// SPDX-License-Identifier: GPL-2.0-only /* * ADXL345 3-Axis Digital Accelerometer IIO core driver * * Copyright (c) 2017 Eva Rachel Retuya * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include #include "adxl345.h" #define ADXL345_FIFO_BYPASS 0 #define ADXL345_FIFO_FIFO 1 #define ADXL345_FIFO_STREAM 2 #define ADXL345_DIRS 3 #define ADXL345_INT_NONE 0xff #define ADXL345_INT1 0 #define ADXL345_INT2 1 #define ADXL345_REG_TAP_AXIS_MSK GENMASK(2, 0) #define ADXL345_REG_TAP_SUPPRESS_MSK BIT(3) #define ADXL345_REG_TAP_SUPPRESS BIT(3) #define ADXL345_POWER_CTL_INACT_MSK (ADXL345_POWER_CTL_AUTO_SLEEP | ADXL345_POWER_CTL_LINK) #define ADXL345_TAP_Z_EN BIT(0) #define ADXL345_TAP_Y_EN BIT(1) #define ADXL345_TAP_X_EN BIT(2) #define ADXL345_REG_TAP_SUPPRESS BIT(3) #define ADXL345_INACT_Z_EN BIT(0) #define ADXL345_INACT_Y_EN BIT(1) #define ADXL345_INACT_X_EN BIT(2) #define ADXL345_REG_INACT_ACDC BIT(3) #define ADXL345_ACT_INACT_NO_AXIS_EN 0x00 #define ADXL345_INACT_XYZ_EN (ADXL345_INACT_Z_EN | ADXL345_INACT_Y_EN | ADXL345_INACT_X_EN) #define ADXL345_ACT_Z_EN BIT(4) #define ADXL345_ACT_Y_EN BIT(5) #define ADXL345_ACT_X_EN BIT(6) #define ADXL345_REG_ACT_ACDC BIT(7) #define ADXL345_ACT_XYZ_EN (ADXL345_ACT_Z_EN | ADXL345_ACT_Y_EN | ADXL345_ACT_X_EN) #define ADXL345_COUPLING_DC 0 #define ADXL345_COUPLING_AC 1 #define ADXL345_REG_NO_ACDC 0x00 /* single/double tap */ enum adxl345_tap_type { ADXL345_SINGLE_TAP, ADXL345_DOUBLE_TAP, }; static const unsigned int adxl345_tap_int_reg[] = { [ADXL345_SINGLE_TAP] = ADXL345_INT_SINGLE_TAP, [ADXL345_DOUBLE_TAP] = ADXL345_INT_DOUBLE_TAP, }; enum adxl345_tap_time_type { ADXL345_TAP_TIME_LATENT, ADXL345_TAP_TIME_WINDOW, ADXL345_TAP_TIME_DUR, }; static const unsigned int adxl345_tap_time_reg[] = { [ADXL345_TAP_TIME_LATENT] = ADXL345_REG_LATENT, [ADXL345_TAP_TIME_WINDOW] = ADXL345_REG_WINDOW, [ADXL345_TAP_TIME_DUR] = ADXL345_REG_DUR, }; /* activity/inactivity */ enum adxl345_activity_type { ADXL345_ACTIVITY, ADXL345_INACTIVITY, ADXL345_ACTIVITY_AC, ADXL345_INACTIVITY_AC, ADXL345_INACTIVITY_FF, }; static const unsigned int adxl345_act_int_reg[] = { [ADXL345_ACTIVITY] = ADXL345_INT_ACTIVITY, [ADXL345_INACTIVITY] = ADXL345_INT_INACTIVITY, [ADXL345_ACTIVITY_AC] = ADXL345_INT_ACTIVITY, [ADXL345_INACTIVITY_AC] = ADXL345_INT_INACTIVITY, [ADXL345_INACTIVITY_FF] = ADXL345_INT_FREE_FALL, }; static const unsigned int adxl345_act_thresh_reg[] = { [ADXL345_ACTIVITY] = ADXL345_REG_THRESH_ACT, [ADXL345_INACTIVITY] = ADXL345_REG_THRESH_INACT, [ADXL345_ACTIVITY_AC] = ADXL345_REG_THRESH_ACT, [ADXL345_INACTIVITY_AC] = ADXL345_REG_THRESH_INACT, [ADXL345_INACTIVITY_FF] = ADXL345_REG_THRESH_FF, }; static const unsigned int adxl345_act_acdc_msk[] = { [ADXL345_ACTIVITY] = ADXL345_REG_ACT_ACDC, [ADXL345_INACTIVITY] = ADXL345_REG_INACT_ACDC, [ADXL345_ACTIVITY_AC] = ADXL345_REG_ACT_ACDC, [ADXL345_INACTIVITY_AC] = ADXL345_REG_INACT_ACDC, [ADXL345_INACTIVITY_FF] = ADXL345_REG_NO_ACDC, }; enum adxl345_odr { ADXL345_ODR_0P10HZ = 0, ADXL345_ODR_0P20HZ, ADXL345_ODR_0P39HZ, ADXL345_ODR_0P78HZ, ADXL345_ODR_1P56HZ, ADXL345_ODR_3P13HZ, ADXL345_ODR_6P25HZ, ADXL345_ODR_12P50HZ, ADXL345_ODR_25HZ, ADXL345_ODR_50HZ, ADXL345_ODR_100HZ, ADXL345_ODR_200HZ, ADXL345_ODR_400HZ, ADXL345_ODR_800HZ, ADXL345_ODR_1600HZ, ADXL345_ODR_3200HZ, }; enum adxl345_range { ADXL345_2G_RANGE = 0, ADXL345_4G_RANGE, ADXL345_8G_RANGE, ADXL345_16G_RANGE, }; /* Certain features recommend 12.5 Hz - 400 Hz ODR */ static const int adxl345_odr_tbl[][2] = { [ADXL345_ODR_0P10HZ] = { 0, 97000 }, [ADXL345_ODR_0P20HZ] = { 0, 195000 }, [ADXL345_ODR_0P39HZ] = { 0, 390000 }, [ADXL345_ODR_0P78HZ] = { 0, 781000 }, [ADXL345_ODR_1P56HZ] = { 1, 562000 }, [ADXL345_ODR_3P13HZ] = { 3, 125000 }, [ADXL345_ODR_6P25HZ] = { 6, 250000 }, [ADXL345_ODR_12P50HZ] = { 12, 500000 }, [ADXL345_ODR_25HZ] = { 25, 0 }, [ADXL345_ODR_50HZ] = { 50, 0 }, [ADXL345_ODR_100HZ] = { 100, 0 }, [ADXL345_ODR_200HZ] = { 200, 0 }, [ADXL345_ODR_400HZ] = { 400, 0 }, [ADXL345_ODR_800HZ] = { 800, 0 }, [ADXL345_ODR_1600HZ] = { 1600, 0 }, [ADXL345_ODR_3200HZ] = { 3200, 0 }, }; /* * Full resolution frequency table: * (g * 2 * 9.80665) / (2^(resolution) - 1) * * resolution := 13 (full) * g := 2|4|8|16 * * 2g at 13bit: 0.004789 * 4g at 13bit: 0.009578 * 8g at 13bit: 0.019156 * 16g at 16bit: 0.038312 */ static const int adxl345_fullres_range_tbl[][2] = { [ADXL345_2G_RANGE] = { 0, 4789 }, [ADXL345_4G_RANGE] = { 0, 9578 }, [ADXL345_8G_RANGE] = { 0, 19156 }, [ADXL345_16G_RANGE] = { 0, 38312 }, }; /* scaling */ static const int adxl345_range_factor_tbl[] = { [ADXL345_2G_RANGE] = 1, [ADXL345_4G_RANGE] = 2, [ADXL345_8G_RANGE] = 4, [ADXL345_16G_RANGE] = 8, }; struct adxl345_state { const struct adxl345_chip_info *info; struct regmap *regmap; bool fifo_delay; /* delay: delay is needed for SPI */ u8 watermark; u8 fifo_mode; u8 inact_threshold; u32 inact_time_ms; u32 tap_duration_us; u32 tap_latent_us; u32 tap_window_us; __le16 fifo_buf[ADXL345_DIRS * ADXL345_FIFO_SIZE + 1] __aligned(IIO_DMA_MINALIGN); }; static const struct iio_event_spec adxl345_events[] = { { /* activity */ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), }, { /* activity, ac bit set */ .type = IIO_EV_TYPE_MAG_ADAPTIVE, .dir = IIO_EV_DIR_RISING, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), }, { /* single tap */ .type = IIO_EV_TYPE_GESTURE, .dir = IIO_EV_DIR_SINGLETAP, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_TIMEOUT), }, { /* double tap */ .type = IIO_EV_TYPE_GESTURE, .dir = IIO_EV_DIR_DOUBLETAP, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_RESET_TIMEOUT) | BIT(IIO_EV_INFO_TAP2_MIN_DELAY), }, }; #define ADXL345_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .address = (reg), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = (index), \ .scan_type = { \ .sign = 's', \ .realbits = 13, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ .event_spec = adxl345_events, \ .num_event_specs = ARRAY_SIZE(adxl345_events), \ } enum adxl345_chans { chan_x, chan_y, chan_z, }; static const struct iio_event_spec adxl345_fake_chan_events[] = { { /* inactivity */ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD), }, { /* inactivity, AC bit set */ .type = IIO_EV_TYPE_MAG_ADAPTIVE, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD), }, }; static const struct iio_chan_spec adxl345_channels[] = { ADXL345_CHANNEL(0, chan_x, X), ADXL345_CHANNEL(1, chan_y, Y), ADXL345_CHANNEL(2, chan_z, Z), { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X_AND_Y_AND_Z, .scan_index = -1, /* Fake channel */ .event_spec = adxl345_fake_chan_events, .num_event_specs = ARRAY_SIZE(adxl345_fake_chan_events), }, }; static const unsigned long adxl345_scan_masks[] = { BIT(chan_x) | BIT(chan_y) | BIT(chan_z), 0 }; bool adxl345_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case ADXL345_REG_DATA_AXIS(0): case ADXL345_REG_DATA_AXIS(1): case ADXL345_REG_DATA_AXIS(2): case ADXL345_REG_DATA_AXIS(3): case ADXL345_REG_DATA_AXIS(4): case ADXL345_REG_DATA_AXIS(5): case ADXL345_REG_ACT_TAP_STATUS: case ADXL345_REG_FIFO_STATUS: case ADXL345_REG_INT_SOURCE: return true; default: return false; } } EXPORT_SYMBOL_NS_GPL(adxl345_is_volatile_reg, "IIO_ADXL345"); /** * adxl345_set_measure_en() - Enable and disable measuring. * * @st: The device data. * @en: Enable measurements, else standby mode. * * For lowest power operation, standby mode can be used. In standby mode, * current consumption is supposed to be reduced to 0.1uA (typical). In this * mode no measurements are made. Placing the device into standby mode * preserves the contents of FIFO. * * Return: Returns 0 if successful, or a negative error value. */ static int adxl345_set_measure_en(struct adxl345_state *st, bool en) { return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL, ADXL345_POWER_CTL_MEASURE, en); } /* activity / inactivity */ static int adxl345_set_inact_threshold(struct adxl345_state *st, unsigned int threshold) { int ret; st->inact_threshold = min(U8_MAX, threshold); ret = regmap_write(st->regmap, adxl345_act_thresh_reg[ADXL345_INACTIVITY], st->inact_threshold); if (ret) return ret; return regmap_write(st->regmap, adxl345_act_thresh_reg[ADXL345_INACTIVITY_FF], st->inact_threshold); } static int adxl345_set_default_time(struct adxl345_state *st) { int max_boundary = U8_MAX; int min_boundary = 10; enum adxl345_odr odr; unsigned int regval; unsigned int val; int ret; /* Generated inactivity time based on ODR */ ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, ®val); if (ret) return ret; odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval); val = clamp(max_boundary - adxl345_odr_tbl[odr][0], min_boundary, max_boundary); st->inact_time_ms = MILLI * val; /* Inactivity time in s */ return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val); } static int adxl345_set_inactivity_time(struct adxl345_state *st, u32 val_int) { st->inact_time_ms = MILLI * val_int; return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val_int); } static int adxl345_set_freefall_time(struct adxl345_state *st, u32 val_fract) { /* * Datasheet max. value is 255 * 5000 us = 1.275000 seconds. * * Recommended values between 100ms and 350ms (0x14 to 0x46) */ st->inact_time_ms = DIV_ROUND_UP(val_fract, MILLI); return regmap_write(st->regmap, ADXL345_REG_TIME_FF, DIV_ROUND_CLOSEST(val_fract, 5)); } /** * adxl345_set_inact_time - Configure inactivity time explicitly or by ODR. * @st: The sensor state instance. * @val_int: The inactivity time, integer part. * @val_fract: The inactivity time, fractional part when val_int is 0. * * Inactivity time can be configured between 1 and 255 seconds. If a user sets * val_s to 0, a default inactivity time is calculated automatically (since 0 is * also invalid and undefined by the sensor). * * In such cases, power consumption should be considered: the inactivity period * should be shorter at higher sampling frequencies and longer at lower ones. * Specifically, for frequencies above 255 Hz, the default is set to 10 seconds; * for frequencies below 10 Hz, it defaults to 255 seconds. * * The calculation method subtracts the integer part of the configured sample * frequency from 255 to estimate the inactivity time in seconds. Sub-Hertz * values are ignored in this approximation. Since the recommended output data * rates (ODRs) for features like activity/inactivity detection, sleep modes, * and free fall range between 12.5 Hz and 400 Hz, frequencies outside this * range will either use the defined boundary defaults or require explicit * configuration via val_s. * * Return: 0 or error value. */ static int adxl345_set_inact_time(struct adxl345_state *st, u32 val_int, u32 val_fract) { if (val_int > 0) { /* Time >= 1s, inactivity */ return adxl345_set_inactivity_time(st, val_int); } else if (val_int == 0) { if (val_fract > 0) { /* Time < 1s, free-fall */ return adxl345_set_freefall_time(st, val_fract); } else if (val_fract == 0) { /* Time == 0.0s */ return adxl345_set_default_time(st); } } /* Do not support negative or wrong input. */ return -EINVAL; } /** * adxl345_is_act_inact_ac() - Verify if AC or DC coupling is currently enabled. * * @st: The device data. * @type: The activity or inactivity type. * * Given a type of activity / inactivity combined with either AC coupling set or * default to DC, this function verifies if the combination is currently * configured, hence enabled or not. * * Return: true if configured coupling matches the provided type, else a negative * error value. */ static int adxl345_is_act_inact_ac(struct adxl345_state *st, enum adxl345_activity_type type) { unsigned int regval; bool coupling; int ret; if (type == ADXL345_INACTIVITY_FF) return true; ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, ®val); if (ret) return ret; coupling = adxl345_act_acdc_msk[type] & regval; switch (type) { case ADXL345_ACTIVITY: case ADXL345_INACTIVITY: return coupling == ADXL345_COUPLING_DC; case ADXL345_ACTIVITY_AC: case ADXL345_INACTIVITY_AC: return coupling == ADXL345_COUPLING_AC; default: return -EINVAL; } } /** * adxl345_set_act_inact_ac() - Configure AC coupling or DC coupling. * * @st: The device data. * @type: Provide a type of activity or inactivity. * @cmd_en: enable or disable AC coupling. * * Enables AC coupling or DC coupling depending on the provided type argument. * Note: Activity and inactivity can be either AC coupled or DC coupled not * both at the same time. * * Return: 0 if successful, else error value. */ static int adxl345_set_act_inact_ac(struct adxl345_state *st, enum adxl345_activity_type type, bool cmd_en) { unsigned int act_inact_ac; if (type == ADXL345_ACTIVITY_AC || type == ADXL345_INACTIVITY_AC) act_inact_ac = ADXL345_COUPLING_AC && cmd_en; else act_inact_ac = ADXL345_COUPLING_DC && cmd_en; /* * A setting of false selects dc-coupled operation, and a setting of * true enables ac-coupled operation. In dc-coupled operation, the * current acceleration magnitude is compared directly with * ADXL345_REG_THRESH_ACT and ADXL345_REG_THRESH_INACT to determine * whether activity or inactivity is detected. * * In ac-coupled operation for activity detection, the acceleration * value at the start of activity detection is taken as a reference * value. New samples of acceleration are then compared to this * reference value, and if the magnitude of the difference exceeds the * ADXL345_REG_THRESH_ACT value, the device triggers an activity * interrupt. * * Similarly, in ac-coupled operation for inactivity detection, a * reference value is used for comparison and is updated whenever the * device exceeds the inactivity threshold. After the reference value * is selected, the device compares the magnitude of the difference * between the reference value and the current acceleration with * ADXL345_REG_THRESH_INACT. If the difference is less than the value in * ADXL345_REG_THRESH_INACT for the time in ADXL345_REG_TIME_INACT, the * device is considered inactive and the inactivity interrupt is * triggered. [quoted from p. 24, ADXL345 datasheet Rev. G] * * In a conclusion, the first acceleration snapshot sample which hit the * threshold in a particular direction is always taken as acceleration * reference value to that direction. Since for the hardware activity * and inactivity depend on the x/y/z axis, so do ac and dc coupling. * Note, this sw driver always enables or disables all three x/y/z axis * for detection via act_axis_ctrl and inact_axis_ctrl, respectively. * Where in dc-coupling samples are compared against the thresholds, in * ac-coupling measurement difference to the first acceleration * reference value are compared against the threshold. So, ac-coupling * allows for a bit more dynamic compensation depending on the initial * sample. */ return regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL, adxl345_act_acdc_msk[type], act_inact_ac); } static int adxl345_is_act_inact_en(struct adxl345_state *st, enum adxl345_activity_type type) { unsigned int axis_ctrl; unsigned int regval; bool int_en, en; int ret; ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &axis_ctrl); if (ret) return ret; /* Check if axis for activity are enabled */ switch (type) { case ADXL345_ACTIVITY: case ADXL345_ACTIVITY_AC: en = FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl); if (!en) return false; break; case ADXL345_INACTIVITY: case ADXL345_INACTIVITY_AC: en = FIELD_GET(ADXL345_INACT_XYZ_EN, axis_ctrl); if (!en) return false; break; case ADXL345_INACTIVITY_FF: en = true; break; default: return -EINVAL; } /* Check if specific interrupt is enabled */ ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, ®val); if (ret) return ret; int_en = adxl345_act_int_reg[type] & regval; if (!int_en) return false; /* Check if configured coupling matches provided type */ return adxl345_is_act_inact_ac(st, type); } static int adxl345_set_act_inact_linkbit(struct adxl345_state *st, enum adxl345_activity_type type, bool en) { int act_ac_en, inact_ac_en; int act_en, inact_en; act_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY); if (act_en < 0) return act_en; act_ac_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY_AC); if (act_ac_en < 0) return act_ac_en; if (type == ADXL345_INACTIVITY_FF) { inact_en = false; } else { inact_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY); if (inact_en < 0) return inact_en; inact_ac_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY_AC); if (inact_ac_en < 0) return inact_ac_en; inact_en = inact_en || inact_ac_en; } act_en = act_en || act_ac_en; return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL, ADXL345_POWER_CTL_INACT_MSK, en && act_en && inact_en); } static int adxl345_set_act_inact_en(struct adxl345_state *st, enum adxl345_activity_type type, bool cmd_en) { unsigned int axis_ctrl; unsigned int threshold; unsigned int period; int ret; if (cmd_en) { /* When turning on, check if threshold is valid */ if (type == ADXL345_ACTIVITY || type == ADXL345_ACTIVITY_AC) { ret = regmap_read(st->regmap, adxl345_act_thresh_reg[type], &threshold); if (ret) return ret; } else { threshold = st->inact_threshold; } if (!threshold) /* Just ignore the command if threshold is 0 */ return 0; /* When turning on inactivity, check if inact time is valid */ if (type == ADXL345_INACTIVITY || type == ADXL345_INACTIVITY_AC) { ret = regmap_read(st->regmap, ADXL345_REG_TIME_INACT, &period); if (ret) return ret; if (!period) return 0; } } else { /* * When turning off an activity, ensure that the correct * coupling event is specified. This step helps prevent misuse - * for example, if an AC-coupled activity is active and the * current call attempts to turn off a DC-coupled activity, this * inconsistency should be detected here. */ if (adxl345_is_act_inact_ac(st, type) <= 0) return 0; } /* Start modifying configuration registers */ ret = adxl345_set_measure_en(st, false); if (ret) return ret; /* Enable axis according to the command */ switch (type) { case ADXL345_ACTIVITY: case ADXL345_ACTIVITY_AC: axis_ctrl = ADXL345_ACT_XYZ_EN; break; case ADXL345_INACTIVITY: case ADXL345_INACTIVITY_AC: axis_ctrl = ADXL345_INACT_XYZ_EN; break; case ADXL345_INACTIVITY_FF: axis_ctrl = ADXL345_ACT_INACT_NO_AXIS_EN; break; default: return -EINVAL; } ret = regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL, axis_ctrl, cmd_en); if (ret) return ret; /* Update AC/DC-coupling according to the command */ ret = adxl345_set_act_inact_ac(st, type, cmd_en); if (ret) return ret; /* Enable the interrupt line, according to the command */ ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_ENABLE, adxl345_act_int_reg[type], cmd_en); if (ret) return ret; /* Set link-bit and auto-sleep only when ACT and INACT are enabled */ ret = adxl345_set_act_inact_linkbit(st, type, cmd_en); if (ret) return ret; return adxl345_set_measure_en(st, true); } /* tap */ static int _adxl345_set_tap_int(struct adxl345_state *st, enum adxl345_tap_type type, bool state) { unsigned int int_map = 0x00; unsigned int tap_threshold; bool axis_valid; bool singletap_args_valid = false; bool doubletap_args_valid = false; bool en = false; u32 axis_ctrl; int ret; ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl); if (ret) return ret; axis_valid = FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) > 0; ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP, &tap_threshold); if (ret) return ret; /* * Note: A value of 0 for threshold and/or dur may result in undesirable * behavior if single tap/double tap interrupts are enabled. */ singletap_args_valid = tap_threshold > 0 && st->tap_duration_us > 0; if (type == ADXL345_SINGLE_TAP) { en = axis_valid && singletap_args_valid; } else { /* doubletap: Window must be equal or greater than latent! */ doubletap_args_valid = st->tap_latent_us > 0 && st->tap_window_us > 0 && st->tap_window_us >= st->tap_latent_us; en = axis_valid && singletap_args_valid && doubletap_args_valid; } if (state && en) int_map |= adxl345_tap_int_reg[type]; return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE, adxl345_tap_int_reg[type], int_map); } static int adxl345_is_tap_en(struct adxl345_state *st, enum iio_modifier axis, enum adxl345_tap_type type, bool *en) { unsigned int regval; u32 axis_ctrl; int ret; ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl); if (ret) return ret; /* Verify if axis is enabled for the tap detection. */ switch (axis) { case IIO_MOD_X: *en = FIELD_GET(ADXL345_TAP_X_EN, axis_ctrl); break; case IIO_MOD_Y: *en = FIELD_GET(ADXL345_TAP_Y_EN, axis_ctrl); break; case IIO_MOD_Z: *en = FIELD_GET(ADXL345_TAP_Z_EN, axis_ctrl); break; default: *en = false; return -EINVAL; } if (*en) { /* * If axis allow for tap detection, verify if the interrupt is * enabled for tap detection. */ ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, ®val); if (ret) return ret; *en = adxl345_tap_int_reg[type] & regval; } return 0; } static int adxl345_set_singletap_en(struct adxl345_state *st, enum iio_modifier axis, bool en) { int ret; u32 axis_ctrl; switch (axis) { case IIO_MOD_X: axis_ctrl = ADXL345_TAP_X_EN; break; case IIO_MOD_Y: axis_ctrl = ADXL345_TAP_Y_EN; break; case IIO_MOD_Z: axis_ctrl = ADXL345_TAP_Z_EN; break; default: return -EINVAL; } if (en) ret = regmap_set_bits(st->regmap, ADXL345_REG_TAP_AXIS, axis_ctrl); else ret = regmap_clear_bits(st->regmap, ADXL345_REG_TAP_AXIS, axis_ctrl); if (ret) return ret; return _adxl345_set_tap_int(st, ADXL345_SINGLE_TAP, en); } static int adxl345_set_doubletap_en(struct adxl345_state *st, bool en) { int ret; /* * Generally suppress detection of spikes during the latency period as * double taps here, this is fully optional for double tap detection */ ret = regmap_assign_bits(st->regmap, ADXL345_REG_TAP_AXIS, ADXL345_REG_TAP_SUPPRESS, en); if (ret) return ret; return _adxl345_set_tap_int(st, ADXL345_DOUBLE_TAP, en); } static int _adxl345_set_tap_time(struct adxl345_state *st, enum adxl345_tap_time_type type, u32 val_us) { unsigned int regval; switch (type) { case ADXL345_TAP_TIME_WINDOW: st->tap_window_us = val_us; break; case ADXL345_TAP_TIME_LATENT: st->tap_latent_us = val_us; break; case ADXL345_TAP_TIME_DUR: st->tap_duration_us = val_us; break; } /* * The scale factor is 1250us / LSB for tap_window_us and tap_latent_us. * For tap_duration_us the scale factor is 625us / LSB. */ if (type == ADXL345_TAP_TIME_DUR) regval = DIV_ROUND_CLOSEST(val_us, 625); else regval = DIV_ROUND_CLOSEST(val_us, 1250); return regmap_write(st->regmap, adxl345_tap_time_reg[type], regval); } static int adxl345_set_tap_duration(struct adxl345_state *st, u32 val_int, u32 val_fract_us) { /* * Max value is 255 * 625 us = 0.159375 seconds * * Note: the scaling is similar to the scaling in the ADXL380 */ if (val_int || val_fract_us > 159375) return -EINVAL; return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_DUR, val_fract_us); } static int adxl345_set_tap_window(struct adxl345_state *st, u32 val_int, u32 val_fract_us) { /* * Max value is 255 * 1250 us = 0.318750 seconds * * Note: the scaling is similar to the scaling in the ADXL380 */ if (val_int || val_fract_us > 318750) return -EINVAL; return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_WINDOW, val_fract_us); } static int adxl345_set_tap_latent(struct adxl345_state *st, u32 val_int, u32 val_fract_us) { /* * Max value is 255 * 1250 us = 0.318750 seconds * * Note: the scaling is similar to the scaling in the ADXL380 */ if (val_int || val_fract_us > 318750) return -EINVAL; return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_LATENT, val_fract_us); } static int adxl345_find_odr(struct adxl345_state *st, int val, int val2, enum adxl345_odr *odr) { int i; for (i = 0; i < ARRAY_SIZE(adxl345_odr_tbl); i++) { if (val == adxl345_odr_tbl[i][0] && val2 == adxl345_odr_tbl[i][1]) { *odr = i; return 0; } } return -EINVAL; } static int adxl345_set_odr(struct adxl345_state *st, enum adxl345_odr odr) { int ret; ret = regmap_update_bits(st->regmap, ADXL345_REG_BW_RATE, ADXL345_BW_RATE_MSK, FIELD_PREP(ADXL345_BW_RATE_MSK, odr)); if (ret) return ret; /* update inactivity time by ODR */ return adxl345_set_inact_time(st, 0, 0); } static int adxl345_find_range(struct adxl345_state *st, int val, int val2, enum adxl345_range *range) { int i; for (i = 0; i < ARRAY_SIZE(adxl345_fullres_range_tbl); i++) { if (val == adxl345_fullres_range_tbl[i][0] && val2 == adxl345_fullres_range_tbl[i][1]) { *range = i; return 0; } } return -EINVAL; } static int adxl345_set_range(struct adxl345_state *st, enum adxl345_range range) { unsigned int act_threshold, inact_threshold; unsigned int range_old; unsigned int regval; int ret; ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, ®val); if (ret) return ret; range_old = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval); ret = regmap_read(st->regmap, adxl345_act_thresh_reg[ADXL345_ACTIVITY], &act_threshold); if (ret) return ret; ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT, ADXL345_DATA_FORMAT_RANGE, FIELD_PREP(ADXL345_DATA_FORMAT_RANGE, range)); if (ret) return ret; act_threshold = act_threshold * adxl345_range_factor_tbl[range_old] / adxl345_range_factor_tbl[range]; act_threshold = min(U8_MAX, max(1, act_threshold)); inact_threshold = st->inact_threshold; inact_threshold = inact_threshold * adxl345_range_factor_tbl[range_old] / adxl345_range_factor_tbl[range]; inact_threshold = min(U8_MAX, max(1, inact_threshold)); ret = regmap_write(st->regmap, adxl345_act_thresh_reg[ADXL345_ACTIVITY], act_threshold); if (ret) return ret; return adxl345_set_inact_threshold(st, inact_threshold); } static int adxl345_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = (int *)adxl345_fullres_range_tbl; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(adxl345_fullres_range_tbl) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)adxl345_odr_tbl; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(adxl345_odr_tbl) * 2; return IIO_AVAIL_LIST; } return -EINVAL; } static int adxl345_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adxl345_state *st = iio_priv(indio_dev); __le16 accel; unsigned int regval; enum adxl345_odr odr; enum adxl345_range range; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: /* * Data is stored in adjacent registers: * ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte * and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte */ ret = regmap_bulk_read(st->regmap, ADXL345_REG_DATA_AXIS(chan->address), &accel, sizeof(accel)); if (ret) return ret; *val = sign_extend32(le16_to_cpu(accel), 12); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, ®val); if (ret) return ret; range = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval); *val = adxl345_fullres_range_tbl[range][0]; *val2 = adxl345_fullres_range_tbl[range][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: ret = regmap_read(st->regmap, ADXL345_REG_OFS_AXIS(chan->address), ®val); if (ret) return ret; /* * 8-bit resolution at +/- 2g, that is 4x accel data scale * factor */ *val = sign_extend32(regval, 7) * 4; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, ®val); if (ret) return ret; odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval); *val = adxl345_odr_tbl[odr][0]; *val2 = adxl345_odr_tbl[odr][1]; return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int adxl345_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adxl345_state *st = iio_priv(indio_dev); enum adxl345_range range; enum adxl345_odr odr; int ret; ret = adxl345_set_measure_en(st, false); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: /* * 8-bit resolution at +/- 2g, that is 4x accel data scale * factor */ ret = regmap_write(st->regmap, ADXL345_REG_OFS_AXIS(chan->address), val / 4); if (ret) return ret; break; case IIO_CHAN_INFO_SAMP_FREQ: ret = adxl345_find_odr(st, val, val2, &odr); if (ret) return ret; ret = adxl345_set_odr(st, odr); if (ret) return ret; break; case IIO_CHAN_INFO_SCALE: ret = adxl345_find_range(st, val, val2, &range); if (ret) return ret; ret = adxl345_set_range(st, range); if (ret) return ret; break; default: return -EINVAL; } return adxl345_set_measure_en(st, true); } static int adxl345_read_mag_config(struct adxl345_state *st, enum iio_event_direction dir, enum adxl345_activity_type type_act, enum adxl345_activity_type type_inact) { switch (dir) { case IIO_EV_DIR_RISING: return !!adxl345_is_act_inact_en(st, type_act); case IIO_EV_DIR_FALLING: return !!adxl345_is_act_inact_en(st, type_inact); default: return -EINVAL; } } static int adxl345_write_mag_config(struct adxl345_state *st, enum iio_event_direction dir, enum adxl345_activity_type type_act, enum adxl345_activity_type type_inact, bool state) { switch (dir) { case IIO_EV_DIR_RISING: return adxl345_set_act_inact_en(st, type_act, state); case IIO_EV_DIR_FALLING: return adxl345_set_act_inact_en(st, type_inact, state); default: return -EINVAL; } } static int adxl345_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct adxl345_state *st = iio_priv(indio_dev); bool int_en; int ret; switch (type) { case IIO_EV_TYPE_MAG: return adxl345_read_mag_config(st, dir, ADXL345_ACTIVITY, ADXL345_INACTIVITY); case IIO_EV_TYPE_MAG_ADAPTIVE: return adxl345_read_mag_config(st, dir, ADXL345_ACTIVITY_AC, ADXL345_INACTIVITY_AC); case IIO_EV_TYPE_GESTURE: switch (dir) { case IIO_EV_DIR_SINGLETAP: ret = adxl345_is_tap_en(st, chan->channel2, ADXL345_SINGLE_TAP, &int_en); if (ret) return ret; return int_en; case IIO_EV_DIR_DOUBLETAP: ret = adxl345_is_tap_en(st, chan->channel2, ADXL345_DOUBLE_TAP, &int_en); if (ret) return ret; return int_en; default: return -EINVAL; } default: return -EINVAL; } } static int adxl345_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { struct adxl345_state *st = iio_priv(indio_dev); switch (type) { case IIO_EV_TYPE_MAG: return adxl345_write_mag_config(st, dir, ADXL345_ACTIVITY, ADXL345_INACTIVITY, state); case IIO_EV_TYPE_MAG_ADAPTIVE: return adxl345_write_mag_config(st, dir, ADXL345_ACTIVITY_AC, ADXL345_INACTIVITY_AC, state); case IIO_EV_TYPE_GESTURE: switch (dir) { case IIO_EV_DIR_SINGLETAP: return adxl345_set_singletap_en(st, chan->channel2, state); case IIO_EV_DIR_DOUBLETAP: return adxl345_set_doubletap_en(st, state); default: return -EINVAL; } default: return -EINVAL; } } static int adxl345_read_mag_value(struct adxl345_state *st, enum iio_event_direction dir, enum iio_event_info info, enum adxl345_activity_type type_act, enum adxl345_activity_type type_inact, int *val, int *val2) { unsigned int threshold; int ret; switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = regmap_read(st->regmap, adxl345_act_thresh_reg[type_act], &threshold); if (ret) return ret; *val = 62500 * threshold; *val2 = MICRO; return IIO_VAL_FRACTIONAL; case IIO_EV_DIR_FALLING: *val = 62500 * st->inact_threshold; *val2 = MICRO; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_EV_INFO_PERIOD: *val = st->inact_time_ms; *val2 = MILLI; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } } static int adxl345_write_mag_value(struct adxl345_state *st, enum iio_event_direction dir, enum iio_event_info info, enum adxl345_activity_type type_act, enum adxl345_activity_type type_inact, int val, int val2) { switch (info) { case IIO_EV_INFO_VALUE: /* Scaling factor 62.5mg/LSB, i.e. ~16g corresponds to 0xff */ val = DIV_ROUND_CLOSEST(val * MICRO + val2, 62500); switch (dir) { case IIO_EV_DIR_RISING: return regmap_write(st->regmap, adxl345_act_thresh_reg[type_act], val); case IIO_EV_DIR_FALLING: return adxl345_set_inact_threshold(st, val); default: return -EINVAL; } case IIO_EV_INFO_PERIOD: return adxl345_set_inact_time(st, val, val2); default: return -EINVAL; } } static int adxl345_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct adxl345_state *st = iio_priv(indio_dev); unsigned int tap_threshold; int ret; switch (type) { case IIO_EV_TYPE_MAG: return adxl345_read_mag_value(st, dir, info, ADXL345_ACTIVITY, ADXL345_INACTIVITY, val, val2); case IIO_EV_TYPE_MAG_ADAPTIVE: return adxl345_read_mag_value(st, dir, info, ADXL345_ACTIVITY_AC, ADXL345_INACTIVITY_AC, val, val2); case IIO_EV_TYPE_GESTURE: switch (info) { case IIO_EV_INFO_VALUE: /* * The scale factor would be 62.5mg/LSB (i.e. 0xFF = 16g) but * not applied here. In context of this general purpose sensor, * what imports is rather signal intensity than the absolute * measured g value. */ ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP, &tap_threshold); if (ret) return ret; *val = sign_extend32(tap_threshold, 7); return IIO_VAL_INT; case IIO_EV_INFO_TIMEOUT: *val = st->tap_duration_us; *val2 = MICRO; return IIO_VAL_FRACTIONAL; case IIO_EV_INFO_RESET_TIMEOUT: *val = st->tap_window_us; *val2 = MICRO; return IIO_VAL_FRACTIONAL; case IIO_EV_INFO_TAP2_MIN_DELAY: *val = st->tap_latent_us; *val2 = MICRO; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } default: return -EINVAL; } } static int adxl345_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct adxl345_state *st = iio_priv(indio_dev); int ret; ret = adxl345_set_measure_en(st, false); if (ret) return ret; switch (type) { case IIO_EV_TYPE_MAG: ret = adxl345_write_mag_value(st, dir, info, ADXL345_ACTIVITY, ADXL345_INACTIVITY, val, val2); if (ret) return ret; break; case IIO_EV_TYPE_MAG_ADAPTIVE: ret = adxl345_write_mag_value(st, dir, info, ADXL345_ACTIVITY_AC, ADXL345_INACTIVITY_AC, val, val2); if (ret) return ret; break; case IIO_EV_TYPE_GESTURE: switch (info) { case IIO_EV_INFO_VALUE: ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP, min(val, 0xFF)); if (ret) return ret; break; case IIO_EV_INFO_TIMEOUT: ret = adxl345_set_tap_duration(st, val, val2); if (ret) return ret; break; case IIO_EV_INFO_RESET_TIMEOUT: ret = adxl345_set_tap_window(st, val, val2); if (ret) return ret; break; case IIO_EV_INFO_TAP2_MIN_DELAY: ret = adxl345_set_tap_latent(st, val, val2); if (ret) return ret; break; default: return -EINVAL; } break; default: return -EINVAL; } return adxl345_set_measure_en(st, true); } static int adxl345_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct adxl345_state *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); return regmap_write(st->regmap, reg, writeval); } static int adxl345_set_watermark(struct iio_dev *indio_dev, unsigned int value) { struct adxl345_state *st = iio_priv(indio_dev); const unsigned int fifo_mask = 0x1F, watermark_mask = 0x02; int ret; value = min(value, ADXL345_FIFO_SIZE - 1); ret = regmap_update_bits(st->regmap, ADXL345_REG_FIFO_CTL, fifo_mask, value); if (ret) return ret; st->watermark = value; return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE, watermark_mask, ADXL345_INT_WATERMARK); } static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static void adxl345_powerdown(void *ptr) { struct adxl345_state *st = ptr; adxl345_set_measure_en(st, false); } static int adxl345_set_fifo(struct adxl345_state *st) { unsigned int intio; int ret; /* FIFO should only be configured while in standby mode */ ret = adxl345_set_measure_en(st, false); if (ret) return ret; ret = regmap_read(st->regmap, ADXL345_REG_INT_MAP, &intio); if (ret) return ret; ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL, FIELD_PREP(ADXL345_FIFO_CTL_SAMPLES_MSK, st->watermark) | FIELD_PREP(ADXL345_FIFO_CTL_TRIGGER_MSK, intio) | FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK, st->fifo_mode)); if (ret) return ret; return adxl345_set_measure_en(st, true); } /** * adxl345_get_samples() - Read number of FIFO entries. * @st: The initialized state instance of this driver. * * The sensor does not support treating any axis individually, or exclude them * from measuring. * * Return: negative error, or value. */ static int adxl345_get_samples(struct adxl345_state *st) { unsigned int regval = 0; int ret; ret = regmap_read(st->regmap, ADXL345_REG_FIFO_STATUS, ®val); if (ret) return ret; return FIELD_GET(ADXL345_REG_FIFO_STATUS_MSK, regval); } /** * adxl345_fifo_transfer() - Read samples number of elements. * @st: The instance of the state object of this sensor. * @samples: The number of lines in the FIFO referred to as fifo_entry. * * It is recommended that a multiple-byte read of all registers be performed to * prevent a change in data between reads of sequential registers. That is to * read out the data registers X0, X1, Y0, Y1, Z0, Z1, i.e. 6 bytes at once. * * Return: 0 or error value. */ static int adxl345_fifo_transfer(struct adxl345_state *st, int samples) { int i, ret = 0; for (i = 0; i < samples; i++) { ret = regmap_bulk_read(st->regmap, ADXL345_REG_XYZ_BASE, st->fifo_buf + (i * ADXL345_DIRS), sizeof(st->fifo_buf[0]) * ADXL345_DIRS); if (ret) return ret; /* * To ensure that the FIFO has completely popped, there must be at least 5 * us between the end of reading the data registers, signified by the * transition to register 0x38 from 0x37 or the CS pin going high, and the * start of new reads of the FIFO or reading the FIFO_STATUS register. For * SPI operation at 1.5 MHz or lower, the register addressing portion of the * transmission is sufficient delay to ensure the FIFO has completely * popped. It is necessary for SPI operation greater than 1.5 MHz to * de-assert the CS pin to ensure a total of 5 us, which is at most 3.4 us * at 5 MHz operation. */ if (st->fifo_delay && samples > 1) udelay(3); } return ret; } /** * adxl345_fifo_reset() - Empty the FIFO in error condition. * @st: The instance to the state object of the sensor. * * Read all elements of the FIFO. Reading the interrupt source register * resets the sensor. */ static void adxl345_fifo_reset(struct adxl345_state *st) { int regval; int samples; adxl345_set_measure_en(st, false); samples = adxl345_get_samples(st); if (samples > 0) adxl345_fifo_transfer(st, samples); regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, ®val); adxl345_set_measure_en(st, true); } static int adxl345_buffer_postenable(struct iio_dev *indio_dev) { struct adxl345_state *st = iio_priv(indio_dev); st->fifo_mode = ADXL345_FIFO_STREAM; return adxl345_set_fifo(st); } static int adxl345_buffer_predisable(struct iio_dev *indio_dev) { struct adxl345_state *st = iio_priv(indio_dev); int ret; st->fifo_mode = ADXL345_FIFO_BYPASS; ret = adxl345_set_fifo(st); if (ret) return ret; return regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00); } static const struct iio_buffer_setup_ops adxl345_buffer_ops = { .postenable = adxl345_buffer_postenable, .predisable = adxl345_buffer_predisable, }; static int adxl345_fifo_push(struct iio_dev *indio_dev, int samples) { struct adxl345_state *st = iio_priv(indio_dev); int i, ret; if (samples <= 0) return -EINVAL; ret = adxl345_fifo_transfer(st, samples); if (ret) return ret; for (i = 0; i < ADXL345_DIRS * samples; i += ADXL345_DIRS) iio_push_to_buffers(indio_dev, &st->fifo_buf[i]); return 0; } static int adxl345_push_event(struct iio_dev *indio_dev, int int_stat, enum iio_modifier act_dir, enum iio_modifier tap_dir) { s64 ts = iio_get_time_ns(indio_dev); struct adxl345_state *st = iio_priv(indio_dev); unsigned int regval; int samples; int ret = -ENOENT; if (FIELD_GET(ADXL345_INT_SINGLE_TAP, int_stat)) { ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir, IIO_EV_TYPE_GESTURE, IIO_EV_DIR_SINGLETAP), ts); if (ret) return ret; } if (FIELD_GET(ADXL345_INT_DOUBLE_TAP, int_stat)) { ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir, IIO_EV_TYPE_GESTURE, IIO_EV_DIR_DOUBLETAP), ts); if (ret) return ret; } if (FIELD_GET(ADXL345_INT_ACTIVITY, int_stat)) { ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, ®val); if (ret) return ret; if (FIELD_GET(ADXL345_REG_ACT_ACDC, regval)) { /* AC coupled */ ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir, IIO_EV_TYPE_MAG_ADAPTIVE, IIO_EV_DIR_RISING), ts); } else { /* DC coupled, relying on THRESH */ ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), ts); } if (ret) return ret; } if (FIELD_GET(ADXL345_INT_INACTIVITY, int_stat)) { ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, ®val); if (ret) return ret; if (FIELD_GET(ADXL345_REG_INACT_ACDC, regval)) { /* AC coupled */ ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_MAG_ADAPTIVE, IIO_EV_DIR_FALLING), ts); } else { /* DC coupled, relying on THRESH */ ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_FALLING), ts); } if (ret) return ret; } if (FIELD_GET(ADXL345_INT_FREE_FALL, int_stat)) { ret = iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_FALLING), ts); if (ret) return ret; } if (FIELD_GET(ADXL345_INT_WATERMARK, int_stat)) { samples = adxl345_get_samples(st); if (samples < 0) return -EINVAL; if (adxl345_fifo_push(indio_dev, samples) < 0) return -EINVAL; ret = 0; } return ret; } /** * adxl345_irq_handler() - Handle irqs of the ADXL345. * @irq: The irq being handled. * @p: The struct iio_device pointer for the device. * * Return: The interrupt was handled. */ static irqreturn_t adxl345_irq_handler(int irq, void *p) { struct iio_dev *indio_dev = p; struct adxl345_state *st = iio_priv(indio_dev); unsigned int regval; enum iio_modifier tap_dir = IIO_NO_MOD; enum iio_modifier act_dir = IIO_NO_MOD; u32 axis_ctrl; int int_stat; int ret; ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl); if (ret) return IRQ_NONE; if (FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) || FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl)) { ret = regmap_read(st->regmap, ADXL345_REG_ACT_TAP_STATUS, ®val); if (ret) return IRQ_NONE; if (FIELD_GET(ADXL345_TAP_Z_EN, regval)) tap_dir = IIO_MOD_Z; else if (FIELD_GET(ADXL345_TAP_Y_EN, regval)) tap_dir = IIO_MOD_Y; else if (FIELD_GET(ADXL345_TAP_X_EN, regval)) tap_dir = IIO_MOD_X; if (FIELD_GET(ADXL345_ACT_Z_EN, regval)) act_dir = IIO_MOD_Z; else if (FIELD_GET(ADXL345_ACT_Y_EN, regval)) act_dir = IIO_MOD_Y; else if (FIELD_GET(ADXL345_ACT_X_EN, regval)) act_dir = IIO_MOD_X; } if (regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &int_stat)) return IRQ_NONE; if (adxl345_push_event(indio_dev, int_stat, act_dir, tap_dir)) goto err; if (FIELD_GET(ADXL345_INT_OVERRUN, int_stat)) goto err; return IRQ_HANDLED; err: adxl345_fifo_reset(st); return IRQ_HANDLED; } static const struct iio_info adxl345_info = { .read_raw = adxl345_read_raw, .write_raw = adxl345_write_raw, .read_avail = adxl345_read_avail, .write_raw_get_fmt = adxl345_write_raw_get_fmt, .read_event_config = adxl345_read_event_config, .write_event_config = adxl345_write_event_config, .read_event_value = adxl345_read_event_value, .write_event_value = adxl345_write_event_value, .debugfs_reg_access = &adxl345_reg_access, .hwfifo_set_watermark = adxl345_set_watermark, }; static int adxl345_get_int_line(struct device *dev, int *irq) { *irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT1"); if (*irq > 0) return ADXL345_INT1; *irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT2"); if (*irq > 0) return ADXL345_INT2; return ADXL345_INT_NONE; } /** * adxl345_core_probe() - Probe and setup for the accelerometer. * @dev: Driver model representation of the device * @regmap: Regmap instance for the device * @fifo_delay_default: Using FIFO with SPI needs delay * @setup: Setup routine to be executed right before the standard device * setup * * For SPI operation greater than 1.6 MHz, it is necessary to deassert the CS * pin to ensure a total delay of 5 us; otherwise, the delay is not sufficient. * The total delay necessary for 5 MHz operation is at most 3.4 us. This is not * a concern when using I2C mode because the communication rate is low enough * to ensure a sufficient delay between FIFO reads. * Ref: "Retrieving Data from FIFO", p. 21 of 36, Data Sheet ADXL345 Rev. G * * Return: 0 on success, negative errno on error */ int adxl345_core_probe(struct device *dev, struct regmap *regmap, bool fifo_delay_default, int (*setup)(struct device*, struct regmap*)) { struct adxl345_state *st; struct iio_dev *indio_dev; u32 regval; u8 intio = ADXL345_INT1; unsigned int data_format_mask = (ADXL345_DATA_FORMAT_RANGE | ADXL345_DATA_FORMAT_JUSTIFY | ADXL345_DATA_FORMAT_FULL_RES | ADXL345_DATA_FORMAT_SELF_TEST); unsigned int tap_threshold; int irq; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->regmap = regmap; st->info = device_get_match_data(dev); if (!st->info) return -ENODEV; st->fifo_delay = fifo_delay_default; /* Init with reasonable values */ tap_threshold = 48; /* 48 [0x30] -> ~3g */ st->tap_duration_us = 16; /* 16 [0x10] -> .010 */ st->tap_window_us = 64; /* 64 [0x40] -> .080 */ st->tap_latent_us = 16; /* 16 [0x10] -> .020 */ indio_dev->name = st->info->name; indio_dev->info = &adxl345_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = adxl345_channels; indio_dev->num_channels = ARRAY_SIZE(adxl345_channels); indio_dev->available_scan_masks = adxl345_scan_masks; /* * Using I2C at 100kHz would limit the maximum ODR to 200Hz, operation * at an output rate above the recommended maximum may result in * undesired behavior. */ ret = adxl345_set_odr(st, ADXL345_ODR_200HZ); if (ret) return ret; ret = adxl345_set_range(st, ADXL345_16G_RANGE); if (ret) return ret; /* Reset interrupts at start up */ ret = regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00); if (ret) return ret; if (setup) { /* Perform optional initial bus specific configuration */ ret = setup(dev, st->regmap); if (ret) return ret; /* Enable full-resolution mode */ ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT, data_format_mask, ADXL345_DATA_FORMAT_FULL_RES); if (ret) return dev_err_probe(dev, ret, "Failed to set data range\n"); } else { /* Enable full-resolution mode (init all data_format bits) */ ret = regmap_write(st->regmap, ADXL345_REG_DATA_FORMAT, ADXL345_DATA_FORMAT_FULL_RES); if (ret) return dev_err_probe(dev, ret, "Failed to set data range\n"); } ret = regmap_read(st->regmap, ADXL345_REG_DEVID, ®val); if (ret) return dev_err_probe(dev, ret, "Error reading device ID\n"); if (regval != ADXL345_DEVID) return dev_err_probe(dev, -ENODEV, "Invalid device ID: %x, expected %x\n", regval, ADXL345_DEVID); /* Enable measurement mode */ ret = adxl345_set_measure_en(st, true); if (ret) return dev_err_probe(dev, ret, "Failed to enable measurement mode\n"); ret = devm_add_action_or_reset(dev, adxl345_powerdown, st); if (ret) return ret; intio = adxl345_get_int_line(dev, &irq); if (intio != ADXL345_INT_NONE) { /* * In the INT map register, bits set to 0 route their * corresponding interrupts to the INT1 pin, while bits set to 1 * route them to the INT2 pin. The intio should handle this * mapping accordingly. */ ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_MAP, U8_MAX, intio); if (ret) return ret; /* * Initialized with sensible default values to streamline * sensor operation. These defaults are partly derived from * the previous input driver for the ADXL345 and partly * based on the recommendations provided in the datasheet. */ ret = regmap_write(st->regmap, ADXL345_REG_ACT_INACT_CTRL, 0); if (ret) return ret; ret = regmap_write(st->regmap, ADXL345_REG_THRESH_ACT, 6); if (ret) return ret; ret = adxl345_set_inact_threshold(st, 4); if (ret) return ret; ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP, tap_threshold); if (ret) return ret; /* FIFO_STREAM mode is going to be activated later */ ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &adxl345_buffer_ops); if (ret) return ret; ret = devm_request_threaded_irq(dev, irq, NULL, &adxl345_irq_handler, IRQF_SHARED | IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return ret; } else { ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL, FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK, ADXL345_FIFO_BYPASS)); if (ret) return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl345_core_probe, "IIO_ADXL345"); MODULE_AUTHOR("Eva Rachel Retuya "); MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver"); MODULE_LICENSE("GPL v2");