// SPDX-License-Identifier: GPL-2.0-only /* * 3-axis accelerometer driver supporting many Bosch-Sensortec chips * Copyright (c) 2014, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bmc150-accel.h" #define BMC150_ACCEL_DRV_NAME "bmc150_accel" #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" #define BMC150_ACCEL_REG_CHIP_ID 0x00 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) #define BMC150_ACCEL_REG_PMU_LPW 0x11 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F #define BMC150_ACCEL_DEF_RANGE_2G 0x03 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C /* Default BW: 125Hz */ #define BMC150_ACCEL_REG_PMU_BW 0x10 #define BMC150_ACCEL_DEF_BW 125 #define BMC150_ACCEL_REG_RESET 0x14 #define BMC150_ACCEL_RESET_VAL 0xB6 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_MAP_1 0x1A #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0) #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1) #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7) #define BMC150_ACCEL_REG_INT_MAP_2 0x1B #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 #define BMC150_ACCEL_REG_INT_EN_0 0x16 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) #define BMC150_ACCEL_REG_INT_EN_1 0x17 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2) #define BMC150_ACCEL_REG_INT_5 0x27 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 #define BMC150_ACCEL_REG_INT_6 0x28 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF /* Slope duration in terms of number of samples */ #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 /* in terms of multiples of g's/LSB, based on range */ #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 #define BMC150_ACCEL_REG_XOUT_L 0x02 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 /* Sleep Duration values */ #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 #define BMC150_ACCEL_SLEEP_1_MS 0x06 #define BMC150_ACCEL_SLEEP_2_MS 0x07 #define BMC150_ACCEL_SLEEP_4_MS 0x08 #define BMC150_ACCEL_SLEEP_6_MS 0x09 #define BMC150_ACCEL_SLEEP_10_MS 0x0A #define BMC150_ACCEL_SLEEP_25_MS 0x0B #define BMC150_ACCEL_SLEEP_50_MS 0x0C #define BMC150_ACCEL_SLEEP_100_MS 0x0D #define BMC150_ACCEL_SLEEP_500_MS 0x0E #define BMC150_ACCEL_SLEEP_1_SEC 0x0F #define BMC150_ACCEL_REG_TEMP 0x08 #define BMC150_ACCEL_TEMP_CENTER_VAL 23 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E #define BMC150_ACCEL_REG_FIFO_DATA 0x3F #define BMC150_ACCEL_FIFO_LENGTH 32 enum bmc150_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX, }; enum bmc150_power_modes { BMC150_ACCEL_SLEEP_MODE_NORMAL, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, BMC150_ACCEL_SLEEP_MODE_LPM, BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, }; struct bmc150_scale_info { int scale; u8 reg_range; }; struct bmc150_accel_chip_info { const char *name; u8 chip_id; const struct iio_chan_spec *channels; int num_channels; const struct bmc150_scale_info scale_table[4]; }; static const struct { int val; int val2; u8 bw_bits; } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, {31, 260000, 0x09}, {62, 500000, 0x0A}, {125, 0, 0x0B}, {250, 0, 0x0C}, {500, 0, 0x0D}, {1000, 0, 0x0E}, {2000, 0, 0x0F} }; static __maybe_unused const struct { int bw_bits; int msec; } bmc150_accel_sample_upd_time[] = { {0x08, 64}, {0x09, 32}, {0x0A, 16}, {0x0B, 8}, {0x0C, 4}, {0x0D, 2}, {0x0E, 1}, {0x0F, 1} }; static const struct { int sleep_dur; u8 reg_value; } bmc150_accel_sleep_value_table[] = { {0, 0}, {500, BMC150_ACCEL_SLEEP_500_MICRO}, {1000, BMC150_ACCEL_SLEEP_1_MS}, {2000, BMC150_ACCEL_SLEEP_2_MS}, {4000, BMC150_ACCEL_SLEEP_4_MS}, {6000, BMC150_ACCEL_SLEEP_6_MS}, {10000, BMC150_ACCEL_SLEEP_10_MS}, {25000, BMC150_ACCEL_SLEEP_25_MS}, {50000, BMC150_ACCEL_SLEEP_50_MS}, {100000, BMC150_ACCEL_SLEEP_100_MS}, {500000, BMC150_ACCEL_SLEEP_500_MS}, {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; const struct regmap_config bmc150_regmap_conf = { .reg_bits = 8, .val_bits = 8, .max_register = 0x3f, }; EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, "IIO_BMC150"); static int bmc150_accel_set_mode(struct bmc150_accel_data *data, enum bmc150_power_modes mode, int dur_us) { struct device *dev = regmap_get_device(data->regmap); int i; int ret; u8 lpw_bits; int dur_val = -1; if (dur_us > 0) { for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); ++i) { if (bmc150_accel_sleep_value_table[i].sleep_dur == dur_us) dur_val = bmc150_accel_sleep_value_table[i].reg_value; } } else { dur_val = 0; } if (dur_val < 0) return -EINVAL; lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); dev_dbg(dev, "Set Mode bits %x\n", lpw_bits); ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); if (ret < 0) { dev_err(dev, "Error writing reg_pmu_lpw\n"); return ret; } return 0; } static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, int val2) { int i; int ret; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].val == val && bmc150_accel_samp_freq_table[i].val2 == val2) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_BW, bmc150_accel_samp_freq_table[i].bw_bits); if (ret < 0) return ret; data->bw_bits = bmc150_accel_samp_freq_table[i].bw_bits; return 0; } } return -EINVAL; } static int bmc150_accel_update_slope(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6, data->slope_thres); if (ret < 0) { dev_err(dev, "Error writing reg_int_6\n"); return ret; } ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5, BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur); if (ret < 0) { dev_err(dev, "Error updating reg_int_5\n"); return ret; } dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur); return ret; } static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, bool state) { if (state) return bmc150_accel_update_slope(t->data); return 0; } static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, int *val2) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { *val = bmc150_accel_samp_freq_table[i].val; *val2 = bmc150_accel_samp_freq_table[i].val2; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } #ifdef CONFIG_PM static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) return bmc150_accel_sample_upd_time[i].msec; } return BMC150_ACCEL_MAX_STARTUP_TIME_MS; } static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { struct device *dev = regmap_get_device(data->regmap); int ret; if (on) { ret = pm_runtime_resume_and_get(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } if (ret < 0) { dev_err(dev, "Failed: %s for %d\n", __func__, on); return ret; } return 0; } #else static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { return 0; } #endif #ifdef CONFIG_ACPI /* * Support for getting accelerometer information from BOSC0200 ACPI nodes. * * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object * contains the mount-matrix for the sensor in the display and ROMK contains * the mount-matrix for the sensor in the base. On devices using a single * sensor there is a ROTM ACPI object which contains the mount-matrix. * * Here is an incomplete list of devices known to use 1 of these setups: * * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices: * Lenovo Thinkpad Yoga 11e 3th gen * Lenovo Thinkpad Yoga 11e 4th gen * * Tablets using a single accelerometer using ROTM for the mount-matrix: * Chuwi Hi8 Pro (CWI513) * Chuwi Vi8 Plus (CWI519) * Chuwi Hi13 * Irbis TW90 * Jumper EZpad mini 3 * Onda V80 plus * Predia Basic Tablet */ static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct iio_dev *indio_dev = dev_get_drvdata(dev); acpi_handle handle = ACPI_HANDLE(dev); char *name, *alt_name, *label; if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) { alt_name = "ROMK"; label = "accel-base"; } else { alt_name = "ROMS"; label = "accel-display"; } if (acpi_has_method(handle, "ROTM")) { name = "ROTM"; } else if (acpi_has_method(handle, alt_name)) { name = alt_name; indio_dev->label = label; } else { return false; } return iio_read_acpi_mount_matrix(dev, orientation, name); } static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct iio_dev *indio_dev = dev_get_drvdata(dev); if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0) indio_dev->label = "accel-base"; else indio_dev->label = "accel-display"; return false; /* DUAL250E fwnodes have no mount matrix info */ } static bool bmc150_apply_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct acpi_device *adev = ACPI_COMPANION(dev); if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL)) return bmc150_apply_bosc0200_acpi_orientation(dev, orientation); if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL)) return bmc150_apply_dual250e_acpi_orientation(dev, orientation); return false; } #else static bool bmc150_apply_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { return false; } #endif struct bmc150_accel_interrupt_info { u8 map_reg; u8 map_bitmask; u8 en_reg; u8 en_bitmask; }; static const struct bmc150_accel_interrupt_info bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = { { /* data ready interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, }, { /* motion interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_0, .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE, .en_reg = BMC150_ACCEL_REG_INT_EN_0, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z }, { /* fifo watermark interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, }, }; static const struct bmc150_accel_interrupt_info bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = { { /* data ready interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, }, { /* motion interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_2, .map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE, .en_reg = BMC150_ACCEL_REG_INT_EN_0, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z }, { /* fifo watermark interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, }, }; static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data, int irq) { const struct bmc150_accel_interrupt_info *irq_info = NULL; struct device *dev = regmap_get_device(data->regmap); int i; /* * For now we map all interrupts to the same output pin. * However, some boards may have just INT2 (and not INT1) connected, * so we try to detect which IRQ it is based on the interrupt-names. * Without interrupt-names, we assume the irq belongs to INT1. */ irq_info = bmc150_accel_interrupts_int1; if (data->type == BOSCH_BMC156 || irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2")) irq_info = bmc150_accel_interrupts_int2; for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) data->interrupts[i].info = &irq_info[i]; } static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, bool state) { struct device *dev = regmap_get_device(data->regmap); struct bmc150_accel_interrupt *intr = &data->interrupts[i]; const struct bmc150_accel_interrupt_info *info = intr->info; int ret; if (state) { if (atomic_inc_return(&intr->users) > 1) return 0; } else { if (atomic_dec_return(&intr->users) > 0) return 0; } /* * We will expect the enable and disable to do operation in reverse * order. This will happen here anyway, as our resume operation uses * sync mode runtime pm calls. The suspend operation will be delayed * by autosuspend delay. * So the disable operation will still happen in reverse order of * enable operation. When runtime pm is disabled the mode is always on, * so sequence doesn't matter. */ ret = bmc150_accel_set_power_state(data, state); if (ret < 0) return ret; /* map the interrupt to the appropriate pins */ ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask, (state ? info->map_bitmask : 0)); if (ret < 0) { dev_err(dev, "Error updating reg_int_map\n"); goto out_fix_power_state; } /* enable/disable the interrupt */ ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask, (state ? info->en_bitmask : 0)); if (ret < 0) { dev_err(dev, "Error updating reg_int_en\n"); goto out_fix_power_state; } return 0; out_fix_power_state: bmc150_accel_set_power_state(data, false); return ret; } static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) { struct device *dev = regmap_get_device(data->regmap); int ret, i; for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { if (data->chip_info->scale_table[i].scale == val) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, data->chip_info->scale_table[i].reg_range); if (ret < 0) { dev_err(dev, "Error writing pmu_range\n"); return ret; } data->range = data->chip_info->scale_table[i].reg_range; return 0; } } return -EINVAL; } static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) { struct device *dev = regmap_get_device(data->regmap); int ret; unsigned int value; mutex_lock(&data->mutex); ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value); if (ret < 0) { dev_err(dev, "Error reading reg_temp\n"); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(value, 7); mutex_unlock(&data->mutex); return IIO_VAL_INT; } static int bmc150_accel_get_axis(struct bmc150_accel_data *data, struct iio_chan_spec const *chan, int *val) { struct device *dev = regmap_get_device(data->regmap); int ret; int axis = chan->scan_index; __le16 raw_val; mutex_lock(&data->mutex); ret = bmc150_accel_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis), &raw_val, sizeof(raw_val)); if (ret < 0) { dev_err(dev, "Error reading axis %d\n", axis); bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift, chan->scan_type.realbits - 1); ret = bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); if (ret < 0) return ret; return IIO_VAL_INT; } static int bmc150_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: return bmc150_accel_get_temp(data, val); case IIO_ACCEL: if (iio_buffer_enabled(indio_dev)) return -EBUSY; else return bmc150_accel_get_axis(data, chan, val); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (chan->type == IIO_TEMP) { *val = BMC150_ACCEL_TEMP_CENTER_VAL; return IIO_VAL_INT; } else { return -EINVAL; } case IIO_CHAN_INFO_SCALE: *val = 0; switch (chan->type) { case IIO_TEMP: *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: { int i; const struct bmc150_scale_info *si; int st_size = ARRAY_SIZE(data->chip_info->scale_table); for (i = 0; i < st_size; ++i) { si = &data->chip_info->scale_table[i]; if (si->reg_range == data->range) { *val2 = si->scale; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_get_bw(data, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int bmc150_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_set_bw(data, val, val2); mutex_unlock(&data->mutex); break; case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_accel_set_scale(data, val2); mutex_unlock(&data->mutex); return ret; default: ret = -EINVAL; } return ret; } static int bmc150_accel_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->slope_thres; break; case IIO_EV_INFO_PERIOD: *val = data->slope_dur; break; default: return -EINVAL; } return IIO_VAL_INT; } static int bmc150_accel_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK; break; case IIO_EV_INFO_PERIOD: data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; break; default: return -EINVAL; } return 0; } static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct bmc150_accel_data *data = iio_priv(indio_dev); return data->ev_enable_state; } static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; if (state == data->ev_enable_state) return 0; mutex_lock(&data->mutex); ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } data->ev_enable_state = state; mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct bmc150_accel_data *data = iio_priv(indio_dev); int i; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].indio_trig == trig) return 0; } return -EINVAL; } static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", wm); } static ssize_t bmc150_accel_get_fifo_state(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); bool state; mutex_lock(&data->mutex); state = data->fifo_mode; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", state); } static const struct iio_mount_matrix * bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bmc150_accel_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix), { } }; IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, __stringify(BMC150_ACCEL_FIFO_LENGTH)); static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, bmc150_accel_get_fifo_state, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, bmc150_accel_get_fifo_watermark, NULL, 0); static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark_min, &iio_dev_attr_hwfifo_watermark_max, &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL, }; static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (val > BMC150_ACCEL_FIFO_LENGTH) val = BMC150_ACCEL_FIFO_LENGTH; mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } /* * We must read at least one full frame in one burst, otherwise the rest of the * frame data is discarded. */ static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data, char *buffer, int samples) { struct device *dev = regmap_get_device(data->regmap); int sample_length = 3 * 2; int ret; int total_length = samples * sample_length; ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA, buffer, total_length); if (ret) dev_err(dev, "Error transferring data from fifo: %d\n", ret); return ret; } static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples, bool irq) { struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret, i; u8 count; u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; int64_t tstamp; uint64_t sample_period; unsigned int val; ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val); if (ret < 0) { dev_err(dev, "Error reading reg_fifo_status\n"); return ret; } count = val & 0x7F; if (!count) return 0; /* * If we getting called from IRQ handler we know the stored timestamp is * fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(indio_dev); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * Note that we can't use the current bandwidth settings to compute the * sample period because the sample rate varies with the device * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That * small variation adds when we store a large number of samples and * creates significant jitter between the last and first samples in * different batches (e.g. 32ms vs 21ms). * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ sample_period = (data->timestamp - data->old_timestamp); do_div(sample_period, count); tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) count = samples; ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count); if (ret) return ret; /* * Ideally we want the IIO core to handle the demux when running in fifo * mode but not when running in triggered buffer mode. Unfortunately * this does not seem to be possible, so stick with driver demux for * now. */ for (i = 0; i < count; i++) { int j, bit; j = 0; iio_for_each_active_channel(indio_dev, bit) memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit], sizeof(data->scan.channels[0])); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, tstamp); tstamp += sample_period; } return count; } static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); mutex_unlock(&data->mutex); return ret; } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "15.620000 31.260000 62.50000 125 250 500 1000 2000"); static struct attribute *bmc150_accel_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_accel_attrs_group = { .attrs = bmc150_accel_attributes, }; static const struct iio_event_spec bmc150_accel_event = { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) }; #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 16 - (bits), \ .endianness = IIO_LE, \ }, \ .ext_info = bmc150_accel_ext_info, \ .event_spec = &bmc150_accel_event, \ .num_event_specs = 1 \ } #define BMC150_ACCEL_CHANNELS(bits) { \ { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = -1, \ }, \ BMC150_ACCEL_CHANNEL(X, bits), \ BMC150_ACCEL_CHANNEL(Y, bits), \ BMC150_ACCEL_CHANNEL(Z, bits), \ IIO_CHAN_SOFT_TIMESTAMP(3), \ } static const struct iio_chan_spec bma222e_accel_channels[] = BMC150_ACCEL_CHANNELS(8); static const struct iio_chan_spec bma250e_accel_channels[] = BMC150_ACCEL_CHANNELS(10); static const struct iio_chan_spec bmc150_accel_channels[] = BMC150_ACCEL_CHANNELS(12); static const struct iio_chan_spec bma280_accel_channels[] = BMC150_ACCEL_CHANNELS(14); /* * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed * over the amount of bits (see above). The scale table can be calculated using * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2 * Multiply 10^6 and round to get the values listed below. */ static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { { .name = "BMA222", .chip_id = 0x03, .channels = bma222e_accel_channels, .num_channels = ARRAY_SIZE(bma222e_accel_channels), .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, {306458, BMC150_ACCEL_DEF_RANGE_4G}, {612916, BMC150_ACCEL_DEF_RANGE_8G}, {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA222E", .chip_id = 0xF8, .channels = bma222e_accel_channels, .num_channels = ARRAY_SIZE(bma222e_accel_channels), .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, {306458, BMC150_ACCEL_DEF_RANGE_4G}, {612916, BMC150_ACCEL_DEF_RANGE_8G}, {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA250E", .chip_id = 0xF9, .channels = bma250e_accel_channels, .num_channels = ARRAY_SIZE(bma250e_accel_channels), .scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G}, {76614, BMC150_ACCEL_DEF_RANGE_4G}, {153229, BMC150_ACCEL_DEF_RANGE_8G}, {306458, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055", .chip_id = 0xFA, .channels = bmc150_accel_channels, .num_channels = ARRAY_SIZE(bmc150_accel_channels), .scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G}, {19154, BMC150_ACCEL_DEF_RANGE_4G}, {38307, BMC150_ACCEL_DEF_RANGE_8G}, {76614, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA280", .chip_id = 0xFB, .channels = bma280_accel_channels, .num_channels = ARRAY_SIZE(bma280_accel_channels), .scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G}, {4788, BMC150_ACCEL_DEF_RANGE_4G}, {9577, BMC150_ACCEL_DEF_RANGE_8G}, {19154, BMC150_ACCEL_DEF_RANGE_16G} }, }, }; static const struct iio_info bmc150_accel_info = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, }; static const struct iio_info bmc150_accel_info_fifo = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, .validate_trigger = bmc150_accel_validate_trigger, .hwfifo_set_watermark = bmc150_accel_set_watermark, .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, }; static const unsigned long bmc150_accel_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0}; static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L, data->buffer, AXIS_MAX * 2); mutex_unlock(&data->mutex); if (ret < 0) goto err_read; iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, pf->timestamp); err_read: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void bmc150_accel_trig_reen(struct iio_trigger *trig) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; struct device *dev = regmap_get_device(data->regmap); int ret; /* new data interrupts don't need ack */ if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) return; mutex_lock(&data->mutex); /* clear any latched interrupt */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); mutex_unlock(&data->mutex); if (ret < 0) dev_err(dev, "Error writing reg_int_rst_latch\n"); } static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, bool state) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; int ret; mutex_lock(&data->mutex); if (t->enabled == state) { mutex_unlock(&data->mutex); return 0; } if (t->setup) { ret = t->setup(t, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } } ret = bmc150_accel_set_interrupt(data, t->intr, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } t->enabled = state; mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops bmc150_accel_trigger_ops = { .set_trigger_state = bmc150_accel_trigger_set_state, .reenable = bmc150_accel_trig_reen, }; static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int dir; int ret; unsigned int val; ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val); if (ret < 0) { dev_err(dev, "Error reading reg_int_status_2\n"); return ret; } if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) dir = IIO_EV_DIR_FALLING; else dir = IIO_EV_DIR_RISING; if (val & BMC150_ACCEL_ANY_MOTION_BIT_X) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_ROC, dir), data->timestamp); if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_ROC, dir), data->timestamp); if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_ROC, dir), data->timestamp); return ret; } static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); bool ack = false; int ret; mutex_lock(&data->mutex); if (data->fifo_mode) { ret = __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, true); if (ret > 0) ack = true; } if (data->ev_enable_state) { ret = bmc150_accel_handle_roc_event(indio_dev); if (ret > 0) ack = true; } if (ack) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret) dev_err(dev, "Error writing reg_int_rst_latch\n"); ret = IRQ_HANDLED; } else { ret = IRQ_NONE; } mutex_unlock(&data->mutex); return ret; } static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); bool ack = false; int i; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(indio_dev); for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].enabled) { iio_trigger_poll(data->triggers[i].indio_trig); ack = true; break; } } if (data->ev_enable_state || data->fifo_mode) return IRQ_WAKE_THREAD; if (ack) return IRQ_HANDLED; return IRQ_NONE; } static const struct { int intr; const char *name; int (*setup)(struct bmc150_accel_trigger *t, bool state); } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { { .intr = 0, .name = "%s-dev%d", }, { .intr = 1, .name = "%s-any-motion-dev%d", .setup = bmc150_accel_any_motion_setup, }, }; static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, int from) { int i; for (i = from; i >= 0; i--) { if (data->triggers[i].indio_trig) { iio_trigger_unregister(data->triggers[i].indio_trig); data->triggers[i].indio_trig = NULL; } } } static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int i, ret; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { struct bmc150_accel_trigger *t = &data->triggers[i]; t->indio_trig = devm_iio_trigger_alloc(dev, bmc150_accel_triggers[i].name, indio_dev->name, iio_device_id(indio_dev)); if (!t->indio_trig) { ret = -ENOMEM; break; } t->indio_trig->ops = &bmc150_accel_trigger_ops; t->intr = bmc150_accel_triggers[i].intr; t->data = data; t->setup = bmc150_accel_triggers[i].setup; iio_trigger_set_drvdata(t->indio_trig, t); ret = iio_trigger_register(t->indio_trig); if (ret) break; } if (ret) bmc150_accel_unregister_triggers(data, i - 1); return ret; } #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; int ret; ret = regmap_write(data->regmap, reg, data->fifo_mode); if (ret < 0) { dev_err(dev, "Error writing reg_fifo_config1\n"); return ret; } if (!data->fifo_mode) return 0; ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0, data->watermark); if (ret < 0) dev_err(dev, "Error writing reg_fifo_config0\n"); return ret; } static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); return bmc150_accel_set_power_state(data, true); } static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret = 0; if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) return 0; mutex_lock(&data->mutex); if (!data->watermark) goto out; ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, true); if (ret) goto out; data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; ret = bmc150_accel_fifo_set_mode(data); if (ret) { data->fifo_mode = 0; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); } out: mutex_unlock(&data->mutex); return ret; } static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) return 0; mutex_lock(&data->mutex); if (!data->fifo_mode) goto out; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); data->fifo_mode = 0; bmc150_accel_fifo_set_mode(data); out: mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); return bmc150_accel_set_power_state(data, false); } static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { .preenable = bmc150_accel_buffer_preenable, .postenable = bmc150_accel_buffer_postenable, .predisable = bmc150_accel_buffer_predisable, .postdisable = bmc150_accel_buffer_postdisable, }; static int bmc150_accel_chip_init(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret, i; unsigned int val; /* * Reset chip to get it in a known good state. A delay of 1.8ms after * reset is required according to the data sheets of supported chips. */ regmap_write(data->regmap, BMC150_ACCEL_REG_RESET, BMC150_ACCEL_RESET_VAL); usleep_range(1800, 2500); ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val); if (ret < 0) { dev_err(dev, "Error: Reading chip id\n"); return ret; } dev_dbg(dev, "Chip Id %x\n", val); for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) { if (bmc150_accel_chip_info_tbl[i].chip_id == val) { data->chip_info = &bmc150_accel_chip_info_tbl[i]; break; } } if (!data->chip_info) { dev_err(dev, "Invalid chip %x\n", val); return -ENODEV; } ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; /* Set Bandwidth */ ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); if (ret < 0) return ret; /* Set Default Range */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, BMC150_ACCEL_DEF_RANGE_4G); if (ret < 0) { dev_err(dev, "Error writing reg_pmu_range\n"); return ret; } data->range = BMC150_ACCEL_DEF_RANGE_4G; /* Set default slope duration and thresholds */ data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; ret = bmc150_accel_update_slope(data); if (ret < 0) return ret; /* Set default as latched interrupts */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, enum bmc150_type type, const char *name, bool block_supported) { const struct iio_dev_attr **fifo_attrs; struct bmc150_accel_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; data->type = type; if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) { ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; } /* * VDD is the analog and digital domain voltage supply * VDDIO is the digital I/O voltage supply */ data->regulators[0].supply = "vdd"; data->regulators[1].supply = "vddio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators), data->regulators); if (ret) return dev_err_probe(dev, ret, "failed to get regulators\n"); ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), data->regulators); if (ret) { dev_err(dev, "failed to enable regulators: %d\n", ret); return ret; } /* * 2ms or 3ms power-on time according to datasheets, let's better * be safe than sorry and set this delay to 5ms. */ msleep(5); ret = bmc150_accel_chip_init(data); if (ret < 0) goto err_disable_regulators; mutex_init(&data->mutex); indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = name ? name : data->chip_info->name; indio_dev->available_scan_masks = bmc150_accel_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmc150_accel_info; if (block_supported) { indio_dev->modes |= INDIO_BUFFER_SOFTWARE; indio_dev->info = &bmc150_accel_info_fifo; fifo_attrs = bmc150_accel_fifo_attributes; } else { fifo_attrs = NULL; } ret = iio_triggered_buffer_setup_ext(indio_dev, &iio_pollfunc_store_time, bmc150_accel_trigger_handler, IIO_BUFFER_DIRECTION_IN, &bmc150_accel_buffer_ops, fifo_attrs); if (ret < 0) { dev_err(dev, "Failed: iio triggered buffer setup\n"); goto err_disable_regulators; } if (irq > 0) { ret = devm_request_threaded_irq(dev, irq, bmc150_accel_irq_handler, bmc150_accel_irq_thread_handler, IRQF_TRIGGER_RISING, BMC150_ACCEL_IRQ_NAME, indio_dev); if (ret) goto err_buffer_cleanup; /* * Set latched mode interrupt. While certain interrupts are * non-latched regardless of this settings (e.g. new data) we * want to use latch mode when we can to prevent interrupt * flooding. */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(dev, "Error writing reg_int_rst_latch\n"); goto err_buffer_cleanup; } bmc150_accel_interrupts_setup(indio_dev, data, irq); ret = bmc150_accel_triggers_setup(indio_dev, data); if (ret) goto err_buffer_cleanup; } ret = pm_runtime_set_active(dev); if (ret) goto err_trigger_unregister; pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(dev, "Unable to register iio device\n"); goto err_pm_cleanup; } return 0; err_pm_cleanup: pm_runtime_dont_use_autosuspend(dev); pm_runtime_disable(dev); err_trigger_unregister: bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_disable_regulators: regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); return ret; } EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, "IIO_BMC150"); void bmc150_accel_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); iio_triggered_buffer_cleanup(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); mutex_unlock(&data->mutex); regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); } EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, "IIO_BMC150"); #ifdef CONFIG_PM_SLEEP static int bmc150_accel_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); bmc150_accel_fifo_set_mode(data); mutex_unlock(&data->mutex); if (data->resume_callback) data->resume_callback(dev); return 0; } #endif #ifdef CONFIG_PM static int bmc150_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); if (ret < 0) return -EAGAIN; return 0; } static int bmc150_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; int sleep_val; ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; ret = bmc150_accel_fifo_set_mode(data); if (ret < 0) return ret; sleep_val = bmc150_accel_get_startup_times(data); if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); return 0; } #endif const struct dev_pm_ops bmc150_accel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, bmc150_accel_runtime_resume, NULL) }; EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, "IIO_BMC150"); MODULE_AUTHOR("Srinivas Pandruvada "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 accelerometer driver");