// SPDX-License-Identifier: GPL-2.0+ /* * adux1020.c - Support for Analog Devices ADUX1020 photometric sensor * * Copyright (C) 2019 Linaro Ltd. * Author: Manivannan Sadhasivam * * TODO: Triggered buffer support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADUX1020_REGMAP_NAME "adux1020_regmap" #define ADUX1020_DRV_NAME "adux1020" /* System registers */ #define ADUX1020_REG_CHIP_ID 0x08 #define ADUX1020_REG_SLAVE_ADDRESS 0x09 #define ADUX1020_REG_SW_RESET 0x0f #define ADUX1020_REG_INT_ENABLE 0x1c #define ADUX1020_REG_INT_POLARITY 0x1d #define ADUX1020_REG_PROX_TH_ON1 0x2a #define ADUX1020_REG_PROX_TH_OFF1 0x2b #define ADUX1020_REG_PROX_TYPE 0x2f #define ADUX1020_REG_TEST_MODES_3 0x32 #define ADUX1020_REG_FORCE_MODE 0x33 #define ADUX1020_REG_FREQUENCY 0x40 #define ADUX1020_REG_LED_CURRENT 0x41 #define ADUX1020_REG_OP_MODE 0x45 #define ADUX1020_REG_INT_MASK 0x48 #define ADUX1020_REG_INT_STATUS 0x49 #define ADUX1020_REG_DATA_BUFFER 0x60 /* Chip ID bits */ #define ADUX1020_CHIP_ID_MASK GENMASK(11, 0) #define ADUX1020_CHIP_ID 0x03fc #define ADUX1020_SW_RESET BIT(1) #define ADUX1020_FIFO_FLUSH BIT(15) #define ADUX1020_OP_MODE_MASK GENMASK(3, 0) #define ADUX1020_DATA_OUT_MODE_MASK GENMASK(7, 4) #define ADUX1020_DATA_OUT_PROX_I FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1) #define ADUX1020_MODE_INT_MASK GENMASK(7, 0) #define ADUX1020_INT_ENABLE 0x2094 #define ADUX1020_INT_DISABLE 0x2090 #define ADUX1020_PROX_INT_ENABLE 0x00f0 #define ADUX1020_PROX_ON1_INT BIT(0) #define ADUX1020_PROX_OFF1_INT BIT(1) #define ADUX1020_FIFO_INT_ENABLE 0x7f #define ADUX1020_MODE_INT_DISABLE 0xff #define ADUX1020_MODE_INT_STATUS_MASK GENMASK(7, 0) #define ADUX1020_FIFO_STATUS_MASK GENMASK(15, 8) #define ADUX1020_INT_CLEAR 0xff #define ADUX1020_PROX_TYPE BIT(15) #define ADUX1020_INT_PROX_ON1 BIT(0) #define ADUX1020_INT_PROX_OFF1 BIT(1) #define ADUX1020_FORCE_CLOCK_ON 0x0f4f #define ADUX1020_FORCE_CLOCK_RESET 0x0040 #define ADUX1020_ACTIVE_4_STATE 0x0008 #define ADUX1020_PROX_FREQ_MASK GENMASK(7, 4) #define ADUX1020_PROX_FREQ(x) FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x) #define ADUX1020_LED_CURRENT_MASK GENMASK(3, 0) #define ADUX1020_LED_PIREF_EN BIT(12) /* Operating modes */ enum adux1020_op_modes { ADUX1020_MODE_STANDBY, ADUX1020_MODE_PROX_I, ADUX1020_MODE_PROX_XY, ADUX1020_MODE_GEST, ADUX1020_MODE_SAMPLE, ADUX1020_MODE_FORCE = 0x0e, ADUX1020_MODE_IDLE = 0x0f, }; struct adux1020_data { struct i2c_client *client; struct iio_dev *indio_dev; struct mutex lock; struct regmap *regmap; }; struct adux1020_mode_data { u8 bytes; u8 buf_len; u16 int_en; }; static const struct adux1020_mode_data adux1020_modes[] = { [ADUX1020_MODE_PROX_I] = { .bytes = 2, .buf_len = 1, .int_en = ADUX1020_PROX_INT_ENABLE, }, }; static const struct regmap_config adux1020_regmap_config = { .name = ADUX1020_REGMAP_NAME, .reg_bits = 8, .val_bits = 16, .max_register = 0x6F, .cache_type = REGCACHE_NONE, }; static const struct reg_sequence adux1020_def_conf[] = { { 0x000c, 0x000f }, { 0x0010, 0x1010 }, { 0x0011, 0x004c }, { 0x0012, 0x5f0c }, { 0x0013, 0xada5 }, { 0x0014, 0x0080 }, { 0x0015, 0x0000 }, { 0x0016, 0x0600 }, { 0x0017, 0x0000 }, { 0x0018, 0x2693 }, { 0x0019, 0x0004 }, { 0x001a, 0x4280 }, { 0x001b, 0x0060 }, { 0x001c, 0x2094 }, { 0x001d, 0x0020 }, { 0x001e, 0x0001 }, { 0x001f, 0x0100 }, { 0x0020, 0x0320 }, { 0x0021, 0x0A13 }, { 0x0022, 0x0320 }, { 0x0023, 0x0113 }, { 0x0024, 0x0000 }, { 0x0025, 0x2412 }, { 0x0026, 0x2412 }, { 0x0027, 0x0022 }, { 0x0028, 0x0000 }, { 0x0029, 0x0300 }, { 0x002a, 0x0700 }, { 0x002b, 0x0600 }, { 0x002c, 0x6000 }, { 0x002d, 0x4000 }, { 0x002e, 0x0000 }, { 0x002f, 0x0000 }, { 0x0030, 0x0000 }, { 0x0031, 0x0000 }, { 0x0032, 0x0040 }, { 0x0033, 0x0008 }, { 0x0034, 0xE400 }, { 0x0038, 0x8080 }, { 0x0039, 0x8080 }, { 0x003a, 0x2000 }, { 0x003b, 0x1f00 }, { 0x003c, 0x2000 }, { 0x003d, 0x2000 }, { 0x003e, 0x0000 }, { 0x0040, 0x8069 }, { 0x0041, 0x1f2f }, { 0x0042, 0x4000 }, { 0x0043, 0x0000 }, { 0x0044, 0x0008 }, { 0x0046, 0x0000 }, { 0x0048, 0x00ef }, { 0x0049, 0x0000 }, { 0x0045, 0x0000 }, }; static const int adux1020_rates[][2] = { { 0, 100000 }, { 0, 200000 }, { 0, 500000 }, { 1, 0 }, { 2, 0 }, { 5, 0 }, { 10, 0 }, { 20, 0 }, { 50, 0 }, { 100, 0 }, { 190, 0 }, { 450, 0 }, { 820, 0 }, { 1400, 0 }, }; static const int adux1020_led_currents[][2] = { { 0, 25000 }, { 0, 40000 }, { 0, 55000 }, { 0, 70000 }, { 0, 85000 }, { 0, 100000 }, { 0, 115000 }, { 0, 130000 }, { 0, 145000 }, { 0, 160000 }, { 0, 175000 }, { 0, 190000 }, { 0, 205000 }, { 0, 220000 }, { 0, 235000 }, { 0, 250000 }, }; static int adux1020_flush_fifo(struct adux1020_data *data) { int ret; /* Force Idle mode */ ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE, ADUX1020_ACTIVE_4_STATE); if (ret < 0) return ret; ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE); if (ret < 0) return ret; ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE); if (ret < 0) return ret; /* Flush FIFO */ ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, ADUX1020_FORCE_CLOCK_ON); if (ret < 0) return ret; ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS, ADUX1020_FIFO_FLUSH); if (ret < 0) return ret; return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, ADUX1020_FORCE_CLOCK_RESET); } static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len) { unsigned int regval; int i, ret; /* Enable 32MHz clock */ ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, ADUX1020_FORCE_CLOCK_ON); if (ret < 0) return ret; for (i = 0; i < buf_len; i++) { ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER, ®val); if (ret < 0) return ret; buf[i] = regval; } /* Set 32MHz clock to be controlled by internal state machine */ return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, ADUX1020_FORCE_CLOCK_RESET); } static int adux1020_set_mode(struct adux1020_data *data, enum adux1020_op_modes mode) { int ret; /* Switch to standby mode before changing the mode */ ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE, ADUX1020_MODE_STANDBY); if (ret < 0) return ret; /* Set data out and switch to the desired mode */ switch (mode) { case ADUX1020_MODE_PROX_I: ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, ADUX1020_DATA_OUT_MODE_MASK, ADUX1020_DATA_OUT_PROX_I); if (ret < 0) return ret; ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, ADUX1020_OP_MODE_MASK, ADUX1020_MODE_PROX_I); if (ret < 0) return ret; break; default: return -EINVAL; } return 0; } static int adux1020_measure(struct adux1020_data *data, enum adux1020_op_modes mode, u16 *val) { unsigned int status; int ret, tries = 50; /* Disable INT pin as polling is going to be used */ ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE, ADUX1020_INT_DISABLE); if (ret < 0) return ret; /* Enable mode interrupt */ ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, ADUX1020_MODE_INT_MASK, adux1020_modes[mode].int_en); if (ret < 0) return ret; while (tries--) { ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status); if (ret < 0) return ret; status &= ADUX1020_FIFO_STATUS_MASK; if (status >= adux1020_modes[mode].bytes) break; msleep(20); } if (tries < 0) return -EIO; ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len); if (ret < 0) return ret; /* Clear mode interrupt */ ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS, (~adux1020_modes[mode].int_en)); if (ret < 0) return ret; /* Disable mode interrupts */ return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE); } static int adux1020_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adux1020_data *data = iio_priv(indio_dev); u16 buf[3]; int ret = -EINVAL; unsigned int regval; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_PROXIMITY: ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I); if (ret < 0) goto fail; ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf); if (ret < 0) goto fail; *val = buf[0]; ret = IIO_VAL_INT; break; default: break; } break; case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_CURRENT: ret = regmap_read(data->regmap, ADUX1020_REG_LED_CURRENT, ®val); if (ret < 0) goto fail; regval = regval & ADUX1020_LED_CURRENT_MASK; *val = adux1020_led_currents[regval][0]; *val2 = adux1020_led_currents[regval][1]; ret = IIO_VAL_INT_PLUS_MICRO; break; default: break; } break; case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_PROXIMITY: ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY, ®val); if (ret < 0) goto fail; regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval); *val = adux1020_rates[regval][0]; *val2 = adux1020_rates[regval][1]; ret = IIO_VAL_INT_PLUS_MICRO; break; default: break; } break; default: break; } fail: mutex_unlock(&data->lock); return ret; }; static inline int adux1020_find_index(const int array[][2], int count, int val, int val2) { int i; for (i = 0; i < count; i++) if (val == array[i][0] && val2 == array[i][1]) return i; return -EINVAL; } static int adux1020_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adux1020_data *data = iio_priv(indio_dev); int i, ret = -EINVAL; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (chan->type == IIO_PROXIMITY) { i = adux1020_find_index(adux1020_rates, ARRAY_SIZE(adux1020_rates), val, val2); if (i < 0) { ret = i; goto fail; } ret = regmap_update_bits(data->regmap, ADUX1020_REG_FREQUENCY, ADUX1020_PROX_FREQ_MASK, ADUX1020_PROX_FREQ(i)); } break; case IIO_CHAN_INFO_PROCESSED: if (chan->type == IIO_CURRENT) { i = adux1020_find_index(adux1020_led_currents, ARRAY_SIZE(adux1020_led_currents), val, val2); if (i < 0) { ret = i; goto fail; } ret = regmap_update_bits(data->regmap, ADUX1020_REG_LED_CURRENT, ADUX1020_LED_CURRENT_MASK, i); } break; default: break; } fail: mutex_unlock(&data->lock); return ret; } static int adux1020_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { struct adux1020_data *data = iio_priv(indio_dev); int ret, mask; mutex_lock(&data->lock); ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE, ADUX1020_INT_ENABLE); if (ret < 0) goto fail; ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0); if (ret < 0) goto fail; switch (chan->type) { case IIO_PROXIMITY: if (dir == IIO_EV_DIR_RISING) mask = ADUX1020_PROX_ON1_INT; else mask = ADUX1020_PROX_OFF1_INT; if (state) ret = regmap_clear_bits(data->regmap, ADUX1020_REG_INT_MASK, mask); else ret = regmap_set_bits(data->regmap, ADUX1020_REG_INT_MASK, mask); if (ret < 0) goto fail; /* * Trigger proximity interrupt when the intensity is above * or below threshold */ ret = regmap_set_bits(data->regmap, ADUX1020_REG_PROX_TYPE, ADUX1020_PROX_TYPE); if (ret < 0) goto fail; /* Set proximity mode */ ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I); break; default: ret = -EINVAL; break; } fail: mutex_unlock(&data->lock); return ret; } static int adux1020_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct adux1020_data *data = iio_priv(indio_dev); int ret, mask; unsigned int regval; switch (chan->type) { case IIO_PROXIMITY: if (dir == IIO_EV_DIR_RISING) mask = ADUX1020_PROX_ON1_INT; else mask = ADUX1020_PROX_OFF1_INT; break; default: return -EINVAL; } ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, ®val); if (ret < 0) return ret; return !(regval & mask); } static int adux1020_read_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct adux1020_data *data = iio_priv(indio_dev); u8 reg; int ret; unsigned int regval; switch (chan->type) { case IIO_PROXIMITY: if (dir == IIO_EV_DIR_RISING) reg = ADUX1020_REG_PROX_TH_ON1; else reg = ADUX1020_REG_PROX_TH_OFF1; break; default: return -EINVAL; } ret = regmap_read(data->regmap, reg, ®val); if (ret < 0) return ret; *val = regval; return IIO_VAL_INT; } static int adux1020_write_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct adux1020_data *data = iio_priv(indio_dev); u8 reg; switch (chan->type) { case IIO_PROXIMITY: if (dir == IIO_EV_DIR_RISING) reg = ADUX1020_REG_PROX_TH_ON1; else reg = ADUX1020_REG_PROX_TH_OFF1; break; default: return -EINVAL; } /* Full scale threshold value is 0-65535 */ if (val < 0 || val > 65535) return -EINVAL; return regmap_write(data->regmap, reg, val); } static const struct iio_event_spec adux1020_proximity_event[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_chan_spec adux1020_channels[] = { { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .event_spec = adux1020_proximity_event, .num_event_specs = ARRAY_SIZE(adux1020_proximity_event), }, { .type = IIO_CURRENT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .extend_name = "led", .output = 1, }, }; static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400"); static struct attribute *adux1020_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group adux1020_attribute_group = { .attrs = adux1020_attributes, }; static const struct iio_info adux1020_info = { .attrs = &adux1020_attribute_group, .read_raw = adux1020_read_raw, .write_raw = adux1020_write_raw, .read_event_config = adux1020_read_event_config, .write_event_config = adux1020_write_event_config, .read_event_value = adux1020_read_thresh, .write_event_value = adux1020_write_thresh, }; static irqreturn_t adux1020_interrupt_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct adux1020_data *data = iio_priv(indio_dev); int ret, status; ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status); if (ret < 0) return IRQ_HANDLED; status &= ADUX1020_MODE_INT_STATUS_MASK; if (status & ADUX1020_INT_PROX_ON1) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } if (status & ADUX1020_INT_PROX_OFF1) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS, ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR); return IRQ_HANDLED; } static int adux1020_chip_init(struct adux1020_data *data) { struct i2c_client *client = data->client; int ret; unsigned int val; ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val); if (ret < 0) return ret; if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) { dev_err(&client->dev, "invalid chip id 0x%04x\n", val); return -ENODEV; } dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val); ret = regmap_set_bits(data->regmap, ADUX1020_REG_SW_RESET, ADUX1020_SW_RESET); if (ret < 0) return ret; /* Load default configuration */ ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf, ARRAY_SIZE(adux1020_def_conf)); if (ret < 0) return ret; ret = adux1020_flush_fifo(data); if (ret < 0) return ret; /* Use LED_IREF for proximity mode */ ret = regmap_clear_bits(data->regmap, ADUX1020_REG_LED_CURRENT, ADUX1020_LED_PIREF_EN); if (ret < 0) return ret; /* Mask all interrupts */ return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE); } static int adux1020_probe(struct i2c_client *client) { struct adux1020_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; indio_dev->info = &adux1020_info; indio_dev->name = ADUX1020_DRV_NAME; indio_dev->channels = adux1020_channels; indio_dev->num_channels = ARRAY_SIZE(adux1020_channels); indio_dev->modes = INDIO_DIRECT_MODE; data = iio_priv(indio_dev); data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "regmap initialization failed.\n"); return PTR_ERR(data->regmap); } data->client = client; data->indio_dev = indio_dev; mutex_init(&data->lock); ret = adux1020_chip_init(data); if (ret) return ret; if (client->irq) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, adux1020_interrupt_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, ADUX1020_DRV_NAME, indio_dev); if (ret) { dev_err(&client->dev, "irq request error %d\n", -ret); return ret; } } return devm_iio_device_register(&client->dev, indio_dev); } static const struct i2c_device_id adux1020_id[] = { { "adux1020" }, {} }; MODULE_DEVICE_TABLE(i2c, adux1020_id); static const struct of_device_id adux1020_of_match[] = { { .compatible = "adi,adux1020" }, { } }; MODULE_DEVICE_TABLE(of, adux1020_of_match); static struct i2c_driver adux1020_driver = { .driver = { .name = ADUX1020_DRV_NAME, .of_match_table = adux1020_of_match, }, .probe = adux1020_probe, .id_table = adux1020_id, }; module_i2c_driver(adux1020_driver); MODULE_AUTHOR("Manivannan Sadhasivam "); MODULE_DESCRIPTION("ADUX1020 photometric sensor"); MODULE_LICENSE("GPL");