// SPDX-License-Identifier: GPL-2.0-only /* * TWL6030 GPADC module driver * * Copyright (C) 2009-2013 Texas Instruments Inc. * Nishant Kamat * Balaji T K * Graeme Gregory * Girish S Ghongdemath * Ambresh K * Oleksandr Kozaruk */ #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "twl6030_gpadc" /* * twl6030 per TRM has 17 channels, and twl6032 has 19 channels * 2 test network channels are not used, * 2 die temperature channels are not used either, as it is not * defined how to convert ADC value to temperature */ #define TWL6030_GPADC_USED_CHANNELS 13 #define TWL6030_GPADC_MAX_CHANNELS 15 #define TWL6032_GPADC_USED_CHANNELS 15 #define TWL6032_GPADC_MAX_CHANNELS 19 #define TWL6030_GPADC_NUM_TRIM_REGS 16 #define TWL6030_GPADC_CTRL_P1 0x05 #define TWL6032_GPADC_GPSELECT_ISB 0x07 #define TWL6032_GPADC_CTRL_P1 0x08 #define TWL6032_GPADC_GPCH0_LSB 0x0d #define TWL6032_GPADC_GPCH0_MSB 0x0e #define TWL6030_GPADC_CTRL_P1_SP1 BIT(3) #define TWL6030_GPADC_GPCH0_LSB (0x29) #define TWL6030_GPADC_RT_SW1_EOC_MASK BIT(5) #define TWL6030_GPADC_TRIM1 0xCD #define TWL6030_REG_TOGGLE1 0x90 #define TWL6030_GPADCS BIT(1) #define TWL6030_GPADCR BIT(0) #define USB_VBUS_CTRL_SET 0x04 #define USB_ID_CTRL_SET 0x06 #define TWL6030_MISC1 0xE4 #define VBUS_MEAS 0x01 #define ID_MEAS 0x01 #define VAC_MEAS 0x04 #define VBAT_MEAS 0x02 #define BB_MEAS 0x01 /** * struct twl6030_chnl_calib - channel calibration * @gain: slope coefficient for ideal curve * @gain_error: gain error * @offset_error: offset of the real curve */ struct twl6030_chnl_calib { s32 gain; s32 gain_error; s32 offset_error; }; /** * struct twl6030_ideal_code - GPADC calibration parameters * GPADC is calibrated in two points: close to the beginning and * to the and of the measurable input range * * @channel: channel number * @code1: ideal code for the input at the beginning * @code2: ideal code for at the end of the range * @volt1: voltage input at the beginning(low voltage) * @volt2: voltage input at the end(high voltage) */ struct twl6030_ideal_code { int channel; u16 code1; u16 code2; u16 volt1; u16 volt2; }; struct twl6030_gpadc_data; /** * struct twl6030_gpadc_platform_data - platform specific data * @nchannels: number of GPADC channels * @iio_channels: iio channels * @ideal: pointer to calibration parameters * @start_conversion: pointer to ADC start conversion function * @channel_to_reg: pointer to ADC function to convert channel to * register address for reading conversion result * @calibrate: pointer to calibration function */ struct twl6030_gpadc_platform_data { const int nchannels; const struct iio_chan_spec *iio_channels; const struct twl6030_ideal_code *ideal; int (*start_conversion)(int channel); u8 (*channel_to_reg)(int channel); int (*calibrate)(struct twl6030_gpadc_data *gpadc); }; /** * struct twl6030_gpadc_data - GPADC data * @dev: device pointer * @lock: mutual exclusion lock for the structure * @irq_complete: completion to signal end of conversion * @twl6030_cal_tbl: pointer to calibration data for each * channel with gain error and offset * @pdata: pointer to device specific data */ struct twl6030_gpadc_data { struct device *dev; struct mutex lock; struct completion irq_complete; struct twl6030_chnl_calib *twl6030_cal_tbl; const struct twl6030_gpadc_platform_data *pdata; }; /* * channels 11, 12, 13, 15 and 16 have no calibration data * calibration offset is same for channels 1, 3, 4, 5 * * The data is taken from GPADC_TRIM registers description. * GPADC_TRIM registers keep difference between the code measured * at volt1 and volt2 input voltages and corresponding code1 and code2 */ static const struct twl6030_ideal_code twl6030_ideal[TWL6030_GPADC_USED_CHANNELS] = { [0] = { /* ch 0, external, battery type, resistor value */ .channel = 0, .code1 = 116, .code2 = 745, .volt1 = 141, .volt2 = 910, }, [1] = { /* ch 1, external, battery temperature, NTC resistor value */ .channel = 1, .code1 = 82, .code2 = 900, .volt1 = 100, .volt2 = 1100, }, [2] = { /* ch 2, external, audio accessory/general purpose */ .channel = 2, .code1 = 55, .code2 = 818, .volt1 = 101, .volt2 = 1499, }, [3] = { /* ch 3, external, general purpose */ .channel = 3, .code1 = 82, .code2 = 900, .volt1 = 100, .volt2 = 1100, }, [4] = { /* ch 4, external, temperature measurement/general purpose */ .channel = 4, .code1 = 82, .code2 = 900, .volt1 = 100, .volt2 = 1100, }, [5] = { /* ch 5, external, general purpose */ .channel = 5, .code1 = 82, .code2 = 900, .volt1 = 100, .volt2 = 1100, }, [6] = { /* ch 6, external, general purpose */ .channel = 6, .code1 = 82, .code2 = 900, .volt1 = 100, .volt2 = 1100, }, [7] = { /* ch 7, internal, main battery */ .channel = 7, .code1 = 614, .code2 = 941, .volt1 = 3001, .volt2 = 4599, }, [8] = { /* ch 8, internal, backup battery */ .channel = 8, .code1 = 82, .code2 = 688, .volt1 = 501, .volt2 = 4203, }, [9] = { /* ch 9, internal, external charger input */ .channel = 9, .code1 = 182, .code2 = 818, .volt1 = 2001, .volt2 = 8996, }, [10] = { /* ch 10, internal, VBUS */ .channel = 10, .code1 = 149, .code2 = 818, .volt1 = 1001, .volt2 = 5497, }, [11] = { /* ch 11, internal, VBUS charging current */ .channel = 11, }, /* ch 12, internal, Die temperature */ /* ch 13, internal, Die temperature */ [12] = { /* ch 14, internal, USB ID line */ .channel = 14, .code1 = 48, .code2 = 714, .volt1 = 323, .volt2 = 4800, }, }; static const struct twl6030_ideal_code twl6032_ideal[TWL6032_GPADC_USED_CHANNELS] = { [0] = { /* ch 0, external, battery type, resistor value */ .channel = 0, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [1] = { /* ch 1, external, battery temperature, NTC resistor value */ .channel = 1, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [2] = { /* ch 2, external, audio accessory/general purpose */ .channel = 2, .code1 = 1441, .code2 = 3276, .volt1 = 660, .volt2 = 1500, }, [3] = { /* ch 3, external, temperature with external diode/general purpose */ .channel = 3, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [4] = { /* ch 4, external, temperature measurement/general purpose */ .channel = 4, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [5] = { /* ch 5, external, general purpose */ .channel = 5, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [6] = { /* ch 6, external, general purpose */ .channel = 6, .code1 = 1441, .code2 = 3276, .volt1 = 440, .volt2 = 1000, }, [7] = { /* ch7, internal, system supply */ .channel = 7, .code1 = 1441, .code2 = 3276, .volt1 = 2200, .volt2 = 5000, }, [8] = { /* ch8, internal, backup battery */ .channel = 8, .code1 = 1441, .code2 = 3276, .volt1 = 2200, .volt2 = 5000, }, [9] = { /* ch 9, internal, external charger input */ .channel = 9, .code1 = 1441, .code2 = 3276, .volt1 = 3960, .volt2 = 9000, }, [10] = { /* ch10, internal, VBUS */ .channel = 10, .code1 = 150, .code2 = 751, .volt1 = 1000, .volt2 = 5000, }, [11] = { /* ch 11, internal, VBUS DC-DC output current */ .channel = 11, .code1 = 1441, .code2 = 3276, .volt1 = 660, .volt2 = 1500, }, /* ch 12, internal, Die temperature */ /* ch 13, internal, Die temperature */ [12] = { /* ch 14, internal, USB ID line */ .channel = 14, .code1 = 1441, .code2 = 3276, .volt1 = 2420, .volt2 = 5500, }, /* ch 15, internal, test network */ /* ch 16, internal, test network */ [13] = { /* ch 17, internal, battery charging current */ .channel = 17, }, [14] = { /* ch 18, internal, battery voltage */ .channel = 18, .code1 = 1441, .code2 = 3276, .volt1 = 2200, .volt2 = 5000, }, }; static inline int twl6030_gpadc_write(u8 reg, u8 val) { return twl_i2c_write_u8(TWL6030_MODULE_GPADC, val, reg); } static inline int twl6030_gpadc_read(u8 reg, u8 *val) { return twl_i2c_read(TWL6030_MODULE_GPADC, val, reg, 2); } static int twl6030_gpadc_enable_irq(u8 mask) { int ret; ret = twl6030_interrupt_unmask(mask, REG_INT_MSK_LINE_B); if (ret < 0) return ret; ret = twl6030_interrupt_unmask(mask, REG_INT_MSK_STS_B); return ret; } static void twl6030_gpadc_disable_irq(u8 mask) { twl6030_interrupt_mask(mask, REG_INT_MSK_LINE_B); twl6030_interrupt_mask(mask, REG_INT_MSK_STS_B); } static irqreturn_t twl6030_gpadc_irq_handler(int irq, void *indio_dev) { struct twl6030_gpadc_data *gpadc = iio_priv(indio_dev); complete(&gpadc->irq_complete); return IRQ_HANDLED; } static int twl6030_start_conversion(int channel) { return twl6030_gpadc_write(TWL6030_GPADC_CTRL_P1, TWL6030_GPADC_CTRL_P1_SP1); } static int twl6032_start_conversion(int channel) { int ret; ret = twl6030_gpadc_write(TWL6032_GPADC_GPSELECT_ISB, channel); if (ret) return ret; return twl6030_gpadc_write(TWL6032_GPADC_CTRL_P1, TWL6030_GPADC_CTRL_P1_SP1); } static u8 twl6030_channel_to_reg(int channel) { return TWL6030_GPADC_GPCH0_LSB + 2 * channel; } static u8 twl6032_channel_to_reg(int channel) { /* * for any prior chosen channel, when the conversion is ready * the result is avalable in GPCH0_LSB, GPCH0_MSB. */ return TWL6032_GPADC_GPCH0_LSB; } static int twl6030_gpadc_lookup(const struct twl6030_ideal_code *ideal, int channel, int size) { int i; for (i = 0; i < size; i++) if (ideal[i].channel == channel) break; return i; } static int twl6030_channel_calibrated(const struct twl6030_gpadc_platform_data *pdata, int channel) { const struct twl6030_ideal_code *ideal = pdata->ideal; int i; i = twl6030_gpadc_lookup(ideal, channel, pdata->nchannels); /* not calibrated channels have 0 in all structure members */ return pdata->ideal[i].code2; } static int twl6030_gpadc_make_correction(struct twl6030_gpadc_data *gpadc, int channel, int raw_code) { const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal; int corrected_code; int i; i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels); corrected_code = ((raw_code * 1000) - gpadc->twl6030_cal_tbl[i].offset_error) / gpadc->twl6030_cal_tbl[i].gain_error; return corrected_code; } static int twl6030_gpadc_get_raw(struct twl6030_gpadc_data *gpadc, int channel, int *res) { u8 reg = gpadc->pdata->channel_to_reg(channel); __le16 val; int raw_code; int ret; ret = twl6030_gpadc_read(reg, (u8 *)&val); if (ret) { dev_dbg(gpadc->dev, "unable to read register 0x%X\n", reg); return ret; } raw_code = le16_to_cpu(val); dev_dbg(gpadc->dev, "GPADC raw code: %d", raw_code); if (twl6030_channel_calibrated(gpadc->pdata, channel)) *res = twl6030_gpadc_make_correction(gpadc, channel, raw_code); else *res = raw_code; return ret; } static int twl6030_gpadc_get_processed(struct twl6030_gpadc_data *gpadc, int channel, int *val) { const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal; int corrected_code; int channel_value; int i; int ret; ret = twl6030_gpadc_get_raw(gpadc, channel, &corrected_code); if (ret) return ret; i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels); channel_value = corrected_code * gpadc->twl6030_cal_tbl[i].gain; /* Shift back into mV range */ channel_value /= 1000; dev_dbg(gpadc->dev, "GPADC corrected code: %d", corrected_code); dev_dbg(gpadc->dev, "GPADC value: %d", channel_value); *val = channel_value; return ret; } static int twl6030_gpadc_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long mask) { struct twl6030_gpadc_data *gpadc = iio_priv(indio_dev); int ret; long time_left; mutex_lock(&gpadc->lock); ret = gpadc->pdata->start_conversion(chan->channel); if (ret) { dev_err(gpadc->dev, "failed to start conversion\n"); goto err; } /* wait for conversion to complete */ time_left = wait_for_completion_interruptible_timeout( &gpadc->irq_complete, msecs_to_jiffies(5000)); if (time_left == 0) { ret = -ETIMEDOUT; goto err; } else if (time_left < 0) { ret = -EINTR; goto err; } switch (mask) { case IIO_CHAN_INFO_RAW: ret = twl6030_gpadc_get_raw(gpadc, chan->channel, val); ret = ret ? -EIO : IIO_VAL_INT; break; case IIO_CHAN_INFO_PROCESSED: ret = twl6030_gpadc_get_processed(gpadc, chan->channel, val); ret = ret ? -EIO : IIO_VAL_INT; break; default: break; } err: mutex_unlock(&gpadc->lock); return ret; } /* * The GPADC channels are calibrated using a two point calibration method. * The channels measured with two known values: volt1 and volt2, and * ideal corresponding output codes are known: code1, code2. * The difference(d1, d2) between ideal and measured codes stored in trim * registers. * The goal is to find offset and gain of the real curve for each calibrated * channel. * gain: k = 1 + ((d2 - d1) / (x2 - x1)) * offset: b = d1 + (k - 1) * x1 */ static void twl6030_calibrate_channel(struct twl6030_gpadc_data *gpadc, int channel, int d1, int d2) { int b, k, gain, x1, x2, i; const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal; i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels); /* Gain */ gain = ((ideal[i].volt2 - ideal[i].volt1) * 1000) / (ideal[i].code2 - ideal[i].code1); x1 = ideal[i].code1; x2 = ideal[i].code2; /* k - real curve gain */ k = 1000 + (((d2 - d1) * 1000) / (x2 - x1)); /* b - offset of the real curve gain */ b = (d1 * 1000) - (k - 1000) * x1; gpadc->twl6030_cal_tbl[i].gain = gain; gpadc->twl6030_cal_tbl[i].gain_error = k; gpadc->twl6030_cal_tbl[i].offset_error = b; dev_dbg(gpadc->dev, "GPADC d1 for Chn: %d = %d\n", channel, d1); dev_dbg(gpadc->dev, "GPADC d2 for Chn: %d = %d\n", channel, d2); dev_dbg(gpadc->dev, "GPADC x1 for Chn: %d = %d\n", channel, x1); dev_dbg(gpadc->dev, "GPADC x2 for Chn: %d = %d\n", channel, x2); dev_dbg(gpadc->dev, "GPADC Gain for Chn: %d = %d\n", channel, gain); dev_dbg(gpadc->dev, "GPADC k for Chn: %d = %d\n", channel, k); dev_dbg(gpadc->dev, "GPADC b for Chn: %d = %d\n", channel, b); } static inline int twl6030_gpadc_get_trim_offset(s8 d) { /* * XXX NOTE! * bit 0 - sign, bit 7 - reserved, 6..1 - trim value * though, the documentation states that trim value * is absolute value, the correct conversion results are * obtained if the value is interpreted as 2's complement. */ __u32 temp = ((d & 0x7f) >> 1) | ((d & 1) << 6); return sign_extend32(temp, 6); } static int twl6030_calibration(struct twl6030_gpadc_data *gpadc) { int ret; int chn; u8 trim_regs[TWL6030_GPADC_NUM_TRIM_REGS]; s8 d1, d2; /* * for calibration two measurements have been performed at * factory, for some channels, during the production test and * have been stored in registers. This two stored values are * used to correct the measurements. The values represent * offsets for the given input from the output on ideal curve. */ ret = twl_i2c_read(TWL6030_MODULE_ID2, trim_regs, TWL6030_GPADC_TRIM1, TWL6030_GPADC_NUM_TRIM_REGS); if (ret < 0) { dev_err(gpadc->dev, "calibration failed\n"); return ret; } for (chn = 0; chn < TWL6030_GPADC_MAX_CHANNELS; chn++) { switch (chn) { case 0: d1 = trim_regs[0]; d2 = trim_regs[1]; break; case 1: case 3: case 4: case 5: case 6: d1 = trim_regs[4]; d2 = trim_regs[5]; break; case 2: d1 = trim_regs[12]; d2 = trim_regs[13]; break; case 7: d1 = trim_regs[6]; d2 = trim_regs[7]; break; case 8: d1 = trim_regs[2]; d2 = trim_regs[3]; break; case 9: d1 = trim_regs[8]; d2 = trim_regs[9]; break; case 10: d1 = trim_regs[10]; d2 = trim_regs[11]; break; case 14: d1 = trim_regs[14]; d2 = trim_regs[15]; break; default: continue; } d1 = twl6030_gpadc_get_trim_offset(d1); d2 = twl6030_gpadc_get_trim_offset(d2); twl6030_calibrate_channel(gpadc, chn, d1, d2); } return 0; } static int twl6032_get_trim_value(u8 *trim_regs, unsigned int reg0, unsigned int reg1, unsigned int mask0, unsigned int mask1, unsigned int shift0) { int val; val = (trim_regs[reg0] & mask0) << shift0; val |= (trim_regs[reg1] & mask1) >> 1; if (trim_regs[reg1] & 0x01) val = -val; return val; } static int twl6032_calibration(struct twl6030_gpadc_data *gpadc) { int chn, d1 = 0, d2 = 0, temp; u8 trim_regs[TWL6030_GPADC_NUM_TRIM_REGS]; int ret; ret = twl_i2c_read(TWL6030_MODULE_ID2, trim_regs, TWL6030_GPADC_TRIM1, TWL6030_GPADC_NUM_TRIM_REGS); if (ret < 0) { dev_err(gpadc->dev, "calibration failed\n"); return ret; } /* * Loop to calculate the value needed for returning voltages from * GPADC not values. * * gain is calculated to 3 decimal places fixed point. */ for (chn = 0; chn < TWL6032_GPADC_MAX_CHANNELS; chn++) { switch (chn) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 11: case 14: d1 = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f, 0x06, 2); d2 = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f, 0x06, 2); break; case 8: temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f, 0x06, 2); d1 = temp + twl6032_get_trim_value(trim_regs, 7, 6, 0x18, 0x1E, 1); temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3F, 0x06, 2); d2 = temp + twl6032_get_trim_value(trim_regs, 9, 7, 0x1F, 0x06, 2); break; case 9: temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f, 0x06, 2); d1 = temp + twl6032_get_trim_value(trim_regs, 13, 11, 0x18, 0x1E, 1); temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f, 0x06, 2); d2 = temp + twl6032_get_trim_value(trim_regs, 15, 13, 0x1F, 0x06, 1); break; case 10: d1 = twl6032_get_trim_value(trim_regs, 10, 8, 0x0f, 0x0E, 3); d2 = twl6032_get_trim_value(trim_regs, 14, 12, 0x0f, 0x0E, 3); break; case 7: case 18: temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f, 0x06, 2); d1 = (trim_regs[4] & 0x7E) >> 1; if (trim_regs[4] & 0x01) d1 = -d1; d1 += temp; temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f, 0x06, 2); d2 = (trim_regs[5] & 0xFE) >> 1; if (trim_regs[5] & 0x01) d2 = -d2; d2 += temp; break; default: /* No data for other channels */ continue; } twl6030_calibrate_channel(gpadc, chn, d1, d2); } return 0; } #define TWL6030_GPADC_CHAN(chn, _type, chan_info) { \ .type = _type, \ .channel = chn, \ .info_mask_separate = BIT(chan_info), \ .indexed = 1, \ } static const struct iio_chan_spec twl6030_gpadc_iio_channels[] = { TWL6030_GPADC_CHAN(0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(1, IIO_TEMP, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(3, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(4, IIO_TEMP, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(11, IIO_VOLTAGE, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), }; static const struct iio_chan_spec twl6032_gpadc_iio_channels[] = { TWL6030_GPADC_CHAN(0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(1, IIO_TEMP, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(3, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(4, IIO_TEMP, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(11, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), TWL6030_GPADC_CHAN(17, IIO_VOLTAGE, IIO_CHAN_INFO_RAW), TWL6030_GPADC_CHAN(18, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), }; static const struct iio_info twl6030_gpadc_iio_info = { .read_raw = &twl6030_gpadc_read_raw, }; static const struct twl6030_gpadc_platform_data twl6030_pdata = { .iio_channels = twl6030_gpadc_iio_channels, .nchannels = TWL6030_GPADC_USED_CHANNELS, .ideal = twl6030_ideal, .start_conversion = twl6030_start_conversion, .channel_to_reg = twl6030_channel_to_reg, .calibrate = twl6030_calibration, }; static const struct twl6030_gpadc_platform_data twl6032_pdata = { .iio_channels = twl6032_gpadc_iio_channels, .nchannels = TWL6032_GPADC_USED_CHANNELS, .ideal = twl6032_ideal, .start_conversion = twl6032_start_conversion, .channel_to_reg = twl6032_channel_to_reg, .calibrate = twl6032_calibration, }; static const struct of_device_id of_twl6030_match_tbl[] = { { .compatible = "ti,twl6030-gpadc", .data = &twl6030_pdata, }, { .compatible = "ti,twl6032-gpadc", .data = &twl6032_pdata, }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_twl6030_match_tbl); static int twl6030_gpadc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct twl6030_gpadc_data *gpadc; const struct twl6030_gpadc_platform_data *pdata; struct iio_dev *indio_dev; int irq; int ret; pdata = device_get_match_data(&pdev->dev); if (!pdata) return -EINVAL; indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc)); if (!indio_dev) return -ENOMEM; gpadc = iio_priv(indio_dev); gpadc->twl6030_cal_tbl = devm_kcalloc(dev, pdata->nchannels, sizeof(*gpadc->twl6030_cal_tbl), GFP_KERNEL); if (!gpadc->twl6030_cal_tbl) return -ENOMEM; gpadc->dev = dev; gpadc->pdata = pdata; platform_set_drvdata(pdev, indio_dev); mutex_init(&gpadc->lock); init_completion(&gpadc->irq_complete); ret = pdata->calibrate(gpadc); if (ret < 0) { dev_err(dev, "failed to read calibration registers\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(dev, irq, NULL, twl6030_gpadc_irq_handler, IRQF_ONESHOT, "twl6030_gpadc", indio_dev); if (ret) return ret; ret = twl6030_gpadc_enable_irq(TWL6030_GPADC_RT_SW1_EOC_MASK); if (ret < 0) { dev_err(dev, "failed to enable GPADC interrupt\n"); return ret; } ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCS, TWL6030_REG_TOGGLE1); if (ret < 0) { dev_err(dev, "failed to enable GPADC module\n"); return ret; } ret = twl_i2c_write_u8(TWL_MODULE_USB, VBUS_MEAS, USB_VBUS_CTRL_SET); if (ret < 0) { dev_err(dev, "failed to wire up inputs\n"); return ret; } ret = twl_i2c_write_u8(TWL_MODULE_USB, ID_MEAS, USB_ID_CTRL_SET); if (ret < 0) { dev_err(dev, "failed to wire up inputs\n"); return ret; } ret = twl_i2c_write_u8(TWL6030_MODULE_ID0, VBAT_MEAS | BB_MEAS | VAC_MEAS, TWL6030_MISC1); if (ret < 0) { dev_err(dev, "failed to wire up inputs\n"); return ret; } indio_dev->name = DRIVER_NAME; indio_dev->info = &twl6030_gpadc_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = pdata->iio_channels; indio_dev->num_channels = pdata->nchannels; return iio_device_register(indio_dev); } static void twl6030_gpadc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); twl6030_gpadc_disable_irq(TWL6030_GPADC_RT_SW1_EOC_MASK); iio_device_unregister(indio_dev); } static int twl6030_gpadc_suspend(struct device *pdev) { int ret; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCR, TWL6030_REG_TOGGLE1); if (ret) dev_err(pdev, "error resetting GPADC (%d)!\n", ret); return 0; }; static int twl6030_gpadc_resume(struct device *pdev) { int ret; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCS, TWL6030_REG_TOGGLE1); if (ret) dev_err(pdev, "error setting GPADC (%d)!\n", ret); return 0; }; static DEFINE_SIMPLE_DEV_PM_OPS(twl6030_gpadc_pm_ops, twl6030_gpadc_suspend, twl6030_gpadc_resume); static struct platform_driver twl6030_gpadc_driver = { .probe = twl6030_gpadc_probe, .remove = twl6030_gpadc_remove, .driver = { .name = DRIVER_NAME, .pm = pm_sleep_ptr(&twl6030_gpadc_pm_ops), .of_match_table = of_twl6030_match_tbl, }, }; module_platform_driver(twl6030_gpadc_driver); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Balaji T K "); MODULE_AUTHOR("Graeme Gregory "); MODULE_AUTHOR("Oleksandr Kozaruk