// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include #include "xe_force_wake.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_idle.h" #include "xe_gt_sysfs.h" #include "xe_guc_pc.h" #include "regs/xe_gt_regs.h" #include "xe_macros.h" #include "xe_mmio.h" #include "xe_pm.h" #include "xe_sriov.h" /** * DOC: Xe GT Idle * * Contains functions that init GT idle features like C6 * * device/gt#/gtidle/name - name of the state * device/gt#/gtidle/idle_residency_ms - Provides residency of the idle state in ms * device/gt#/gtidle/idle_status - Provides current idle state */ static struct xe_gt_idle *dev_to_gtidle(struct device *dev) { struct kobject *kobj = &dev->kobj; return &kobj_to_gt(kobj->parent)->gtidle; } static struct xe_gt *gtidle_to_gt(struct xe_gt_idle *gtidle) { return container_of(gtidle, struct xe_gt, gtidle); } static struct xe_guc_pc *gtidle_to_pc(struct xe_gt_idle *gtidle) { return >idle_to_gt(gtidle)->uc.guc.pc; } static struct xe_device * pc_to_xe(struct xe_guc_pc *pc) { struct xe_guc *guc = container_of(pc, struct xe_guc, pc); struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc); return gt_to_xe(gt); } static const char *gt_idle_state_to_string(enum xe_gt_idle_state state) { switch (state) { case GT_IDLE_C0: return "gt-c0"; case GT_IDLE_C6: return "gt-c6"; default: return "unknown"; } } static u64 get_residency_ms(struct xe_gt_idle *gtidle, u64 cur_residency) { u64 delta, overflow_residency, prev_residency; overflow_residency = BIT_ULL(32); /* * Counter wrap handling * Store previous hw counter values for counter wrap-around handling * Relying on sufficient frequency of queries otherwise counters can still wrap. */ prev_residency = gtidle->prev_residency; gtidle->prev_residency = cur_residency; /* delta */ if (cur_residency >= prev_residency) delta = cur_residency - prev_residency; else delta = cur_residency + (overflow_residency - prev_residency); /* Add delta to extended raw driver copy of idle residency */ cur_residency = gtidle->cur_residency + delta; gtidle->cur_residency = cur_residency; /* residency multiplier in ns, convert to ms */ cur_residency = mul_u64_u32_div(cur_residency, gtidle->residency_multiplier, 1e6); return cur_residency; } void xe_gt_idle_enable_pg(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); struct xe_gt_idle *gtidle = >->gtidle; struct xe_mmio *mmio = >->mmio; u32 vcs_mask, vecs_mask; unsigned int fw_ref; int i, j; if (IS_SRIOV_VF(xe)) return; /* Disable CPG for PVC */ if (xe->info.platform == XE_PVC) return; xe_device_assert_mem_access(gt_to_xe(gt)); vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE); vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE); if (vcs_mask || vecs_mask) gtidle->powergate_enable = MEDIA_POWERGATE_ENABLE; if (!xe_gt_is_media_type(gt)) gtidle->powergate_enable |= RENDER_POWERGATE_ENABLE; if (xe->info.platform != XE_DG1) { for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) { if ((gt->info.engine_mask & BIT(i))) gtidle->powergate_enable |= (VDN_HCP_POWERGATE_ENABLE(j) | VDN_MFXVDENC_POWERGATE_ENABLE(j)); } } fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (xe->info.skip_guc_pc) { /* * GuC sets the hysteresis value when GuC PC is enabled * else set it to 25 (25 * 1.28us) */ xe_mmio_write32(mmio, MEDIA_POWERGATE_IDLE_HYSTERESIS, 25); xe_mmio_write32(mmio, RENDER_POWERGATE_IDLE_HYSTERESIS, 25); } xe_mmio_write32(mmio, POWERGATE_ENABLE, gtidle->powergate_enable); xe_force_wake_put(gt_to_fw(gt), fw_ref); } void xe_gt_idle_disable_pg(struct xe_gt *gt) { struct xe_gt_idle *gtidle = >->gtidle; unsigned int fw_ref; if (IS_SRIOV_VF(gt_to_xe(gt))) return; xe_device_assert_mem_access(gt_to_xe(gt)); gtidle->powergate_enable = 0; fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); xe_mmio_write32(>->mmio, POWERGATE_ENABLE, gtidle->powergate_enable); xe_force_wake_put(gt_to_fw(gt), fw_ref); } /** * xe_gt_idle_pg_print - Xe powergating info * @gt: GT object * @p: drm_printer. * * This function prints the powergating information * * Return: 0 on success, negative error code otherwise */ int xe_gt_idle_pg_print(struct xe_gt *gt, struct drm_printer *p) { struct xe_gt_idle *gtidle = >->gtidle; struct xe_device *xe = gt_to_xe(gt); enum xe_gt_idle_state state; u32 pg_enabled, pg_status = 0; u32 vcs_mask, vecs_mask; unsigned int fw_ref; int n; /* * Media Slices * * Slice 0: VCS0, VCS1, VECS0 * Slice 1: VCS2, VCS3, VECS1 * Slice 2: VCS4, VCS5, VECS2 * Slice 3: VCS6, VCS7, VECS3 */ static const struct { u64 engines; u32 status_bit; } media_slices[] = { {(BIT(XE_HW_ENGINE_VCS0) | BIT(XE_HW_ENGINE_VCS1) | BIT(XE_HW_ENGINE_VECS0)), MEDIA_SLICE0_AWAKE_STATUS}, {(BIT(XE_HW_ENGINE_VCS2) | BIT(XE_HW_ENGINE_VCS3) | BIT(XE_HW_ENGINE_VECS1)), MEDIA_SLICE1_AWAKE_STATUS}, {(BIT(XE_HW_ENGINE_VCS4) | BIT(XE_HW_ENGINE_VCS5) | BIT(XE_HW_ENGINE_VECS2)), MEDIA_SLICE2_AWAKE_STATUS}, {(BIT(XE_HW_ENGINE_VCS6) | BIT(XE_HW_ENGINE_VCS7) | BIT(XE_HW_ENGINE_VECS3)), MEDIA_SLICE3_AWAKE_STATUS}, }; if (xe->info.platform == XE_PVC) { drm_printf(p, "Power Gating not supported\n"); return 0; } state = gtidle->idle_status(gtidle_to_pc(gtidle)); pg_enabled = gtidle->powergate_enable; /* Do not wake the GT to read powergating status */ if (state != GT_IDLE_C6) { fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (!fw_ref) return -ETIMEDOUT; pg_enabled = xe_mmio_read32(>->mmio, POWERGATE_ENABLE); pg_status = xe_mmio_read32(>->mmio, POWERGATE_DOMAIN_STATUS); xe_force_wake_put(gt_to_fw(gt), fw_ref); } if (gt->info.engine_mask & XE_HW_ENGINE_RCS_MASK) { drm_printf(p, "Render Power Gating Enabled: %s\n", str_yes_no(pg_enabled & RENDER_POWERGATE_ENABLE)); drm_printf(p, "Render Power Gate Status: %s\n", str_up_down(pg_status & RENDER_AWAKE_STATUS)); } vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE); vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE); /* Print media CPG status only if media is present */ if (vcs_mask || vecs_mask) { drm_printf(p, "Media Power Gating Enabled: %s\n", str_yes_no(pg_enabled & MEDIA_POWERGATE_ENABLE)); for (n = 0; n < ARRAY_SIZE(media_slices); n++) if (gt->info.engine_mask & media_slices[n].engines) drm_printf(p, "Media Slice%d Power Gate Status: %s\n", n, str_up_down(pg_status & media_slices[n].status_bit)); } return 0; } static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buff) { struct xe_gt_idle *gtidle = dev_to_gtidle(dev); struct xe_guc_pc *pc = gtidle_to_pc(gtidle); ssize_t ret; xe_pm_runtime_get(pc_to_xe(pc)); ret = sysfs_emit(buff, "%s\n", gtidle->name); xe_pm_runtime_put(pc_to_xe(pc)); return ret; } static DEVICE_ATTR_RO(name); static ssize_t idle_status_show(struct device *dev, struct device_attribute *attr, char *buff) { struct xe_gt_idle *gtidle = dev_to_gtidle(dev); struct xe_guc_pc *pc = gtidle_to_pc(gtidle); enum xe_gt_idle_state state; xe_pm_runtime_get(pc_to_xe(pc)); state = gtidle->idle_status(pc); xe_pm_runtime_put(pc_to_xe(pc)); return sysfs_emit(buff, "%s\n", gt_idle_state_to_string(state)); } static DEVICE_ATTR_RO(idle_status); static ssize_t idle_residency_ms_show(struct device *dev, struct device_attribute *attr, char *buff) { struct xe_gt_idle *gtidle = dev_to_gtidle(dev); struct xe_guc_pc *pc = gtidle_to_pc(gtidle); u64 residency; xe_pm_runtime_get(pc_to_xe(pc)); residency = gtidle->idle_residency(pc); xe_pm_runtime_put(pc_to_xe(pc)); return sysfs_emit(buff, "%llu\n", get_residency_ms(gtidle, residency)); } static DEVICE_ATTR_RO(idle_residency_ms); static const struct attribute *gt_idle_attrs[] = { &dev_attr_name.attr, &dev_attr_idle_status.attr, &dev_attr_idle_residency_ms.attr, NULL, }; static void gt_idle_fini(void *arg) { struct kobject *kobj = arg; struct xe_gt *gt = kobj_to_gt(kobj->parent); unsigned int fw_ref; xe_gt_idle_disable_pg(gt); if (gt_to_xe(gt)->info.skip_guc_pc) { fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); xe_gt_idle_disable_c6(gt); xe_force_wake_put(gt_to_fw(gt), fw_ref); } sysfs_remove_files(kobj, gt_idle_attrs); kobject_put(kobj); } int xe_gt_idle_init(struct xe_gt_idle *gtidle) { struct xe_gt *gt = gtidle_to_gt(gtidle); struct xe_device *xe = gt_to_xe(gt); struct kobject *kobj; int err; if (IS_SRIOV_VF(xe)) return 0; kobj = kobject_create_and_add("gtidle", gt->sysfs); if (!kobj) return -ENOMEM; if (xe_gt_is_media_type(gt)) { snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-mc", gt->info.id); gtidle->idle_residency = xe_guc_pc_mc6_residency; } else { snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-rc", gt->info.id); gtidle->idle_residency = xe_guc_pc_rc6_residency; } /* Multiplier for Residency counter in units of 1.28us */ gtidle->residency_multiplier = 1280; gtidle->idle_status = xe_guc_pc_c_status; err = sysfs_create_files(kobj, gt_idle_attrs); if (err) { kobject_put(kobj); return err; } xe_gt_idle_enable_pg(gt); return devm_add_action_or_reset(xe->drm.dev, gt_idle_fini, kobj); } void xe_gt_idle_enable_c6(struct xe_gt *gt) { xe_device_assert_mem_access(gt_to_xe(gt)); xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); if (IS_SRIOV_VF(gt_to_xe(gt))) return; /* Units of 1280 ns for a total of 5s */ xe_mmio_write32(>->mmio, RC_IDLE_HYSTERSIS, 0x3B9ACA); /* Enable RC6 */ xe_mmio_write32(>->mmio, RC_CONTROL, RC_CTL_HW_ENABLE | RC_CTL_TO_MODE | RC_CTL_RC6_ENABLE); } void xe_gt_idle_disable_c6(struct xe_gt *gt) { xe_device_assert_mem_access(gt_to_xe(gt)); xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); if (IS_SRIOV_VF(gt_to_xe(gt))) return; xe_mmio_write32(>->mmio, RC_CONTROL, 0); xe_mmio_write32(>->mmio, RC_STATE, 0); }