// SPDX-License-Identifier: GPL-2.0 /* * Silvaco dual-role I3C master driver * * Copyright (C) 2020 Silvaco * Author: Miquel RAYNAL * Based on a work from: Conor Culhane */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Master Mode Registers */ #define SVC_I3C_MCONFIG 0x000 #define SVC_I3C_MCONFIG_MASTER_EN BIT(0) #define SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x)) #define SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x)) #define SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x)) #define SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x)) #define SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x)) #define SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x)) #define SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x)) #define SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x)) #define SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x)) #define SVC_I3C_MCTRL 0x084 #define SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0) #define SVC_I3C_MCTRL_REQUEST_NONE 0 #define SVC_I3C_MCTRL_REQUEST_START_ADDR 1 #define SVC_I3C_MCTRL_REQUEST_STOP 2 #define SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3 #define SVC_I3C_MCTRL_REQUEST_PROC_DAA 4 #define SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7 #define SVC_I3C_MCTRL_TYPE_I3C 0 #define SVC_I3C_MCTRL_TYPE_I2C BIT(4) #define SVC_I3C_MCTRL_IBIRESP_AUTO 0 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7) #define SVC_I3C_MCTRL_IBIRESP_NACK BIT(6) #define SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6) #define SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x)) #define SVC_I3C_MCTRL_DIR_WRITE 0 #define SVC_I3C_MCTRL_DIR_READ 1 #define SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x)) #define SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x)) #define SVC_I3C_MSTATUS 0x088 #define SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x)) #define SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5) #define SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0) #define SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x)) #define SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x)) #define SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x)) #define SVC_I3C_MSTATUS_IBITYPE_IBI 1 #define SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2 #define SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3 #define SVC_I3C_MINT_SLVSTART BIT(8) #define SVC_I3C_MINT_MCTRLDONE BIT(9) #define SVC_I3C_MINT_COMPLETE BIT(10) #define SVC_I3C_MINT_RXPEND BIT(11) #define SVC_I3C_MINT_TXNOTFULL BIT(12) #define SVC_I3C_MINT_IBIWON BIT(13) #define SVC_I3C_MINT_ERRWARN BIT(15) #define SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x)) #define SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x)) #define SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x)) #define SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x)) #define SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x)) #define SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x)) #define SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x)) #define SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x)) #define SVC_I3C_IBIRULES 0x08C #define SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \ ((addr) & 0x3F) << ((slot) * 6)) #define SVC_I3C_IBIRULES_ADDRS 5 #define SVC_I3C_IBIRULES_MSB0 BIT(30) #define SVC_I3C_IBIRULES_NOBYTE BIT(31) #define SVC_I3C_IBIRULES_MANDBYTE 0 #define SVC_I3C_MINTSET 0x090 #define SVC_I3C_MINTCLR 0x094 #define SVC_I3C_MINTMASKED 0x098 #define SVC_I3C_MERRWARN 0x09C #define SVC_I3C_MERRWARN_NACK BIT(2) #define SVC_I3C_MERRWARN_TIMEOUT BIT(20) #define SVC_I3C_MDMACTRL 0x0A0 #define SVC_I3C_MDATACTRL 0x0AC #define SVC_I3C_MDATACTRL_FLUSHTB BIT(0) #define SVC_I3C_MDATACTRL_FLUSHRB BIT(1) #define SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3) #define SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4) #define SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0 #define SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x)) #define SVC_I3C_MDATACTRL_TXFULL BIT(30) #define SVC_I3C_MDATACTRL_RXEMPTY BIT(31) #define SVC_I3C_MWDATAB 0x0B0 #define SVC_I3C_MWDATAB_END BIT(8) #define SVC_I3C_MWDATABE 0x0B4 #define SVC_I3C_MWDATAH 0x0B8 #define SVC_I3C_MWDATAHE 0x0BC #define SVC_I3C_MRDATAB 0x0C0 #define SVC_I3C_MRDATAH 0x0C8 #define SVC_I3C_MWMSG_SDR 0x0D0 #define SVC_I3C_MRMSG_SDR 0x0D4 #define SVC_I3C_MWMSG_DDR 0x0D8 #define SVC_I3C_MRMSG_DDR 0x0DC #define SVC_I3C_MDYNADDR 0x0E4 #define SVC_MDYNADDR_VALID BIT(0) #define SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x)) #define SVC_I3C_MAX_DEVS 32 #define SVC_I3C_PM_TIMEOUT_MS 1000 /* This parameter depends on the implementation and may be tuned */ #define SVC_I3C_FIFO_SIZE 16 #define SVC_I3C_PPBAUD_MAX 15 #define SVC_I3C_QUICK_I2C_CLK 4170000 #define SVC_I3C_EVENT_IBI GENMASK(7, 0) #define SVC_I3C_EVENT_HOTJOIN BIT(31) struct svc_i3c_cmd { u8 addr; bool rnw; u8 *in; const void *out; unsigned int len; unsigned int actual_len; struct i3c_priv_xfer *xfer; bool continued; }; struct svc_i3c_xfer { struct list_head node; struct completion comp; int ret; unsigned int type; unsigned int ncmds; struct svc_i3c_cmd cmds[] __counted_by(ncmds); }; struct svc_i3c_regs_save { u32 mconfig; u32 mdynaddr; }; /** * struct svc_i3c_master - Silvaco I3C Master structure * @base: I3C master controller * @dev: Corresponding device * @regs: Memory mapping * @saved_regs: Volatile values for PM operations * @free_slots: Bit array of available slots * @addrs: Array containing the dynamic addresses of each attached device * @descs: Array of descriptors, one per attached device * @hj_work: Hot-join work * @ibi_work: IBI work * @irq: Main interrupt * @pclk: System clock * @fclk: Fast clock (bus) * @sclk: Slow clock (other events) * @xferqueue: Transfer queue structure * @xferqueue.list: List member * @xferqueue.cur: Current ongoing transfer * @xferqueue.lock: Queue lock * @ibi: IBI structure * @ibi.num_slots: Number of slots available in @ibi.slots * @ibi.slots: Available IBI slots * @ibi.tbq_slot: To be queued IBI slot * @ibi.lock: IBI lock * @lock: Transfer lock, protect between IBI work thread and callbacks from master * @enabled_events: Bit masks for enable events (IBI, HotJoin). * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back. */ struct svc_i3c_master { struct i3c_master_controller base; struct device *dev; void __iomem *regs; struct svc_i3c_regs_save saved_regs; u32 free_slots; u8 addrs[SVC_I3C_MAX_DEVS]; struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS]; struct work_struct hj_work; struct work_struct ibi_work; int irq; struct clk *pclk; struct clk *fclk; struct clk *sclk; struct { struct list_head list; struct svc_i3c_xfer *cur; /* Prevent races between transfers */ spinlock_t lock; } xferqueue; struct { unsigned int num_slots; struct i3c_dev_desc **slots; struct i3c_ibi_slot *tbq_slot; /* Prevent races within IBI handlers */ spinlock_t lock; } ibi; struct mutex lock; u32 enabled_events; u32 mctrl_config; }; /** * struct svc_i3c_i2c_dev_data - Device specific data * @index: Index in the master tables corresponding to this device * @ibi: IBI slot index in the master structure * @ibi_pool: IBI pool associated to this device */ struct svc_i3c_i2c_dev_data { u8 index; int ibi; struct i3c_generic_ibi_pool *ibi_pool; }; static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask) { return !!(master->enabled_events & mask); } static bool svc_i3c_master_error(struct svc_i3c_master *master) { u32 mstatus, merrwarn; mstatus = readl(master->regs + SVC_I3C_MSTATUS); if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) { merrwarn = readl(master->regs + SVC_I3C_MERRWARN); writel(merrwarn, master->regs + SVC_I3C_MERRWARN); /* Ignore timeout error */ if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) { dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n", mstatus, merrwarn); return false; } dev_err(master->dev, "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n", mstatus, merrwarn); return true; } return false; } static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask) { writel(mask, master->regs + SVC_I3C_MINTSET); } static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master) { u32 mask = readl(master->regs + SVC_I3C_MINTSET); writel(mask, master->regs + SVC_I3C_MINTCLR); } static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master) { /* Clear pending warnings */ writel(readl(master->regs + SVC_I3C_MERRWARN), master->regs + SVC_I3C_MERRWARN); } static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master) { /* Flush FIFOs */ writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB, master->regs + SVC_I3C_MDATACTRL); } static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master) { u32 reg; /* Set RX and TX tigger levels, flush FIFOs */ reg = SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB | SVC_I3C_MDATACTRL_UNLOCK_TRIG | SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL | SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY; writel(reg, master->regs + SVC_I3C_MDATACTRL); } static void svc_i3c_master_reset(struct svc_i3c_master *master) { svc_i3c_master_clear_merrwarn(master); svc_i3c_master_reset_fifo_trigger(master); svc_i3c_master_disable_interrupts(master); } static inline struct svc_i3c_master * to_svc_i3c_master(struct i3c_master_controller *master) { return container_of(master, struct svc_i3c_master, base); } static void svc_i3c_master_hj_work(struct work_struct *work) { struct svc_i3c_master *master; master = container_of(work, struct svc_i3c_master, hj_work); i3c_master_do_daa(&master->base); } static struct i3c_dev_desc * svc_i3c_master_dev_from_addr(struct svc_i3c_master *master, unsigned int ibiaddr) { int i; for (i = 0; i < SVC_I3C_MAX_DEVS; i++) if (master->addrs[i] == ibiaddr) break; if (i == SVC_I3C_MAX_DEVS) return NULL; return master->descs[i]; } static void svc_i3c_master_emit_stop(struct svc_i3c_master *master) { writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL); /* * This delay is necessary after the emission of a stop, otherwise eg. * repeating IBIs do not get detected. There is a note in the manual * about it, stating that the stop condition might not be settled * correctly if a start condition follows too rapidly. */ udelay(1); } static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master, struct i3c_dev_desc *dev) { struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); struct i3c_ibi_slot *slot; unsigned int count; u32 mdatactrl; int ret, val; u8 *buf; slot = i3c_generic_ibi_get_free_slot(data->ibi_pool); if (!slot) return -ENOSPC; slot->len = 0; buf = slot->data; ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val, SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000); if (ret) { dev_err(master->dev, "Timeout when polling for COMPLETE\n"); return ret; } while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS)) && slot->len < SVC_I3C_FIFO_SIZE) { mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL); count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl); readsl(master->regs + SVC_I3C_MRDATAB, buf, count); slot->len += count; buf += count; } master->ibi.tbq_slot = slot; return 0; } static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master, bool mandatory_byte) { unsigned int ibi_ack_nack; u32 reg; ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK; if (mandatory_byte) ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE; else ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE; writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL); return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000); } static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master) { int ret; u32 reg; writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK | SVC_I3C_MCTRL_IBIRESP_NACK, master->regs + SVC_I3C_MCTRL); ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000); return ret; } static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus) { u32 ibitype; int ret = 0; ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus); writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); /* Hardware can't auto emit NACK for hot join and master request */ switch (ibitype) { case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: ret = svc_i3c_master_nack_ibi(master); } return ret; } static void svc_i3c_master_ibi_work(struct work_struct *work) { struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work); struct svc_i3c_i2c_dev_data *data; unsigned int ibitype, ibiaddr; struct i3c_dev_desc *dev; u32 status, val; int ret; /* * According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5: * * The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C * transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent * schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if * any irq or schedule happen during transaction. */ guard(spinlock_irqsave)(&master->xferqueue.lock); /* * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing * readl_relaxed_poll_timeout() to return immediately. Consequently, * ibitype will be 0 since it was last updated only after the 8th SCL * cycle, leading to missed client IBI handlers. * * A typical scenario is when IBIWON occurs and bus arbitration is lost * at svc_i3c_master_priv_xfers(). * * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI. */ writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */ writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI | SVC_I3C_MCTRL_IBIRESP_AUTO, master->regs + SVC_I3C_MCTRL); /* Wait for IBIWON, should take approximately 100us */ ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val, SVC_I3C_MSTATUS_IBIWON(val), 0, 100); if (ret) { dev_err(master->dev, "Timeout when polling for IBIWON\n"); svc_i3c_master_emit_stop(master); goto reenable_ibis; } status = readl(master->regs + SVC_I3C_MSTATUS); ibitype = SVC_I3C_MSTATUS_IBITYPE(status); ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status); /* Handle the critical responses to IBI's */ switch (ibitype) { case SVC_I3C_MSTATUS_IBITYPE_IBI: dev = svc_i3c_master_dev_from_addr(master, ibiaddr); if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI)) svc_i3c_master_nack_ibi(master); else svc_i3c_master_handle_ibi(master, dev); break; case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN)) svc_i3c_master_ack_ibi(master, false); else svc_i3c_master_nack_ibi(master); break; case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: svc_i3c_master_nack_ibi(master); break; default: break; } /* * If an error happened, we probably got interrupted and the exchange * timedout. In this case we just drop everything, emit a stop and wait * for the slave to interrupt again. */ if (svc_i3c_master_error(master)) { if (master->ibi.tbq_slot) { data = i3c_dev_get_master_data(dev); i3c_generic_ibi_recycle_slot(data->ibi_pool, master->ibi.tbq_slot); master->ibi.tbq_slot = NULL; } svc_i3c_master_emit_stop(master); goto reenable_ibis; } /* Handle the non critical tasks */ switch (ibitype) { case SVC_I3C_MSTATUS_IBITYPE_IBI: if (dev) { i3c_master_queue_ibi(dev, master->ibi.tbq_slot); master->ibi.tbq_slot = NULL; } svc_i3c_master_emit_stop(master); break; case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: svc_i3c_master_emit_stop(master); if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN)) queue_work(master->base.wq, &master->hj_work); break; case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: default: break; } reenable_ibis: svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); } static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id) { struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id; u32 active = readl(master->regs + SVC_I3C_MSTATUS); if (!SVC_I3C_MSTATUS_SLVSTART(active)) return IRQ_NONE; /* Clear the interrupt status */ writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS); svc_i3c_master_disable_interrupts(master); /* Handle the interrupt in a non atomic context */ queue_work(master->base.wq, &master->ibi_work); return IRQ_HANDLED; } static int svc_i3c_master_set_speed(struct i3c_master_controller *m, enum i3c_open_drain_speed speed) { struct svc_i3c_master *master = to_svc_i3c_master(m); struct i3c_bus *bus = i3c_master_get_bus(&master->base); u32 ppbaud, odbaud, odhpp, mconfig; unsigned long fclk_rate; int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return ret; } switch (speed) { case I3C_OPEN_DRAIN_SLOW_SPEED: fclk_rate = clk_get_rate(master->fclk); if (!fclk_rate) { ret = -EINVAL; goto rpm_out; } /* * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first * broadcast address is visible to all I2C/I3C devices on the I3C bus. * I3C device working as a I2C device will turn off its 50ns Spike * Filter to change to I3C mode. */ mconfig = master->mctrl_config; ppbaud = FIELD_GET(GENMASK(11, 8), mconfig); odhpp = 0; odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1; mconfig &= ~GENMASK(24, 16); mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp); writel(mconfig, master->regs + SVC_I3C_MCONFIG); break; case I3C_OPEN_DRAIN_NORMAL_SPEED: writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG); break; } rpm_out: pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); return ret; } static int svc_i3c_master_bus_init(struct i3c_master_controller *m) { struct svc_i3c_master *master = to_svc_i3c_master(m); struct i3c_bus *bus = i3c_master_get_bus(m); struct i3c_device_info info = {}; unsigned long fclk_rate, fclk_period_ns; unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate; unsigned int high_period_ns, od_low_period_ns; u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg; int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> cannot resume i3c bus master, err: %d\n", __func__, ret); return ret; } /* Timings derivation */ fclk_rate = clk_get_rate(master->fclk); if (!fclk_rate) { ret = -EINVAL; goto rpm_out; } fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate); i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c); i2c_scl_rate = bus->scl_rate.i2c; i3c_scl_rate = bus->scl_rate.i3c; /* * Using I3C Push-Pull mode, target is 12.5MHz/80ns period. * Simplest configuration is using a 50% duty-cycle of 40ns. */ ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1; pplow = 0; /* * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a * duty-cycle tuned so that high levels are filetered out by * the 50ns filter (target being 40ns). */ odhpp = 1; high_period_ns = (ppbaud + 1) * fclk_period_ns; odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2; od_low_period_ns = (odbaud + 1) * high_period_ns; switch (bus->mode) { case I3C_BUS_MODE_PURE: i2cbaud = 0; odstop = 0; break; case I3C_BUS_MODE_MIXED_FAST: /* * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference * between the high and low period does not really matter. */ i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2; odstop = 1; break; case I3C_BUS_MODE_MIXED_LIMITED: case I3C_BUS_MODE_MIXED_SLOW: /* I3C PP + I3C OP + I2C OP both use i2c clk rate */ if (ppbaud > SVC_I3C_PPBAUD_MAX) { ppbaud = SVC_I3C_PPBAUD_MAX; pplow = DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud); } high_period_ns = (ppbaud + 1) * fclk_period_ns; odhpp = 0; odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1; od_low_period_ns = (odbaud + 1) * high_period_ns; i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2; odstop = 1; break; default: goto rpm_out; } reg = SVC_I3C_MCONFIG_MASTER_EN | SVC_I3C_MCONFIG_DISTO(0) | SVC_I3C_MCONFIG_HKEEP(0) | SVC_I3C_MCONFIG_ODSTOP(odstop) | SVC_I3C_MCONFIG_PPBAUD(ppbaud) | SVC_I3C_MCONFIG_PPLOW(pplow) | SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp) | SVC_I3C_MCONFIG_SKEW(0) | SVC_I3C_MCONFIG_I2CBAUD(i2cbaud); writel(reg, master->regs + SVC_I3C_MCONFIG); master->mctrl_config = reg; /* Master core's registration */ ret = i3c_master_get_free_addr(m, 0); if (ret < 0) goto rpm_out; info.dyn_addr = ret; writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr), master->regs + SVC_I3C_MDYNADDR); ret = i3c_master_set_info(&master->base, &info); if (ret) goto rpm_out; rpm_out: pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); return ret; } static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m) { struct svc_i3c_master *master = to_svc_i3c_master(m); int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return; } svc_i3c_master_disable_interrupts(master); /* Disable master */ writel(0, master->regs + SVC_I3C_MCONFIG); pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); } static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master) { unsigned int slot; if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0))) return -ENOSPC; slot = ffs(master->free_slots) - 1; master->free_slots &= ~BIT(slot); return slot; } static void svc_i3c_master_release_slot(struct svc_i3c_master *master, unsigned int slot) { master->free_slots |= BIT(slot); } static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data; int slot; slot = svc_i3c_master_reserve_slot(master); if (slot < 0) return slot; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { svc_i3c_master_release_slot(master, slot); return -ENOMEM; } data->ibi = -1; data->index = slot; master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr : dev->info.static_addr; master->descs[slot] = dev; i3c_dev_set_master_data(dev, data); return 0; } static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr : dev->info.static_addr; return 0; } static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev) { struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); master->addrs[data->index] = 0; svc_i3c_master_release_slot(master, data->index); kfree(data); } static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data; int slot; slot = svc_i3c_master_reserve_slot(master); if (slot < 0) return slot; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { svc_i3c_master_release_slot(master, slot); return -ENOMEM; } data->index = slot; master->addrs[slot] = dev->addr; i2c_dev_set_master_data(dev, data); return 0; } static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev) { struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); struct i3c_master_controller *m = i2c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); svc_i3c_master_release_slot(master, data->index); kfree(data); } static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst, unsigned int len) { int ret, i; u32 reg; for (i = 0; i < len; i++) { ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_RXPEND(reg), 0, 1000); if (ret) return ret; dst[i] = readl(master->regs + SVC_I3C_MRDATAB); } return 0; } static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master, u8 *addrs, unsigned int *count) { u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0; unsigned int dev_nb = 0, last_addr = 0; u32 reg; int ret, i; while (true) { /* clean SVC_I3C_MINT_IBIWON w1c bits */ writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); /* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA. * * ENTER DAA: * 1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target. * 2 Stops just before the new Dynamic Address (DA) is to be emitted. * * PROCESS DAA: * 1 The DA is written using MWDATAB or ADDR bits 6:0. * 2 ProcessDAA is requested again to write the new address, and then starts the * next (START, 7E, ENTDAA) unless marked to STOP; an MSTATUS indicating NACK * means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the * 7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled * (along with DONE), and a STOP issued automatically. */ writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA | SVC_I3C_MCTRL_TYPE_I3C | SVC_I3C_MCTRL_IBIRESP_NACK | SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE), master->regs + SVC_I3C_MCTRL); /* * Either one slave will send its ID, or the assignment process * is done. */ ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_RXPEND(reg) | SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000); if (ret) break; if (SVC_I3C_MSTATUS_RXPEND(reg)) { u8 data[6]; /* * We only care about the 48-bit provisioned ID yet to * be sure a device does not nack an address twice. * Otherwise, we would just need to flush the RX FIFO. */ ret = svc_i3c_master_readb(master, data, 6); if (ret) break; for (i = 0; i < 6; i++) prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i)); /* We do not care about the BCR and DCR yet */ ret = svc_i3c_master_readb(master, data, 2); if (ret) break; } else if (SVC_I3C_MSTATUS_IBIWON(reg)) { ret = svc_i3c_master_handle_ibi_won(master, reg); if (ret) break; continue; } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) { if (SVC_I3C_MSTATUS_STATE_IDLE(reg) && SVC_I3C_MSTATUS_COMPLETE(reg)) { /* * All devices received and acked they dynamic * address, this is the natural end of the DAA * procedure. * * Hardware will auto emit STOP at this case. */ *count = dev_nb; return 0; } else if (SVC_I3C_MSTATUS_NACKED(reg)) { /* No I3C devices attached */ if (dev_nb == 0) { /* * Hardware can't treat first NACK for ENTAA as normal * COMPLETE. So need manual emit STOP. */ ret = 0; *count = 0; break; } /* * A slave device nacked the address, this is * allowed only once, DAA will be stopped and * then resumed. The same device is supposed to * answer again immediately and shall ack the * address this time. */ if (prov_id[dev_nb] == nacking_prov_id) { ret = -EIO; break; } dev_nb--; nacking_prov_id = prov_id[dev_nb]; svc_i3c_master_emit_stop(master); continue; } else { break; } } /* Wait for the slave to be ready to receive its address */ ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_MCTRLDONE(reg) && SVC_I3C_MSTATUS_STATE_DAA(reg) && SVC_I3C_MSTATUS_BETWEEN(reg), 0, 1000); if (ret) break; /* Give the slave device a suitable dynamic address */ ret = i3c_master_get_free_addr(&master->base, last_addr + 1); if (ret < 0) break; addrs[dev_nb] = ret; dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n", dev_nb, addrs[dev_nb]); writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB); last_addr = addrs[dev_nb++]; } /* Need manual issue STOP except for Complete condition */ svc_i3c_master_emit_stop(master); return ret; } static int svc_i3c_update_ibirules(struct svc_i3c_master *master) { struct i3c_dev_desc *dev; u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE; unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0, nobyte_addr_ko = 0; bool list_mbyte = false, list_nobyte = false; /* Create the IBIRULES register for both cases */ i3c_bus_for_each_i3cdev(&master->base.bus, dev) { if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER) continue; if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) { reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok, dev->info.dyn_addr); /* IBI rules cannot be applied to devices with MSb=1 */ if (dev->info.dyn_addr & BIT(7)) mbyte_addr_ko++; else mbyte_addr_ok++; } else { reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok, dev->info.dyn_addr); /* IBI rules cannot be applied to devices with MSb=1 */ if (dev->info.dyn_addr & BIT(7)) nobyte_addr_ko++; else nobyte_addr_ok++; } } /* Device list cannot be handled by hardware */ if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) list_mbyte = true; if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) list_nobyte = true; /* No list can be properly handled, return an error */ if (!list_mbyte && !list_nobyte) return -ERANGE; /* Pick the first list that can be handled by hardware, randomly */ if (list_mbyte) writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES); else writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES); return 0; } static int svc_i3c_master_do_daa(struct i3c_master_controller *m) { struct svc_i3c_master *master = to_svc_i3c_master(m); u8 addrs[SVC_I3C_MAX_DEVS]; unsigned long flags; unsigned int dev_nb; int ret, i; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return ret; } spin_lock_irqsave(&master->xferqueue.lock, flags); ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb); spin_unlock_irqrestore(&master->xferqueue.lock, flags); svc_i3c_master_clear_merrwarn(master); if (ret) goto rpm_out; /* * Register all devices who participated to the core * * If two devices (A and B) are detected in DAA and address 0xa is assigned to * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked() * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being * registered on the bus. The I3C stack might still consider 0xb a free * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A, * causing both devices A and B to use the same address 0xb, violating the I3C * specification. * * The return value for i3c_master_add_i3c_dev_locked() should not be checked * because subsequent steps will scan the entire I3C bus, independent of * whether i3c_master_add_i3c_dev_locked() returns success. * * If device A registration fails, there is still a chance to register device * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while * retrieving device information. */ for (i = 0; i < dev_nb; i++) i3c_master_add_i3c_dev_locked(m, addrs[i]); /* Configure IBI auto-rules */ ret = svc_i3c_update_ibirules(master); if (ret) dev_err(master->dev, "Cannot handle such a list of devices"); rpm_out: pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); return ret; } static int svc_i3c_master_read(struct svc_i3c_master *master, u8 *in, unsigned int len) { int offset = 0, i; u32 mdctrl, mstatus; bool completed = false; unsigned int count; unsigned long start = jiffies; while (!completed) { mstatus = readl(master->regs + SVC_I3C_MSTATUS); if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0) completed = true; if (time_after(jiffies, start + msecs_to_jiffies(1000))) { dev_dbg(master->dev, "I3C read timeout\n"); return -ETIMEDOUT; } mdctrl = readl(master->regs + SVC_I3C_MDATACTRL); count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl); if (offset + count > len) { dev_err(master->dev, "I3C receive length too long!\n"); return -EINVAL; } for (i = 0; i < count; i++) in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB); offset += count; } return offset; } static int svc_i3c_master_write(struct svc_i3c_master *master, const u8 *out, unsigned int len) { int offset = 0, ret; u32 mdctrl; while (offset < len) { ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL, mdctrl, !(mdctrl & SVC_I3C_MDATACTRL_TXFULL), 0, 1000); if (ret) return ret; /* * The last byte to be sent over the bus must either have the * "end" bit set or be written in MWDATABE. */ if (likely(offset < (len - 1))) writel(out[offset++], master->regs + SVC_I3C_MWDATAB); else writel(out[offset++], master->regs + SVC_I3C_MWDATABE); } return 0; } static int svc_i3c_master_xfer(struct svc_i3c_master *master, bool rnw, unsigned int xfer_type, u8 addr, u8 *in, const u8 *out, unsigned int xfer_len, unsigned int *actual_len, bool continued) { int retry = 2; u32 reg; int ret; /* clean SVC_I3C_MINT_IBIWON w1c bits */ writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); while (retry--) { writel(SVC_I3C_MCTRL_REQUEST_START_ADDR | xfer_type | SVC_I3C_MCTRL_IBIRESP_NACK | SVC_I3C_MCTRL_DIR(rnw) | SVC_I3C_MCTRL_ADDR(addr) | SVC_I3C_MCTRL_RDTERM(*actual_len), master->regs + SVC_I3C_MCTRL); ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000); if (ret) goto emit_stop; /* * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a * Frame with I3C Target Address. * * The I3C Controller normally should start a Frame, the Address may be arbitrated, * and so the Controller shall monitor to see whether an In-Band Interrupt request, * a Controller Role Request (i.e., Secondary Controller requests to become the * Active Controller), or a Hot-Join Request has been made. * * If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue * repeat start. Address arbitrate only happen at START, never happen at REPEAT * start. */ if (SVC_I3C_MSTATUS_IBIWON(reg)) { ret = svc_i3c_master_handle_ibi_won(master, reg); if (ret) goto emit_stop; continue; } if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) { /* * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3. * If the Controller chooses to start an I3C Message with an I3C Dynamic * Address, then special provisions shall be made because that same I3C * Target may be initiating an IBI or a Controller Role Request. So, one of * three things may happen: (skip 1, 2) * * 3. The Addresses match and the RnW bits also match, and so neither * Controller nor Target will ACK since both are expecting the other side to * provide ACK. As a result, each side might think it had "won" arbitration, * but neither side would continue, as each would subsequently see that the * other did not provide ACK. * ... * For either value of RnW: Due to the NACK, the Controller shall defer the * Private Write or Private Read, and should typically transmit the Target * Address again after a Repeated START (i.e., the next one or any one prior * to a STOP in the Frame). Since the Address Header following a Repeated * START is not arbitrated, the Controller will always win (see Section * 5.1.2.2.4). */ if (retry && addr != 0x7e) { writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN); } else { ret = -ENXIO; *actual_len = 0; goto emit_stop; } } else { break; } } if (rnw) ret = svc_i3c_master_read(master, in, xfer_len); else ret = svc_i3c_master_write(master, out, xfer_len); if (ret < 0) goto emit_stop; if (rnw) *actual_len = ret; ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000); if (ret) goto emit_stop; writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS); if (!continued) { svc_i3c_master_emit_stop(master); /* Wait idle if stop is sent. */ readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000); } return 0; emit_stop: svc_i3c_master_emit_stop(master); svc_i3c_master_clear_merrwarn(master); return ret; } static struct svc_i3c_xfer * svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds) { struct svc_i3c_xfer *xfer; xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL); if (!xfer) return NULL; INIT_LIST_HEAD(&xfer->node); xfer->ncmds = ncmds; xfer->ret = -ETIMEDOUT; return xfer; } static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer) { kfree(xfer); } static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master, struct svc_i3c_xfer *xfer) { if (master->xferqueue.cur == xfer) master->xferqueue.cur = NULL; else list_del_init(&xfer->node); } static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master, struct svc_i3c_xfer *xfer) { unsigned long flags; spin_lock_irqsave(&master->xferqueue.lock, flags); svc_i3c_master_dequeue_xfer_locked(master, xfer); spin_unlock_irqrestore(&master->xferqueue.lock, flags); } static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master) { struct svc_i3c_xfer *xfer = master->xferqueue.cur; int ret, i; if (!xfer) return; svc_i3c_master_clear_merrwarn(master); svc_i3c_master_flush_fifo(master); for (i = 0; i < xfer->ncmds; i++) { struct svc_i3c_cmd *cmd = &xfer->cmds[i]; ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type, cmd->addr, cmd->in, cmd->out, cmd->len, &cmd->actual_len, cmd->continued); /* cmd->xfer is NULL if I2C or CCC transfer */ if (cmd->xfer) cmd->xfer->actual_len = cmd->actual_len; if (ret) break; } xfer->ret = ret; complete(&xfer->comp); if (ret < 0) svc_i3c_master_dequeue_xfer_locked(master, xfer); xfer = list_first_entry_or_null(&master->xferqueue.list, struct svc_i3c_xfer, node); if (xfer) list_del_init(&xfer->node); master->xferqueue.cur = xfer; svc_i3c_master_start_xfer_locked(master); } static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master, struct svc_i3c_xfer *xfer) { unsigned long flags; int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return; } init_completion(&xfer->comp); spin_lock_irqsave(&master->xferqueue.lock, flags); if (master->xferqueue.cur) { list_add_tail(&xfer->node, &master->xferqueue.list); } else { master->xferqueue.cur = xfer; svc_i3c_master_start_xfer_locked(master); } spin_unlock_irqrestore(&master->xferqueue.lock, flags); pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); } static bool svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master, const struct i3c_ccc_cmd *cmd) { /* No software support for CCC commands targeting more than one slave */ return (cmd->ndests == 1); } static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master, struct i3c_ccc_cmd *ccc) { unsigned int xfer_len = ccc->dests[0].payload.len + 1; struct svc_i3c_xfer *xfer; struct svc_i3c_cmd *cmd; u8 *buf; int ret; xfer = svc_i3c_master_alloc_xfer(master, 1); if (!xfer) return -ENOMEM; buf = kmalloc(xfer_len, GFP_KERNEL); if (!buf) { svc_i3c_master_free_xfer(xfer); return -ENOMEM; } buf[0] = ccc->id; memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len); xfer->type = SVC_I3C_MCTRL_TYPE_I3C; cmd = &xfer->cmds[0]; cmd->addr = ccc->dests[0].addr; cmd->rnw = ccc->rnw; cmd->in = NULL; cmd->out = buf; cmd->len = xfer_len; cmd->actual_len = 0; cmd->continued = false; mutex_lock(&master->lock); svc_i3c_master_enqueue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) svc_i3c_master_dequeue_xfer(master, xfer); mutex_unlock(&master->lock); ret = xfer->ret; kfree(buf); svc_i3c_master_free_xfer(xfer); return ret; } static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master, struct i3c_ccc_cmd *ccc) { unsigned int xfer_len = ccc->dests[0].payload.len; unsigned int actual_len = ccc->rnw ? xfer_len : 0; struct svc_i3c_xfer *xfer; struct svc_i3c_cmd *cmd; int ret; xfer = svc_i3c_master_alloc_xfer(master, 2); if (!xfer) return -ENOMEM; xfer->type = SVC_I3C_MCTRL_TYPE_I3C; /* Broadcasted message */ cmd = &xfer->cmds[0]; cmd->addr = I3C_BROADCAST_ADDR; cmd->rnw = 0; cmd->in = NULL; cmd->out = &ccc->id; cmd->len = 1; cmd->actual_len = 0; cmd->continued = true; /* Directed message */ cmd = &xfer->cmds[1]; cmd->addr = ccc->dests[0].addr; cmd->rnw = ccc->rnw; cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL; cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data; cmd->len = xfer_len; cmd->actual_len = actual_len; cmd->continued = false; mutex_lock(&master->lock); svc_i3c_master_enqueue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) svc_i3c_master_dequeue_xfer(master, xfer); mutex_unlock(&master->lock); if (cmd->actual_len != xfer_len) ccc->dests[0].payload.len = cmd->actual_len; ret = xfer->ret; svc_i3c_master_free_xfer(xfer); return ret; } static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m, struct i3c_ccc_cmd *cmd) { struct svc_i3c_master *master = to_svc_i3c_master(m); bool broadcast = cmd->id < 0x80; int ret; if (broadcast) ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd); else ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd); if (ret) cmd->err = I3C_ERROR_M2; return ret; } static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev, struct i3c_priv_xfer *xfers, int nxfers) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); struct svc_i3c_xfer *xfer; int ret, i; xfer = svc_i3c_master_alloc_xfer(master, nxfers); if (!xfer) return -ENOMEM; xfer->type = SVC_I3C_MCTRL_TYPE_I3C; for (i = 0; i < nxfers; i++) { struct svc_i3c_cmd *cmd = &xfer->cmds[i]; cmd->xfer = &xfers[i]; cmd->addr = master->addrs[data->index]; cmd->rnw = xfers[i].rnw; cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL; cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out; cmd->len = xfers[i].len; cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0; cmd->continued = (i + 1) < nxfers; } mutex_lock(&master->lock); svc_i3c_master_enqueue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) svc_i3c_master_dequeue_xfer(master, xfer); mutex_unlock(&master->lock); ret = xfer->ret; svc_i3c_master_free_xfer(xfer); return ret; } static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev, const struct i2c_msg *xfers, int nxfers) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); struct svc_i3c_xfer *xfer; int ret, i; xfer = svc_i3c_master_alloc_xfer(master, nxfers); if (!xfer) return -ENOMEM; xfer->type = SVC_I3C_MCTRL_TYPE_I2C; for (i = 0; i < nxfers; i++) { struct svc_i3c_cmd *cmd = &xfer->cmds[i]; cmd->addr = master->addrs[data->index]; cmd->rnw = xfers[i].flags & I2C_M_RD; cmd->in = cmd->rnw ? xfers[i].buf : NULL; cmd->out = cmd->rnw ? NULL : xfers[i].buf; cmd->len = xfers[i].len; cmd->actual_len = cmd->rnw ? xfers[i].len : 0; cmd->continued = (i + 1 < nxfers); } mutex_lock(&master->lock); svc_i3c_master_enqueue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) svc_i3c_master_dequeue_xfer(master, xfer); mutex_unlock(&master->lock); ret = xfer->ret; svc_i3c_master_free_xfer(xfer); return ret; } static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev, const struct i3c_ibi_setup *req) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; unsigned int i; if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) { dev_err(master->dev, "IBI max payload %d should be < %d\n", dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE); return -ERANGE; } data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req); if (IS_ERR(data->ibi_pool)) return PTR_ERR(data->ibi_pool); spin_lock_irqsave(&master->ibi.lock, flags); for (i = 0; i < master->ibi.num_slots; i++) { if (!master->ibi.slots[i]) { data->ibi = i; master->ibi.slots[i] = dev; break; } } spin_unlock_irqrestore(&master->ibi.lock, flags); if (i < master->ibi.num_slots) return 0; i3c_generic_ibi_free_pool(data->ibi_pool); data->ibi_pool = NULL; return -ENOSPC; } static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; spin_lock_irqsave(&master->ibi.lock, flags); master->ibi.slots[data->ibi] = NULL; data->ibi = -1; spin_unlock_irqrestore(&master->ibi.lock, flags); i3c_generic_ibi_free_pool(data->ibi_pool); } static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return ret; } master->enabled_events++; svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); } static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct svc_i3c_master *master = to_svc_i3c_master(m); int ret; master->enabled_events--; if (!master->enabled_events) svc_i3c_master_disable_interrupts(master); ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); return ret; } static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m) { struct svc_i3c_master *master = to_svc_i3c_master(m); int ret; ret = pm_runtime_resume_and_get(master->dev); if (ret < 0) { dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); return ret; } master->enabled_events |= SVC_I3C_EVENT_HOTJOIN; svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); return 0; } static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m) { struct svc_i3c_master *master = to_svc_i3c_master(m); master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN; if (!master->enabled_events) svc_i3c_master_disable_interrupts(master); pm_runtime_mark_last_busy(master->dev); pm_runtime_put_autosuspend(master->dev); return 0; } static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) { struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); i3c_generic_ibi_recycle_slot(data->ibi_pool, slot); } static const struct i3c_master_controller_ops svc_i3c_master_ops = { .bus_init = svc_i3c_master_bus_init, .bus_cleanup = svc_i3c_master_bus_cleanup, .attach_i3c_dev = svc_i3c_master_attach_i3c_dev, .detach_i3c_dev = svc_i3c_master_detach_i3c_dev, .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev, .attach_i2c_dev = svc_i3c_master_attach_i2c_dev, .detach_i2c_dev = svc_i3c_master_detach_i2c_dev, .do_daa = svc_i3c_master_do_daa, .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd, .send_ccc_cmd = svc_i3c_master_send_ccc_cmd, .priv_xfers = svc_i3c_master_priv_xfers, .i2c_xfers = svc_i3c_master_i2c_xfers, .request_ibi = svc_i3c_master_request_ibi, .free_ibi = svc_i3c_master_free_ibi, .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot, .enable_ibi = svc_i3c_master_enable_ibi, .disable_ibi = svc_i3c_master_disable_ibi, .enable_hotjoin = svc_i3c_master_enable_hotjoin, .disable_hotjoin = svc_i3c_master_disable_hotjoin, .set_speed = svc_i3c_master_set_speed, }; static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master) { int ret = 0; ret = clk_prepare_enable(master->pclk); if (ret) return ret; ret = clk_prepare_enable(master->fclk); if (ret) { clk_disable_unprepare(master->pclk); return ret; } ret = clk_prepare_enable(master->sclk); if (ret) { clk_disable_unprepare(master->pclk); clk_disable_unprepare(master->fclk); return ret; } return 0; } static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master) { clk_disable_unprepare(master->pclk); clk_disable_unprepare(master->fclk); clk_disable_unprepare(master->sclk); } static int svc_i3c_master_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct svc_i3c_master *master; int ret; master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(master->regs)) return PTR_ERR(master->regs); master->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(master->pclk)) return PTR_ERR(master->pclk); master->fclk = devm_clk_get(dev, "fast_clk"); if (IS_ERR(master->fclk)) return PTR_ERR(master->fclk); master->sclk = devm_clk_get(dev, "slow_clk"); if (IS_ERR(master->sclk)) return PTR_ERR(master->sclk); master->irq = platform_get_irq(pdev, 0); if (master->irq < 0) return master->irq; master->dev = dev; ret = svc_i3c_master_prepare_clks(master); if (ret) return ret; INIT_WORK(&master->hj_work, svc_i3c_master_hj_work); INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work); mutex_init(&master->lock); ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler, IRQF_NO_SUSPEND, "svc-i3c-irq", master); if (ret) goto err_disable_clks; master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0); spin_lock_init(&master->xferqueue.lock); INIT_LIST_HEAD(&master->xferqueue.list); spin_lock_init(&master->ibi.lock); master->ibi.num_slots = SVC_I3C_MAX_DEVS; master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots, sizeof(*master->ibi.slots), GFP_KERNEL); if (!master->ibi.slots) { ret = -ENOMEM; goto err_disable_clks; } platform_set_drvdata(pdev, master); pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); svc_i3c_master_reset(master); /* Register the master */ ret = i3c_master_register(&master->base, &pdev->dev, &svc_i3c_master_ops, false); if (ret) goto rpm_disable; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; rpm_disable: pm_runtime_dont_use_autosuspend(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); err_disable_clks: svc_i3c_master_unprepare_clks(master); return ret; } static void svc_i3c_master_remove(struct platform_device *pdev) { struct svc_i3c_master *master = platform_get_drvdata(pdev); cancel_work_sync(&master->hj_work); i3c_master_unregister(&master->base); pm_runtime_dont_use_autosuspend(&pdev->dev); pm_runtime_disable(&pdev->dev); } static void svc_i3c_save_regs(struct svc_i3c_master *master) { master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG); master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR); } static void svc_i3c_restore_regs(struct svc_i3c_master *master) { if (readl(master->regs + SVC_I3C_MDYNADDR) != master->saved_regs.mdynaddr) { writel(master->saved_regs.mconfig, master->regs + SVC_I3C_MCONFIG); writel(master->saved_regs.mdynaddr, master->regs + SVC_I3C_MDYNADDR); } } static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev) { struct svc_i3c_master *master = dev_get_drvdata(dev); svc_i3c_save_regs(master); svc_i3c_master_unprepare_clks(master); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused svc_i3c_runtime_resume(struct device *dev) { struct svc_i3c_master *master = dev_get_drvdata(dev); pinctrl_pm_select_default_state(dev); svc_i3c_master_prepare_clks(master); svc_i3c_restore_regs(master); return 0; } static const struct dev_pm_ops svc_i3c_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend, svc_i3c_runtime_resume, NULL) }; static const struct of_device_id svc_i3c_master_of_match_tbl[] = { { .compatible = "silvaco,i3c-master-v1"}, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl); static struct platform_driver svc_i3c_master = { .probe = svc_i3c_master_probe, .remove = svc_i3c_master_remove, .driver = { .name = "silvaco-i3c-master", .of_match_table = svc_i3c_master_of_match_tbl, .pm = &svc_i3c_pm_ops, }, }; module_platform_driver(svc_i3c_master); MODULE_AUTHOR("Conor Culhane "); MODULE_AUTHOR("Miquel Raynal "); MODULE_DESCRIPTION("Silvaco dual-role I3C master driver"); MODULE_LICENSE("GPL v2");