & gt->info.mslice_mask) { slice_mask &= gt->info.mslice_mask; gt->steering_table[MSLICE] = NULL; } slice = __ffs(slice_mask); subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % GEN_DSS_PER_GSLICE; __add_mcr_wa(gt, wal, slice, subslice); /* * SQIDI ranges are special because they use different steering * registers than everything else we work with. On XeHP SDV and * DG2-G10, any value in the steering registers will work fine since * all instances are present, but DG2-G11 only has SQIDI instances at * ID's 2 and 3, so we need to steer to one of those. For simplicity * we'll just steer to a hardcoded "2" since that value will work * everywhere. */ __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); /* * On DG2, GAM registers have a dedicated steering control register * and must always be programmed to a hardcoded groupid of "1." */ if (IS_DG2(gt->i915)) __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); } static void icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; icl_wa_init_mcr(gt, wal); /* WaModifyGamTlbPartitioning:icl */ wa_write_clr_set(wal, GEN11_GACB_PERF_CTRL, GEN11_HASH_CTRL_MASK, GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); /* Wa_1405766107:icl * Formerly known as WaCL2SFHalfMaxAlloc */ wa_write_or(wal, GEN11_LSN_UNSLCVC, GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); /* Wa_220166154:icl * Formerly known as WaDisCtxReload */ wa_write_or(wal, GEN8_GAMW_ECO_DEV_RW_IA, GAMW_ECO_DEV_CTX_RELOAD_DISABLE); /* Wa_1406463099:icl * Formerly known as WaGamTlbPendError */ wa_write_or(wal, GAMT_CHKN_BIT_REG, GAMT_CHKN_DISABLE_L3_COH_PIPE); /* * Wa_1408615072:icl,ehl (vsunit) * Wa_1407596294:icl,ehl (hsunit) */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); /* Wa_1407352427:icl,ehl */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, PSDUNIT_CLKGATE_DIS); /* Wa_1406680159:icl,ehl */ wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, GWUNIT_CLKGATE_DIS); /* Wa_1607087056:icl,ehl,jsl */ if (IS_ICELAKE(i915) || ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))) wa_write_or(wal, GEN11_SLICE_UNIT_LEVEL_CLKGATE, L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); /* * This is not a documented workaround, but rather an optimization * to reduce sampler power. */ wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); } /* * Though there are per-engine instances of these registers, * they retain their value through engine resets and should * only be provided on the GT workaround list rather than * the engine-specific workaround list. */ static void wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) { struct intel_engine_cs *engine; int id; for_each_engine(engine, gt, id) { if (engine->class != VIDEO_DECODE_CLASS || (engine->instance % 2)) continue; wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), IECPUNIT_CLKGATE_DIS); } } static void gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { icl_wa_init_mcr(gt, wal); /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ wa_14011060649(gt, wal); /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); /* * Wa_14015795083 * * Firmware on some gen12 platforms locks the MISCCPCTL register, * preventing i915 from modifying it for this workaround. Skip the * readback verification for this workaround on debug builds; if the * workaround doesn't stick due to firmware behavior, it's not an error * that we want CI to flag. */ wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 0, 0, false); } static void dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen12_gt_workarounds_init(gt, wal); /* Wa_1409420604:dg1 */ wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, CPSSUNIT_CLKGATE_DIS); /* Wa_1408615072:dg1 */ /* Empirical testing shows this register is unaffected by engine reset. */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); } static void dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { xehp_init_mcr(gt, wal); /* Wa_14011060649:dg2 */ wa_14011060649(gt, wal); if (IS_DG2_G10(gt->i915)) { /* Wa_22010523718:dg2 */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, CG3DDISCFEG_CLKGATE_DIS); /* Wa_14011006942:dg2 */ wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, DSS_ROUTER_CLKGATE_DIS); } /* Wa_14014830051:dg2 */ wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); /* * Wa_14015795083 * Skip verification for possibly locked register. */ wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 0, 0, false); /* Wa_18018781329 */ wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_1509235366:dg2 */ wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); /* Wa_14010648519:dg2 */ wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); } static void xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* Wa_14018575942 / Wa_18018781329 */ wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_22016670082 */ wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { /* Wa_14014830051 */ wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); /* Wa_14015795083 */ wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); } /* * Unlike older platforms, we no longer setup implicit steering here; * all MCR accesses are explicitly steered. */ debug_dump_steering(gt); } static void wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal) { struct intel_engine_cs *engine; int id; for_each_engine(engine, gt, id) if (engine->class == VIDEO_DECODE_CLASS) wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base), MFXPIPE_CLKGATE_DIS); } static void xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { wa_16021867713(gt, wal); /* * Wa_14018778641 * Wa_18018781329 * * Note that although these registers are MCR on the primary * GT, the media GT's versions are regular singleton registers. */ wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); /* * Wa_14018575942 * * Issue is seen on media KPI test running on VDBOX engine * especially VP9 encoding WLs */ wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_22016670082 */ wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); debug_dump_steering(gt); } /* * The bspec performance guide has recommended MMIO tuning settings. These * aren't truly "workarounds" but we want to program them through the * workaround infrastructure to make sure they're (re)applied at the proper * times. * * The programming in this function is for settings that persist through * engine resets and also are not part of any engine's register state context. * I.e., settings that only need to be re-applied in the event of a full GT * reset. */ static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) { if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); } if (IS_DG2(gt->i915)) { wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); } } static void gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; gt_tuning_settings(gt, wal); if (gt->type == GT_MEDIA) { if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) xelpmp_gt_workarounds_init(gt, wal); else MISSING_CASE(MEDIA_VER_FULL(i915)); return; } if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) xelpg_gt_workarounds_init(gt, wal); else if (IS_DG2(i915)) dg2_gt_workarounds_init(gt, wal); else if (IS_DG1(i915)) dg1_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 12) gen12_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 11) icl_gt_workarounds_init(gt, wal); else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) cfl_gt_workarounds_init(gt, wal); else if (IS_GEMINILAKE(i915)) glk_gt_workarounds_init(gt, wal); else if (IS_KABYLAKE(i915)) kbl_gt_workarounds_init(gt, wal); else if (IS_BROXTON(i915)) gen9_gt_workarounds_init(gt, wal); else if (IS_SKYLAKE(i915)) skl_gt_workarounds_init(gt, wal); else if (IS_HASWELL(i915)) hsw_gt_workarounds_init(gt, wal); else if (IS_VALLEYVIEW(i915)) vlv_gt_workarounds_init(gt, wal); else if (IS_IVYBRIDGE(i915)) ivb_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 6) snb_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 5) ilk_gt_workarounds_init(gt, wal); else if (IS_G4X(i915)) g4x_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 4) gen4_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) <= 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); } void intel_gt_init_workarounds(struct intel_gt *gt) { struct i915_wa_list *wal = >->wa_list; wa_init_start(wal, gt, "GT", "global"); gt_init_workarounds(gt, wal); wa_init_finish(wal); } static bool wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, const char *name, const char *from) { if ((cur ^ wa->set) & wa->read) { gt_err(gt, "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", name, from, i915_mmio_reg_offset(wa->reg), cur, cur & wa->read, wa->set & wa->read); return false; } return true; } static void wa_list_apply(const struct i915_wa_list *wal) { struct intel_gt *gt = wal->gt; struct intel_uncore *uncore = gt->uncore; enum forcewake_domains fw; unsigned long flags; struct i915_wa *wa; unsigned int i; if (!wal->count) return; fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 val, old = 0; /* open-coded rmw due to steering */ if (wa->clr) old = wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); val = (old & ~wa->clr) | wa->set; if (val != old || !wa->clr) { if (wa->is_mcr) intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); else intel_uncore_write_fw(uncore, wa->reg, val); } if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { u32 val = wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); wa_verify(gt, wa, val, wal->name, "application"); } } intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); } void intel_gt_apply_workarounds(struct intel_gt *gt) { wa_list_apply(>->wa_list); } static bool wa_list_verify(struct intel_gt *gt, const struct i915_wa_list *wal, const char *from) { struct intel_uncore *uncore = gt->uncore; struct i915_wa *wa; enum forcewake_domains fw; unsigned long flags; unsigned int i; bool ok = true; fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) ok &= wa_verify(wal->gt, wa, wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg), wal->name, from); intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); return ok; } bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) { return wa_list_verify(gt, >->wa_list, from); } __maybe_unused static bool is_nonpriv_flags_valid(u32 flags) { /* Check only valid flag bits are set */ if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) return false; /* NB: Only 3 out of 4 enum values are valid for access field */ if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == RING_FORCE_TO_NONPRIV_ACCESS_INVALID) return false; return true; } static void whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) { struct i915_wa wa = { .reg = reg }; if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) return; if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) return; wa.reg.reg |= flags; _wa_add(wal, &wa); } static void whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) { struct i915_wa wa = { .mcr_reg = reg, .is_mcr = 1, }; if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) return; if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) return; wa.mcr_reg.reg |= flags; _wa_add(wal, &wa); } static void whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) { whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); } static void whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) { whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); } static void gen9_whitelist_build(struct i915_wa_list *w) { /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ whitelist_reg(w, GEN9_CTX_PREEMPT_REG); /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ whitelist_reg(w, GEN8_CS_CHICKEN1); /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ whitelist_reg(w, GEN8_HDC_CHICKEN1); /* WaSendPushConstantsFromMMIO:skl,bxt */ whitelist_reg(w, COMMON_SLICE_CHICKEN2); } static void skl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WaDisableLSQCROPERFforOCL:skl */ whitelist_mcr_reg(w, GEN8_L3SQCREG4); } static void bxt_whitelist_build(struct intel_engine_cs *engine) { if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(&engine->whitelist); } static void kbl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WaDisableLSQCROPERFforOCL:kbl */ whitelist_mcr_reg(w, GEN8_L3SQCREG4); } static void glk_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); } static void cfl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml * * This covers 4 register which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); } static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) whitelist_reg_ext(w, RING_CTX_TIMESTAMP(engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); } static void cml_whitelist_build(struct intel_engine_cs *engine) { allow_read_ctx_timestamp(engine); cfl_whitelist_build(engine); } static void icl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; allow_read_ctx_timestamp(engine); switch (engine->class) { case RENDER_CLASS: /* WaAllowUMDToModifyHalfSliceChicken7:icl */ whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); /* WaAllowUMDToModifySamplerMode:icl */ whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); /* WaEnableStateCacheRedirectToCS:icl */ whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl * * This covers 4 register which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); break; case VIDEO_DECODE_CLASS: /* hucStatusRegOffset */ whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); /* hucUKernelHdrInfoRegOffset */ whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); /* hucStatus2RegOffset */ whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); break; default: break; } } static void tgl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; allow_read_ctx_timestamp(engine); switch (engine->class) { case RENDER_CLASS: /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl * Wa_1408556865:tgl * * This covers 4 registers which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); /* * Wa_1808121037:tgl * Wa_14012131227:dg1 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p */ whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); /* Wa_1806527549:tgl */ whitelist_reg(w, HIZ_CHICKEN); /* Required by recommended tuning setting (not a workaround) */ whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); break; default: break; } } static void dg2_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; switch (engine->class) { case RENDER_CLASS: /* Required by recommended tuning setting (not a workaround) */ whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); break; default: break; } } static void xelpg_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; switch (engine->class) { case RENDER_CLASS: /* Required by recommended tuning setting (not a workaround) */ whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); break; default: break; } } void intel_engine_init_whitelist(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct i915_wa_list *w = &engine->whitelist; wa_init_start(w, engine->gt, "whitelist", engine->name); if (engine->gt->type == GT_MEDIA) ; /* none yet */ else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) xelpg_whitelist_build(engine); else if (IS_DG2(i915)) dg2_whitelist_build(engine); else if (GRAPHICS_VER(i915) == 12) tgl_whitelist_build(engine); else if (GRAPHICS_VER(i915) == 11) icl_whitelist_build(engine); else if (IS_COMETLAKE(i915)) cml_whitelist_build(engine); else if (IS_COFFEELAKE(i915)) cfl_whitelist_build(engine); else if (IS_GEMINILAKE(i915)) glk_whitelist_build(engine); else if (IS_KABYLAKE(i915)) kbl_whitelist_build(engine); else if (IS_BROXTON(i915)) bxt_whitelist_build(engine); else if (IS_SKYLAKE(i915)) skl_whitelist_build(engine); else if (GRAPHICS_VER(i915) <= 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); wa_init_finish(w); } void intel_engine_apply_whitelist(struct intel_engine_cs *engine) { const struct i915_wa_list *wal = &engine->whitelist; struct intel_uncore *uncore = engine->uncore; const u32 base = engine->mmio_base; struct i915_wa *wa; unsigned int i; if (!wal->count) return; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) intel_uncore_write(uncore, RING_FORCE_TO_NONPRIV(base, i), i915_mmio_reg_offset(wa->reg)); /* And clear the rest just in case of garbage */ for (; i < RING_MAX_NONPRIV_SLOTS; i++) intel_uncore_write(uncore, RING_FORCE_TO_NONPRIV(base, i), i915_mmio_reg_offset(RING_NOPID(base))); } /* * engine_fake_wa_init(), a place holder to program the registers * which are not part of an official workaround defined by the * hardware team. * Adding programming of those register inside workaround will * allow utilizing wa framework to proper application and verification. */ static void engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { u8 mocs_w, mocs_r; /* * RING_CMD_CCTL specifies the default MOCS entry that will be used * by the command streamer when executing commands that don't have * a way to explicitly specify a MOCS setting. The default should * usually reference whichever MOCS entry corresponds to uncached * behavior, although use of a WB cached entry is recommended by the * spec in certain circumstances on specific platforms. */ if (GRAPHICS_VER(engine->i915) >= 12) { mocs_r = engine->gt->mocs.uc_index; mocs_w = engine->gt->mocs.uc_index; if (HAS_L3_CCS_READ(engine->i915) && engine->class == COMPUTE_CLASS) { mocs_r = engine->gt->mocs.wb_index; /* * Even on the few platforms where MOCS 0 is a * legitimate table entry, it's never the correct * setting to use here; we can assume the MOCS init * just forgot to initialize wb_index. */ drm_WARN_ON(&engine->i915->drm, mocs_r == 0); } wa_masked_field_set(wal, RING_CMD_CCTL(engine->mmio_base), CMD_CCTL_MOCS_MASK, CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); } } static void rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; struct intel_gt *gt = engine->gt; if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { /* Wa_22014600077 */ wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, ENABLE_EU_COUNT_FOR_TDL_FLUSH); } if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || IS_DG2(i915)) { /* Wa_1509727124 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, SC_DISABLE_POWER_OPTIMIZATION_EBB); } if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_DG2(i915)) { /* Wa_22012856258 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_READ_SUPPRESSION); } if (IS_DG2(i915)) { /* * Wa_22010960976:dg2 * Wa_14013347512:dg2 */ wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); } if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || IS_DG2(i915)) { /* Wa_14015150844 */ wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0, _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES), 0, true); } if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* * Wa_1606700617:tgl,dg1,adl-p * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p * Wa_14010826681:tgl,dg1,rkl,adl-p * Wa_18019627453:dg2 */ wa_masked_en(wal, GEN9_CS_DEBUG_MODE1, FF_DOP_CLOCK_GATE_DISABLE); } if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); /* * Wa_1407928979:tgl A* * Wa_18011464164:tgl[B0+],dg1[B0+] * Wa_22010931296:tgl[B0+],dg1[B0+] * Wa_14010919138:rkl,dg1,adl-s,adl-p */ wa_write_or(wal, GEN7_FF_THREAD_MODE, GEN12_FF_TESSELATION_DOP_GATE_DISABLE); /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, ENABLE_SMALLPL); } if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* Wa_1409804808 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_PUSH_CONST_DEREF_HOLD_DIS); /* Wa_14010229206 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); } if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { /* * Wa_1607297627 * * On TGL and RKL there are multiple entries for this WA in the * BSpec; some indicate this is an A0-only WA, others indicate * it applies to all steppings so we trust the "all steppings." */ wa_masked_en(wal, RING_PSMI_CTL(RENDER_RING_BASE), GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | GEN8_RC_SEMA_IDLE_MSG_DISABLE); } if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) { /* * "Disable Repacking for Compression (masked R/W access) * before rendering compressed surfaces for display." */ wa_masked_en(wal, CACHE_MODE_0_GEN7, DISABLE_REPACKING_FOR_COMPRESSION); } if (GRAPHICS_VER(i915) == 11) { /* This is not an Wa. Enable for better image quality */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); /* * Wa_1405543622:icl * Formerly known as WaGAPZPriorityScheme */ wa_write_or(wal, GEN8_GARBCNTL, GEN11_ARBITRATION_PRIO_ORDER_MASK); /* * Wa_1604223664:icl * Formerly known as WaL3BankAddressHashing */ wa_write_clr_set(wal, GEN8_GARBCNTL, GEN11_HASH_CTRL_EXCL_MASK, GEN11_HASH_CTRL_EXCL_BIT0); wa_write_clr_set(wal, GEN11_GLBLINVL, GEN11_BANK_HASH_ADDR_EXCL_MASK, GEN11_BANK_HASH_ADDR_EXCL_BIT0); /* * Wa_1405733216:icl * Formerly known as WaDisableCleanEvicts */ wa_mcr_write_or(wal, GEN8_L3SQCREG4, GEN11_LQSC_CLEAN_EVICT_DISABLE); /* Wa_1606682166:icl */ wa_write_or(wal, GEN7_SARCHKMD, GEN7_DISABLE_SAMPLER_PREFETCH); /* Wa_1409178092:icl */ wa_mcr_write_clr_set(wal, GEN11_SCRATCH2, GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 0); /* WaEnable32PlaneMode:icl */ wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, GEN11_ENABLE_32_PLANE_MODE); /* * Wa_1408767742:icl[a2..forever],ehl[all] * Wa_1605460711:icl[a0..c0] */ wa_write_or(wal, GEN7_FF_THREAD_MODE, GEN12_FF_TESSELATION_DOP_GATE_DISABLE); /* Wa_22010271021 */ wa_masked_en(wal, GEN9_CS_DEBUG_MODE1, FF_DOP_CLOCK_GATE_DISABLE); } /* * Intel platforms that support fine-grained preemption (i.e., gen9 and * beyond) allow the kernel-mode driver to choose between two different * options for controlling preemption granularity and behavior. * * Option 1 (hardware default): * Preemption settings are controlled in a global manner via * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity * and settings chosen by the kernel-mode driver will apply to all * userspace clients. * * Option 2: * Preemption settings are controlled on a per-context basis via * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on * context switch and is writable by userspace (e.g., via * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) * which allows different userspace drivers/clients to select * different settings, or to change those settings on the fly in * response to runtime needs. This option was known by name * "FtrPerCtxtPreemptionGranularityControl" at one time, although * that name is somewhat misleading as other non-granularity * preemption settings are also impacted by this decision. * * On Linux, our policy has always been to let userspace drivers * control preemption granularity/settings (Option 2). This was * originally mandatory on gen9 to prevent ABI breakage (old gen9 * userspace developed before object-level preemption was enabled would * not behave well if i915 were to go with Option 1 and enable that * preemption in a global manner). On gen9 each context would have * object-level preemption disabled by default (see * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but * userspace drivers could opt-in to object-level preemption as they * saw fit. For post-gen9 platforms, we continue to utilize Option 2; * even though it is no longer necessary for ABI compatibility when * enabling a new platform, it does ensure that userspace will be able * to implement any workarounds that show up requiring temporary * adjustments to preemption behavior at runtime. * * Notes/Workarounds: * - Wa_14015141709: On DG2 and early steppings of MTL, * CS_CHICKEN1[0] does not disable object-level preemption as * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been * using Option 1). Effectively this means userspace is unable * to disable object-level preemption on these platforms/steppings * despite the setting here. * * - Wa_16013994831: May require that userspace program * CS_CHICKEN1[10] when certain runtime conditions are true. * Userspace requires Option 2 to be in effect for their update of * CS_CHICKEN1[10] to be effective. * * Other workarounds may appear in the future that will also require * Option 2 behavior to allow proper userspace implementation. */ if (GRAPHICS_VER(i915) >= 9) wa_masked_en(wal, GEN7_FF_SLICE_CS_CHICKEN1, GEN9_FFSC_PERCTX_PREEMPT_CTRL); if (IS_SKYLAKE(i915) || IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) { /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ wa_write_or(wal, GEN8_GARBCNTL, GEN9_GAPS_TSV_CREDIT_DISABLE); } if (IS_BROXTON(i915)) { /* WaDisablePooledEuLoadBalancingFix:bxt */ wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); } if (GRAPHICS_VER(i915) == 9) { /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ wa_mcr_write_or(wal, BDW_SCRATCH1, GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ if (IS_GEN9_LP(i915)) wa_mcr_write_clr_set(wal, GEN8_L3SQCREG1, L3_PRIO_CREDITS_MASK, L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2)); /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ wa_mcr_write_or(wal, GEN8_L3SQCREG4, GEN8_LQSC_FLUSH_COHERENT_LINES); /* Disable atomics in L3 to prevent unrecoverable hangs */ wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, EVICTION_PERF_FIX_ENABLE, 0); } if (IS_HASWELL(i915)) { /* WaSampleCChickenBitEnable:hsw */ wa_masked_en(wal, HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); wa_masked_dis(wal, CACHE_MODE_0_GEN7, /* enable HiZ Raw Stall Optimization */ HIZ_RAW_STALL_OPT_DISABLE); } if (IS_VALLEYVIEW(i915)) { /* WaDisableEarlyCull:vlv */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); /* * WaVSThreadDispatchOverride:ivb,vlv * * This actually overrides the dispatch * mode for all thread types. */ wa_write_clr_set(wal, GEN7_FF_THREAD_MODE, GEN7_FF_SCHED_MASK, GEN7_FF_TS_SCHED_HW | GEN7_FF_VS_SCHED_HW | GEN7_FF_DS_SCHED_HW); /* WaPsdDispatchEnable:vlv */ /* WaDisablePSDDualDispatchEnable:vlv */ wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1, GEN7_MAX_PS_THREAD_DEP | GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); } if (IS_IVYBRIDGE(i915)) { /* WaDisableEarlyCull:ivb */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); if (0) { /* causes HiZ corruption on ivb:gt1 */ /* enable HiZ Raw Stall Optimization */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); } /* * WaVSThreadDispatchOverride:ivb,vlv * * This actually overrides the dispatch * mode for all thread types. */ wa_write_clr_set(wal, GEN7_FF_THREAD_MODE, GEN7_FF_SCHED_MASK, GEN7_FF_TS_SCHED_HW | GEN7_FF_VS_SCHED_HW | GEN7_FF_DS_SCHED_HW); /* WaDisablePSDDualDispatchEnable:ivb */ if (INTEL_INFO(i915)->gt == 1) wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1, GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); } if (GRAPHICS_VER(i915) == 7) { /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ wa_masked_en(wal, RING_MODE_GEN7(RENDER_RING_BASE), GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); /* * BSpec says this must be set, even though * WaDisable4x2SubspanOptimization:ivb,hsw * WaDisable4x2SubspanOptimization isn't listed for VLV. */ wa_masked_en(wal, CACHE_MODE_1, PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); } if (IS_GRAPHICS_VER(i915, 6, 7)) /* * We need to disable the AsyncFlip performance optimisations in * order to use MI_WAIT_FOR_EVENT within the CS. It should * already be programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv */ wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); if (GRAPHICS_VER(i915) == 6) { /* * Required for the hardware to program scanline values for * waiting * WaEnableFlushTlbInvalidationMode:snb */ wa_masked_en(wal, GFX_MODE, GFX_TLB_INVALIDATE_EXPLICIT); /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ wa_masked_en(wal, _3D_CHICKEN, _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); wa_masked_en(wal, _3D_CHICKEN3, /* WaStripsFansDisableFastClipPerformanceFix:snb */ _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | /* * Bspec says: * "This bit must be set if 3DSTATE_CLIP clip mode is set * to normal and 3DSTATE_SF number of SF output attributes * is more than 16." */ _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN6_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); /* WaDisable_RenderCache_OperationalFlush:snb */ wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); /* * From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ wa_masked_dis(wal, CACHE_MODE_0, CM0_STC_EVICT_DISABLE_LRA_SNB); } if (IS_GRAPHICS_VER(i915, 4, 6)) /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), /* XXX bit doesn't stick on Broadwater */ IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); if (GRAPHICS_VER(i915) == 4) /* * Disable CONSTANT_BUFFER before it is loaded from the context * image. For as it is loaded, it is executed and the stored * address may no longer be valid, leading to a GPU hang. * * This imposes the requirement that userspace reload their * CONSTANT_BUFFER on every batch, fortunately a requirement * they are already accustomed to from before contexts were * enabled. */ wa_add(wal, ECOSKPD(RENDER_RING_BASE), 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 0 /* XXX bit doesn't stick on Broadwater */, true); } static void xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; /* WaKBLVECSSemaphoreWaitPoll:kbl */ if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { wa_write(wal, RING_SEMA_WAIT_POLL(engine->mmio_base), 1); } /* Wa_16018031267, Wa_16018063123 */ if (NEEDS_FASTCOLOR_BLT_WABB(engine)) wa_masked_field_set(wal, ECOSKPD(engine->mmio_base), XEHP_BLITTER_SCHEDULING_MODE_MASK, XEHP_BLITTER_ROUND_ROBIN_MODE); } static void ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { /* boilerplate for any CCS engine workaround */ } /* * The bspec performance guide has recommended MMIO tuning settings. These * aren't truly "workarounds" but we want to program them with the same * workaround infrastructure to ensure that they're automatically added to * the GuC save/restore lists, re-applied at the right times, and checked for * any conflicting programming requested by real workarounds. * * Programming settings should be added here only if their registers are not * part of an engine's register state context. If a register is part of a * context, then any tuning settings should be programmed in an appropriate * function invoked by __intel_engine_init_ctx_wa(). */ static void add_render_compute_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915)) wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); /* * This tuning setting proves beneficial only on ATS-M designs; the * default "age based" setting is optimal on regular DG2 and other * platforms. */ if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, THREAD_EX_ARB_MODE_RR_AFTER_DEP); if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55)) wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); } static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct intel_gt *gt = engine->gt; u32 mode; if (!IS_DG2(gt->i915)) return; /* * Wa_14019159160: This workaround, along with others, leads to * significant challenges in utilizing load balancing among the * CCS slices. Consequently, an architectural decision has been * made to completely disable automatic CCS load balancing. */ wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE); /* * After having disabled automatic load balancing we need to * assign all slices to a single CCS. We will call it CCS mode 1 */ mode = intel_gt_apply_ccs_mode(gt); wa_masked_en(wal, XEHP_CCS_MODE, mode); } /* * The workarounds in this function apply to shared registers in * the general render reset domain that aren't tied to a * specific engine. Since all render+compute engines get reset * together, and the contents of these registers are lost during * the shared render domain reset, we'll define such workarounds * here and then add them to just a single RCS or CCS engine's * workaround list (whichever engine has the XXXX flag). */ static void general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; struct intel_gt *gt = engine->gt; add_render_compute_tuning_settings(gt, wal); if (GRAPHICS_VER(i915) >= 11) { /* This is not a Wa (although referred to as * WaSetInidrectStateOverride in places), this allows * applications that reference sampler states through * the BindlessSamplerStateBaseAddress to have their * border color relative to DynamicStateBaseAddress * rather than BindlessSamplerStateBaseAddress. * * Otherwise SAMPLER_STATE border colors have to be * copied in multiple heaps (DynamicStateBaseAddress & * BindlessSamplerStateBaseAddress) * * BSpec: 46052 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE); } if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) { /* Wa_14017856879 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); /* Wa_14020495402 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING); } if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) /* * Wa_14017066071 * Wa_14017654203 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, MTL_DISABLE_SAMPLER_SC_OOO); if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) /* Wa_22015279794 */ wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_PREFETCH_INTO_IC); if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || IS_DG2(i915)) { /* Wa_22013037850 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DISABLE_128B_EVICTION_COMMAND_UDW); /* Wa_18017747507 */ wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); } if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || IS_DG2(i915)) { /* Wa_22014226127 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); } if (IS_DG2(i915)) { /* Wa_14015227452:dg2,pvc */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); /* * Wa_16011620976:dg2_g11 * Wa_22015475538:dg2 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); /* Wa_18028616096 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3); } if (IS_DG2_G11(i915)) { /* * Wa_22012826095:dg2 * Wa_22013059131:dg2 */ wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, MAXREQS_PER_BANK, REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); /* Wa_22013059131:dg2 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, FORCE_1_SUB_MESSAGE_PER_FRAGMENT); /* * Wa_22012654132 * * Note that register 0xE420 is write-only and cannot be read * back for verification on DG2 (due to Wa_14012342262), so * we need to explicitly skip the readback. */ wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 0 /* write-only, so skip validation */, true); } } static void engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) { if (GRAPHICS_VER(engine->i915) < 4) return; engine_fake_wa_init(engine, wal); /* * These are common workarounds that just need to applied * to a single RCS/CCS engine's workaround list since * they're reset as part of the general render domain reset. */ if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) { general_render_compute_wa_init(engine, wal); ccs_engine_wa_mode(engine, wal); } if (engine->class == COMPUTE_CLASS) ccs_engine_wa_init(engine, wal); else if (engine->class == RENDER_CLASS) rcs_engine_wa_init(engine, wal); else xcs_engine_wa_init(engine, wal); } void intel_engine_init_workarounds(struct intel_engine_cs *engine) { struct i915_wa_list *wal = &engine->wa_list; wa_init_start(wal, engine->gt, "engine", engine->name); engine_init_workarounds(engine, wal); wa_init_finish(wal); } void intel_engine_apply_workarounds(struct intel_engine_cs *engine) { wa_list_apply(&engine->wa_list); } static const struct i915_range mcr_ranges_gen8[] = { { .start = 0x5500, .end = 0x55ff }, { .start = 0x7000, .end = 0x7fff }, { .start = 0x9400, .end = 0x97ff }, { .start = 0xb000, .end = 0xb3ff }, { .start = 0xe000, .end = 0xe7ff }, {}, }; static const struct i915_range mcr_ranges_gen12[] = { { .start = 0x8150, .end = 0x815f }, { .start = 0x9520, .end = 0x955f }, { .start = 0xb100, .end = 0xb3ff }, { .start = 0xde80, .end = 0xe8ff }, { .start = 0x24a00, .end = 0x24a7f }, {}, }; static const struct i915_range mcr_ranges_xehp[] = { { .start = 0x4000, .end = 0x4aff }, { .start = 0x5200, .end = 0x52ff }, { .start = 0x5400, .end = 0x7fff }, { .start = 0x8140, .end = 0x815f }, { .start = 0x8c80, .end = 0x8dff }, { .start = 0x94d0, .end = 0x955f }, { .start = 0x9680, .end = 0x96ff }, { .start = 0xb000, .end = 0xb3ff }, { .start = 0xc800, .end = 0xcfff }, { .start = 0xd800, .end = 0xd8ff }, { .start = 0xdc00, .end = 0xffff }, { .start = 0x17000, .end = 0x17fff }, { .start = 0x24a00, .end = 0x24a7f }, {}, }; static bool mcr_range(struct drm_i915_private *i915, u32 offset) { const struct i915_range *mcr_ranges; int i; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) mcr_ranges = mcr_ranges_xehp; else if (GRAPHICS_VER(i915) >= 12) mcr_ranges = mcr_ranges_gen12; else if (GRAPHICS_VER(i915) >= 8) mcr_ranges = mcr_ranges_gen8; else return false; /* * Registers in these ranges are affected by the MCR selector * which only controls CPU initiated MMIO. Routing does not * work for CS access so we cannot verify them on this path. */ for (i = 0; mcr_ranges[i].start; i++) if (offset >= mcr_ranges[i].start && offset <= mcr_ranges[i].end) return true; return false; } static int wa_list_srm(struct i915_request *rq, const struct i915_wa_list *wal, struct i915_vma *vma) { struct drm_i915_private *i915 = rq->i915; unsigned int i, count = 0; const struct i915_wa *wa; u32 srm, *cs; srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; if (GRAPHICS_VER(i915) >= 8) srm++; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) count++; } cs = intel_ring_begin(rq, 4 * count); if (IS_ERR(cs)) return PTR_ERR(cs); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 offset = i915_mmio_reg_offset(wa->reg); if (mcr_range(i915, offset)) continue; *cs++ = srm; *cs++ = offset; *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; *cs++ = 0; } intel_ring_advance(rq, cs); return 0; } static int engine_wa_list_verify(struct intel_context *ce, const struct i915_wa_list * const wal, const char *from) { const struct i915_wa *wa; struct i915_request *rq; struct i915_vma *vma; struct i915_gem_ww_ctx ww; unsigned int i; u32 *results; int err; if (!wal->count) return 0; vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, wal->count * sizeof(u32)); if (IS_ERR(vma)) return PTR_ERR(vma); intel_engine_pm_get(ce->engine); i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(vma->obj, &ww); if (err == 0) err = intel_context_pin_ww(ce, &ww); if (err) goto err_pm; err = i915_vma_pin_ww(vma, &ww, 0, 0, i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); if (err) goto err_unpin; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_vma; } err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); if (err == 0) err = wa_list_srm(rq, wal, vma); i915_request_get(rq); if (err) i915_request_set_error_once(rq, err); i915_request_add(rq); if (err) goto err_rq; if (i915_request_wait(rq, 0, HZ / 5) < 0) { err = -ETIME; goto err_rq; } results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(results)) { err = PTR_ERR(results); goto err_rq; } err = 0; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg))) continue; if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) err = -ENXIO; } i915_gem_object_unpin_map(vma->obj); err_rq: i915_request_put(rq); err_vma: i915_vma_unpin(vma); err_unpin: intel_context_unpin(ce); err_pm: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); intel_engine_pm_put(ce->engine); i915_vma_put(vma); return err; } int intel_engine_verify_workarounds(struct intel_engine_cs *engine, const char *from) { return engine_wa_list_verify(engine->kernel_context, &engine->wa_list, from); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_workarounds.c" #endif