// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2024 NanjingTianyihexin Electronics Ltd. * http://www.tianyihexin.com * * Driver for NanjingTianyihexin HX9023S Cap Sensor. * Datasheet available at: * http://www.tianyihexin.com/ueditor/php/upload/file/20240614/1718336303992081.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HX9023S_CHIP_ID 0x1D #define HX9023S_CH_NUM 5 #define HX9023S_POS 0x03 #define HX9023S_NEG 0x02 #define HX9023S_NOT_CONNECTED 16 #define HX9023S_GLOBAL_CTRL0 0x00 #define HX9023S_PRF_CFG 0x02 #define HX9023S_CH0_CFG_7_0 0x03 #define HX9023S_CH4_CFG_9_8 0x0C #define HX9023S_RANGE_7_0 0x0D #define HX9023S_RANGE_9_8 0x0E #define HX9023S_RANGE_18_16 0x0F #define HX9023S_AVG0_NOSR0_CFG 0x10 #define HX9023S_NOSR12_CFG 0x11 #define HX9023S_NOSR34_CFG 0x12 #define HX9023S_AVG12_CFG 0x13 #define HX9023S_AVG34_CFG 0x14 #define HX9023S_OFFSET_DAC0_7_0 0x15 #define HX9023S_OFFSET_DAC4_9_8 0x1E #define HX9023S_SAMPLE_NUM_7_0 0x1F #define HX9023S_INTEGRATION_NUM_7_0 0x21 #define HX9023S_CH_NUM_CFG 0x24 #define HX9023S_LP_ALP_4_CFG 0x29 #define HX9023S_LP_ALP_1_0_CFG 0x2A #define HX9023S_LP_ALP_3_2_CFG 0x2B #define HX9023S_UP_ALP_1_0_CFG 0x2C #define HX9023S_UP_ALP_3_2_CFG 0x2D #define HX9023S_DN_UP_ALP_0_4_CFG 0x2E #define HX9023S_DN_ALP_2_1_CFG 0x2F #define HX9023S_DN_ALP_4_3_CFG 0x30 #define HX9023S_RAW_BL_RD_CFG 0x38 #define HX9023S_INTERRUPT_CFG 0x39 #define HX9023S_INTERRUPT_CFG1 0x3A #define HX9023S_CALI_DIFF_CFG 0x3B #define HX9023S_DITHER_CFG 0x3C #define HX9023S_DEVICE_ID 0x60 #define HX9023S_PROX_STATUS 0x6B #define HX9023S_PROX_INT_HIGH_CFG 0x6C #define HX9023S_PROX_INT_LOW_CFG 0x6D #define HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 0x80 #define HX9023S_PROX_LOW_DIFF_CFG_CH0_0 0x88 #define HX9023S_PROX_LOW_DIFF_CFG_CH3_1 0x8F #define HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 0x9E #define HX9023S_PROX_HIGH_DIFF_CFG_CH4_1 0x9F #define HX9023S_PROX_LOW_DIFF_CFG_CH4_0 0xA2 #define HX9023S_PROX_LOW_DIFF_CFG_CH4_1 0xA3 #define HX9023S_CAP_INI_CH4_0 0xB3 #define HX9023S_LP_DIFF_CH4_2 0xBA #define HX9023S_RAW_BL_CH4_0 0xB5 #define HX9023S_LP_DIFF_CH4_0 0xB8 #define HX9023S_DSP_CONFIG_CTRL1 0xC8 #define HX9023S_CAP_INI_CH0_0 0xE0 #define HX9023S_RAW_BL_CH0_0 0xE8 #define HX9023S_LP_DIFF_CH0_0 0xF4 #define HX9023S_LP_DIFF_CH3_2 0xFF #define HX9023S_DATA_LOCK_MASK BIT(4) #define HX9023S_INTERRUPT_MASK GENMASK(9, 0) #define HX9023S_PROX_DEBOUNCE_MASK GENMASK(3, 0) struct hx9023s_ch_data { s16 raw; /* Raw Data*/ s16 lp; /* Low Pass Filter Data*/ s16 bl; /* Base Line Data */ s16 diff; /* Difference of Low Pass Data and Base Line Data */ struct { unsigned int near; unsigned int far; } thres; u16 dac; u8 channel_positive; u8 channel_negative; bool sel_bl; bool sel_raw; bool sel_diff; bool sel_lp; bool enable; }; struct hx9023s_data { struct iio_trigger *trig; struct regmap *regmap; unsigned long chan_prox_stat; unsigned long chan_read; unsigned long chan_event; unsigned long ch_en_stat; unsigned long chan_in_use; unsigned int prox_state_reg; bool trigger_enabled; struct { __le16 channels[HX9023S_CH_NUM]; s64 ts __aligned(8); } buffer; /* * Serialize access to registers below: * HX9023S_PROX_INT_LOW_CFG, * HX9023S_PROX_INT_HIGH_CFG, * HX9023S_INTERRUPT_CFG, * HX9023S_CH_NUM_CFG * Serialize access to channel configuration in * hx9023s_push_events and hx9023s_trigger_handler. */ struct mutex mutex; struct hx9023s_ch_data ch_data[HX9023S_CH_NUM]; }; static const struct reg_sequence hx9023s_reg_init_list[] = { /* scan period */ REG_SEQ0(HX9023S_PRF_CFG, 0x17), /* full scale of conversion phase of each channel */ REG_SEQ0(HX9023S_RANGE_7_0, 0x11), REG_SEQ0(HX9023S_RANGE_9_8, 0x02), REG_SEQ0(HX9023S_RANGE_18_16, 0x00), /* ADC average number and OSR number of each channel */ REG_SEQ0(HX9023S_AVG0_NOSR0_CFG, 0x71), REG_SEQ0(HX9023S_NOSR12_CFG, 0x44), REG_SEQ0(HX9023S_NOSR34_CFG, 0x00), REG_SEQ0(HX9023S_AVG12_CFG, 0x33), REG_SEQ0(HX9023S_AVG34_CFG, 0x00), /* sample & integration frequency of the ADC */ REG_SEQ0(HX9023S_SAMPLE_NUM_7_0, 0x65), REG_SEQ0(HX9023S_INTEGRATION_NUM_7_0, 0x65), /* coefficient of the first order low pass filter during each channel */ REG_SEQ0(HX9023S_LP_ALP_1_0_CFG, 0x22), REG_SEQ0(HX9023S_LP_ALP_3_2_CFG, 0x22), REG_SEQ0(HX9023S_LP_ALP_4_CFG, 0x02), /* up coefficient of the first order low pass filter during each channel */ REG_SEQ0(HX9023S_UP_ALP_1_0_CFG, 0x88), REG_SEQ0(HX9023S_UP_ALP_3_2_CFG, 0x88), REG_SEQ0(HX9023S_DN_UP_ALP_0_4_CFG, 0x18), /* down coefficient of the first order low pass filter during each channel */ REG_SEQ0(HX9023S_DN_ALP_2_1_CFG, 0x11), REG_SEQ0(HX9023S_DN_ALP_4_3_CFG, 0x11), /* selection of data for the Data Mux Register to output data */ REG_SEQ0(HX9023S_RAW_BL_RD_CFG, 0xF0), /* enable the interrupt function */ REG_SEQ0(HX9023S_INTERRUPT_CFG, 0xFF), REG_SEQ0(HX9023S_INTERRUPT_CFG1, 0x3B), REG_SEQ0(HX9023S_DITHER_CFG, 0x21), /* threshold of the offset compensation */ REG_SEQ0(HX9023S_CALI_DIFF_CFG, 0x07), /* proximity persistency number(near & far) */ REG_SEQ0(HX9023S_PROX_INT_HIGH_CFG, 0x01), REG_SEQ0(HX9023S_PROX_INT_LOW_CFG, 0x01), /* disable the data lock */ REG_SEQ0(HX9023S_DSP_CONFIG_CTRL1, 0x00), }; static const struct iio_event_spec hx9023s_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD), .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD), .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, }; #define HX9023S_CHANNEL(idx) \ { \ .type = IIO_PROXIMITY, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ .indexed = 1, \ .channel = idx, \ .address = 0, \ .event_spec = hx9023s_events, \ .num_event_specs = ARRAY_SIZE(hx9023s_events), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec hx9023s_channels[] = { HX9023S_CHANNEL(0), HX9023S_CHANNEL(1), HX9023S_CHANNEL(2), HX9023S_CHANNEL(3), HX9023S_CHANNEL(4), IIO_CHAN_SOFT_TIMESTAMP(5), }; static const unsigned int hx9023s_samp_freq_table[] = { 2, 2, 4, 6, 8, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 56, 62, 68, 74, 80, 90, 100, 200, 300, 400, 600, 800, 1000, 2000, 3000, 4000, }; static const struct regmap_range hx9023s_rd_reg_ranges[] = { regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2), }; static const struct regmap_range hx9023s_wr_reg_ranges[] = { regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2), }; static const struct regmap_range hx9023s_volatile_reg_ranges[] = { regmap_reg_range(HX9023S_CAP_INI_CH4_0, HX9023S_LP_DIFF_CH4_2), regmap_reg_range(HX9023S_CAP_INI_CH0_0, HX9023S_LP_DIFF_CH3_2), regmap_reg_range(HX9023S_PROX_STATUS, HX9023S_PROX_STATUS), }; static const struct regmap_access_table hx9023s_rd_regs = { .yes_ranges = hx9023s_rd_reg_ranges, .n_yes_ranges = ARRAY_SIZE(hx9023s_rd_reg_ranges), }; static const struct regmap_access_table hx9023s_wr_regs = { .yes_ranges = hx9023s_wr_reg_ranges, .n_yes_ranges = ARRAY_SIZE(hx9023s_wr_reg_ranges), }; static const struct regmap_access_table hx9023s_volatile_regs = { .yes_ranges = hx9023s_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(hx9023s_volatile_reg_ranges), }; static const struct regmap_config hx9023s_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_MAPLE, .rd_table = &hx9023s_rd_regs, .wr_table = &hx9023s_wr_regs, .volatile_table = &hx9023s_volatile_regs, }; static int hx9023s_interrupt_enable(struct hx9023s_data *data) { return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG, HX9023S_INTERRUPT_MASK, HX9023S_INTERRUPT_MASK); } static int hx9023s_interrupt_disable(struct hx9023s_data *data) { return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG, HX9023S_INTERRUPT_MASK, 0x00); } static int hx9023s_data_lock(struct hx9023s_data *data, bool locked) { if (locked) return regmap_update_bits(data->regmap, HX9023S_DSP_CONFIG_CTRL1, HX9023S_DATA_LOCK_MASK, HX9023S_DATA_LOCK_MASK); else return regmap_update_bits(data->regmap, HX9023S_DSP_CONFIG_CTRL1, HX9023S_DATA_LOCK_MASK, 0); } static int hx9023s_ch_cfg(struct hx9023s_data *data) { __le16 reg_list[HX9023S_CH_NUM]; u8 ch_pos[HX9023S_CH_NUM]; u8 ch_neg[HX9023S_CH_NUM]; /* Bit positions corresponding to input pin connections */ u8 conn_cs[HX9023S_CH_NUM] = { 0, 2, 4, 6, 8 }; unsigned int i; u16 reg; for (i = 0; i < HX9023S_CH_NUM; i++) { ch_pos[i] = data->ch_data[i].channel_positive == HX9023S_NOT_CONNECTED ? HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_positive]; ch_neg[i] = data->ch_data[i].channel_negative == HX9023S_NOT_CONNECTED ? HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_negative]; reg = (HX9023S_POS << ch_pos[i]) | (HX9023S_NEG << ch_neg[i]); reg_list[i] = cpu_to_le16(reg); } return regmap_bulk_write(data->regmap, HX9023S_CH0_CFG_7_0, reg_list, sizeof(reg_list)); } static int hx9023s_write_far_debounce(struct hx9023s_data *data, int val) { guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, HX9023S_PROX_INT_LOW_CFG, HX9023S_PROX_DEBOUNCE_MASK, FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val)); } static int hx9023s_write_near_debounce(struct hx9023s_data *data, int val) { guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, HX9023S_PROX_INT_HIGH_CFG, HX9023S_PROX_DEBOUNCE_MASK, FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val)); } static int hx9023s_read_far_debounce(struct hx9023s_data *data, int *val) { int ret; ret = regmap_read(data->regmap, HX9023S_PROX_INT_LOW_CFG, val); if (ret) return ret; *val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val); return IIO_VAL_INT; } static int hx9023s_read_near_debounce(struct hx9023s_data *data, int *val) { int ret; ret = regmap_read(data->regmap, HX9023S_PROX_INT_HIGH_CFG, val); if (ret) return ret; *val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val); return IIO_VAL_INT; } static int hx9023s_get_thres_near(struct hx9023s_data *data, u8 ch, int *val) { int ret; __le16 buf; unsigned int reg, tmp; reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 : HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2); ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf)); if (ret) return ret; tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32; data->ch_data[ch].thres.near = tmp; *val = tmp; return IIO_VAL_INT; } static int hx9023s_get_thres_far(struct hx9023s_data *data, u8 ch, int *val) { int ret; __le16 buf; unsigned int reg, tmp; reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 : HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2); ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf)); if (ret) return ret; tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32; data->ch_data[ch].thres.far = tmp; *val = tmp; return IIO_VAL_INT; } static int hx9023s_set_thres_near(struct hx9023s_data *data, u8 ch, int val) { __le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0)); unsigned int reg; data->ch_data[ch].thres.near = ((val / 32) & GENMASK(9, 0)) * 32; reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 : HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2); return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16)); } static int hx9023s_set_thres_far(struct hx9023s_data *data, u8 ch, int val) { __le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0)); unsigned int reg; data->ch_data[ch].thres.far = ((val / 32) & GENMASK(9, 0)) * 32; reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 : HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2); return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16)); } static int hx9023s_get_prox_state(struct hx9023s_data *data) { return regmap_read(data->regmap, HX9023S_PROX_STATUS, &data->prox_state_reg); } static int hx9023s_data_select(struct hx9023s_data *data) { int ret; unsigned int i, buf; unsigned long tmp; ret = regmap_read(data->regmap, HX9023S_RAW_BL_RD_CFG, &buf); if (ret) return ret; tmp = buf; for (i = 0; i < 4; i++) { data->ch_data[i].sel_diff = test_bit(i, &tmp); data->ch_data[i].sel_lp = !data->ch_data[i].sel_diff; data->ch_data[i].sel_bl = test_bit(i + 4, &tmp); data->ch_data[i].sel_raw = !data->ch_data[i].sel_bl; } ret = regmap_read(data->regmap, HX9023S_INTERRUPT_CFG1, &buf); if (ret) return ret; tmp = buf; data->ch_data[4].sel_diff = test_bit(2, &tmp); data->ch_data[4].sel_lp = !data->ch_data[4].sel_diff; data->ch_data[4].sel_bl = test_bit(3, &tmp); data->ch_data[4].sel_raw = !data->ch_data[4].sel_bl; return 0; } static int hx9023s_sample(struct hx9023s_data *data) { int ret; unsigned int i; u8 buf[HX9023S_CH_NUM * 3]; u16 value; ret = hx9023s_data_lock(data, true); if (ret) return ret; ret = hx9023s_data_select(data); if (ret) goto err; /* 3 bytes for each of channels 0 to 3 which have contiguous registers */ ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH0_0, buf, 12); if (ret) goto err; /* 3 bytes for channel 4 */ ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH4_0, buf + 12, 3); if (ret) goto err; for (i = 0; i < HX9023S_CH_NUM; i++) { value = get_unaligned_le16(&buf[i * 3 + 1]); data->ch_data[i].raw = 0; data->ch_data[i].bl = 0; if (data->ch_data[i].sel_raw) data->ch_data[i].raw = value; if (data->ch_data[i].sel_bl) data->ch_data[i].bl = value; } /* 3 bytes for each of channels 0 to 3 which have contiguous registers */ ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH0_0, buf, 12); if (ret) goto err; /* 3 bytes for channel 4 */ ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH4_0, buf + 12, 3); if (ret) goto err; for (i = 0; i < HX9023S_CH_NUM; i++) { value = get_unaligned_le16(&buf[i * 3 + 1]); data->ch_data[i].lp = 0; data->ch_data[i].diff = 0; if (data->ch_data[i].sel_lp) data->ch_data[i].lp = value; if (data->ch_data[i].sel_diff) data->ch_data[i].diff = value; } for (i = 0; i < HX9023S_CH_NUM; i++) { if (data->ch_data[i].sel_lp && data->ch_data[i].sel_bl) data->ch_data[i].diff = data->ch_data[i].lp - data->ch_data[i].bl; } /* 2 bytes for each of channels 0 to 4 which have contiguous registers */ ret = regmap_bulk_read(data->regmap, HX9023S_OFFSET_DAC0_7_0, buf, 10); if (ret) goto err; for (i = 0; i < HX9023S_CH_NUM; i++) { value = get_unaligned_le16(&buf[i * 2]); value = FIELD_GET(GENMASK(11, 0), value); data->ch_data[i].dac = value; } err: return hx9023s_data_lock(data, false); } static int hx9023s_ch_en(struct hx9023s_data *data, u8 ch_id, bool en) { int ret; unsigned int buf; ret = regmap_read(data->regmap, HX9023S_CH_NUM_CFG, &buf); if (ret) return ret; data->ch_en_stat = buf; if (en && data->ch_en_stat == 0) data->prox_state_reg = 0; data->ch_data[ch_id].enable = en; __assign_bit(ch_id, &data->ch_en_stat, en); return regmap_write(data->regmap, HX9023S_CH_NUM_CFG, data->ch_en_stat); } static int hx9023s_property_get(struct hx9023s_data *data) { struct device *dev = regmap_get_device(data->regmap); u32 array[2]; u32 i, reg, temp; int ret; data->chan_in_use = 0; for (i = 0; i < HX9023S_CH_NUM; i++) { data->ch_data[i].channel_positive = HX9023S_NOT_CONNECTED; data->ch_data[i].channel_negative = HX9023S_NOT_CONNECTED; } device_for_each_child_node_scoped(dev, child) { ret = fwnode_property_read_u32(child, "reg", ®); if (ret || reg >= HX9023S_CH_NUM) return dev_err_probe(dev, ret < 0 ? ret : -EINVAL, "Failed to read reg\n"); __set_bit(reg, &data->chan_in_use); ret = fwnode_property_read_u32(child, "single-channel", &temp); if (ret == 0) { data->ch_data[reg].channel_positive = temp; data->ch_data[reg].channel_negative = HX9023S_NOT_CONNECTED; } else { ret = fwnode_property_read_u32_array(child, "diff-channels", array, ARRAY_SIZE(array)); if (ret == 0) { data->ch_data[reg].channel_positive = array[0]; data->ch_data[reg].channel_negative = array[1]; } else { return dev_err_probe(dev, ret, "Property read failed: %d\n", reg); } } } return 0; } static int hx9023s_update_chan_en(struct hx9023s_data *data, unsigned long chan_read, unsigned long chan_event) { unsigned int i; unsigned long channels = chan_read | chan_event; if ((data->chan_read | data->chan_event) != channels) { for_each_set_bit(i, &channels, HX9023S_CH_NUM) hx9023s_ch_en(data, i, test_bit(i, &data->chan_in_use)); for_each_clear_bit(i, &channels, HX9023S_CH_NUM) hx9023s_ch_en(data, i, false); } data->chan_read = chan_read; data->chan_event = chan_event; return 0; } static int hx9023s_get_proximity(struct hx9023s_data *data, const struct iio_chan_spec *chan, int *val) { int ret; ret = hx9023s_sample(data); if (ret) return ret; ret = hx9023s_get_prox_state(data); if (ret) return ret; *val = data->ch_data[chan->channel].diff; return IIO_VAL_INT; } static int hx9023s_get_samp_freq(struct hx9023s_data *data, int *val, int *val2) { int ret; unsigned int odr, index; ret = regmap_read(data->regmap, HX9023S_PRF_CFG, &index); if (ret) return ret; odr = hx9023s_samp_freq_table[index]; *val = KILO / odr; *val2 = div_u64((KILO % odr) * MICRO, odr); return IIO_VAL_INT_PLUS_MICRO; } static int hx9023s_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long mask) { struct hx9023s_data *data = iio_priv(indio_dev); int ret; if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = hx9023s_get_proximity(data, chan, val); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: return hx9023s_get_samp_freq(data, val, val2); default: return -EINVAL; } } static int hx9023s_set_samp_freq(struct hx9023s_data *data, int val, int val2) { struct device *dev = regmap_get_device(data->regmap); unsigned int i, period_ms; period_ms = div_u64(NANO, (val * MEGA + val2)); for (i = 0; i < ARRAY_SIZE(hx9023s_samp_freq_table); i++) { if (period_ms == hx9023s_samp_freq_table[i]) break; } if (i == ARRAY_SIZE(hx9023s_samp_freq_table)) { dev_err(dev, "Period:%dms NOT found!\n", period_ms); return -EINVAL; } return regmap_write(data->regmap, HX9023S_PRF_CFG, i); } static int hx9023s_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long mask) { struct hx9023s_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY) return -EINVAL; if (mask != IIO_CHAN_INFO_SAMP_FREQ) return -EINVAL; return hx9023s_set_samp_freq(data, val, val2); } static irqreturn_t hx9023s_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct hx9023s_data *data = iio_priv(indio_dev); if (data->trigger_enabled) iio_trigger_poll(data->trig); return IRQ_WAKE_THREAD; } static void hx9023s_push_events(struct iio_dev *indio_dev) { struct hx9023s_data *data = iio_priv(indio_dev); s64 timestamp = iio_get_time_ns(indio_dev); unsigned long prox_changed; unsigned int chan; int ret; ret = hx9023s_sample(data); if (ret) return; ret = hx9023s_get_prox_state(data); if (ret) return; prox_changed = (data->chan_prox_stat ^ data->prox_state_reg) & data->chan_event; for_each_set_bit(chan, &prox_changed, HX9023S_CH_NUM) { unsigned int dir; dir = (data->prox_state_reg & BIT(chan)) ? IIO_EV_DIR_FALLING : IIO_EV_DIR_RISING; iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, chan, IIO_EV_TYPE_THRESH, dir), timestamp); } data->chan_prox_stat = data->prox_state_reg; } static irqreturn_t hx9023s_irq_thread_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct hx9023s_data *data = iio_priv(indio_dev); guard(mutex)(&data->mutex); hx9023s_push_events(indio_dev); return IRQ_HANDLED; } static int hx9023s_read_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct hx9023s_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: return hx9023s_get_thres_far(data, chan->channel, val); case IIO_EV_DIR_FALLING: return hx9023s_get_thres_near(data, chan->channel, val); default: return -EINVAL; } case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: return hx9023s_read_far_debounce(data, val); case IIO_EV_DIR_FALLING: return hx9023s_read_near_debounce(data, val); default: return -EINVAL; } default: return -EINVAL; } } static int hx9023s_write_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct hx9023s_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: return hx9023s_set_thres_far(data, chan->channel, val); case IIO_EV_DIR_FALLING: return hx9023s_set_thres_near(data, chan->channel, val); default: return -EINVAL; } case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: return hx9023s_write_far_debounce(data, val); case IIO_EV_DIR_FALLING: return hx9023s_write_near_debounce(data, val); default: return -EINVAL; } default: return -EINVAL; } } static int hx9023s_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct hx9023s_data *data = iio_priv(indio_dev); return test_bit(chan->channel, &data->chan_event); } static int hx9023s_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { struct hx9023s_data *data = iio_priv(indio_dev); if (test_bit(chan->channel, &data->chan_in_use)) { hx9023s_ch_en(data, chan->channel, state); __assign_bit(chan->channel, &data->chan_event, data->ch_data[chan->channel].enable); } return 0; } static const struct iio_info hx9023s_info = { .read_raw = hx9023s_read_raw, .write_raw = hx9023s_write_raw, .read_event_value = hx9023s_read_event_val, .write_event_value = hx9023s_write_event_val, .read_event_config = hx9023s_read_event_config, .write_event_config = hx9023s_write_event_config, }; static int hx9023s_set_trigger_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct hx9023s_data *data = iio_priv(indio_dev); guard(mutex)(&data->mutex); if (state) hx9023s_interrupt_enable(data); else if (!data->chan_read) hx9023s_interrupt_disable(data); data->trigger_enabled = state; return 0; } static const struct iio_trigger_ops hx9023s_trigger_ops = { .set_trigger_state = hx9023s_set_trigger_state, }; static irqreturn_t hx9023s_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct hx9023s_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); unsigned int bit, index, i = 0; int ret; guard(mutex)(&data->mutex); ret = hx9023s_sample(data); if (ret) { dev_warn(dev, "sampling failed\n"); goto out; } ret = hx9023s_get_prox_state(data); if (ret) { dev_warn(dev, "get prox failed\n"); goto out; } iio_for_each_active_channel(indio_dev, bit) { index = indio_dev->channels[bit].channel; data->buffer.channels[i++] = cpu_to_le16(data->ch_data[index].diff); } iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, pf->timestamp); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int hx9023s_buffer_preenable(struct iio_dev *indio_dev) { struct hx9023s_data *data = iio_priv(indio_dev); unsigned long channels = 0; unsigned int bit; guard(mutex)(&data->mutex); iio_for_each_active_channel(indio_dev, bit) __set_bit(indio_dev->channels[bit].channel, &channels); hx9023s_update_chan_en(data, channels, data->chan_event); return 0; } static int hx9023s_buffer_postdisable(struct iio_dev *indio_dev) { struct hx9023s_data *data = iio_priv(indio_dev); guard(mutex)(&data->mutex); hx9023s_update_chan_en(data, 0, data->chan_event); return 0; } static const struct iio_buffer_setup_ops hx9023s_buffer_setup_ops = { .preenable = hx9023s_buffer_preenable, .postdisable = hx9023s_buffer_postdisable, }; static int hx9023s_id_check(struct iio_dev *indio_dev) { struct hx9023s_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); unsigned int id; int ret; ret = regmap_read(data->regmap, HX9023S_DEVICE_ID, &id); if (ret) return ret; if (id != HX9023S_CHIP_ID) dev_warn(dev, "Unexpected chip ID, assuming compatible\n"); return 0; } static int hx9023s_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct iio_dev *indio_dev; struct hx9023s_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); mutex_init(&data->mutex); data->regmap = devm_regmap_init_i2c(client, &hx9023s_regmap_config); if (IS_ERR(data->regmap)) return dev_err_probe(dev, PTR_ERR(data->regmap), "regmap init failed\n"); ret = hx9023s_property_get(data); if (ret) return dev_err_probe(dev, ret, "dts phase failed\n"); ret = devm_regulator_get_enable(dev, "vdd"); if (ret) return dev_err_probe(dev, ret, "regulator get failed\n"); ret = hx9023s_id_check(indio_dev); if (ret) return dev_err_probe(dev, ret, "id check failed\n"); indio_dev->name = "hx9023s"; indio_dev->channels = hx9023s_channels; indio_dev->num_channels = ARRAY_SIZE(hx9023s_channels); indio_dev->info = &hx9023s_info; indio_dev->modes = INDIO_DIRECT_MODE; i2c_set_clientdata(client, indio_dev); ret = regmap_multi_reg_write(data->regmap, hx9023s_reg_init_list, ARRAY_SIZE(hx9023s_reg_init_list)); if (ret) return dev_err_probe(dev, ret, "device init failed\n"); ret = hx9023s_ch_cfg(data); if (ret) return dev_err_probe(dev, ret, "channel config failed\n"); ret = regcache_sync(data->regmap); if (ret) return dev_err_probe(dev, ret, "regcache sync failed\n"); if (client->irq) { ret = devm_request_threaded_irq(dev, client->irq, hx9023s_irq_handler, hx9023s_irq_thread_handler, IRQF_ONESHOT, "hx9023s_event", indio_dev); if (ret) return dev_err_probe(dev, ret, "irq request failed\n"); data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->trig) return dev_err_probe(dev, -ENOMEM, "iio trigger alloc failed\n"); data->trig->ops = &hx9023s_trigger_ops; iio_trigger_set_drvdata(data->trig, indio_dev); ret = devm_iio_trigger_register(dev, data->trig); if (ret) return dev_err_probe(dev, ret, "iio trigger register failed\n"); } ret = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, hx9023s_trigger_handler, &hx9023s_buffer_setup_ops); if (ret) return dev_err_probe(dev, ret, "iio triggered buffer setup failed\n"); return devm_iio_device_register(dev, indio_dev); } static int hx9023s_suspend(struct device *dev) { struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev)); guard(mutex)(&data->mutex); hx9023s_interrupt_disable(data); return 0; } static int hx9023s_resume(struct device *dev) { struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev)); guard(mutex)(&data->mutex); if (data->trigger_enabled) hx9023s_interrupt_enable(data); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(hx9023s_pm_ops, hx9023s_suspend, hx9023s_resume); static const struct of_device_id hx9023s_of_match[] = { { .compatible = "tyhx,hx9023s" }, {} }; MODULE_DEVICE_TABLE(of, hx9023s_of_match); static const struct i2c_device_id hx9023s_id[] = { { "hx9023s" }, {} }; MODULE_DEVICE_TABLE(i2c, hx9023s_id); static struct i2c_driver hx9023s_driver = { .driver = { .name = "hx9023s", .of_match_table = hx9023s_of_match, .pm = &hx9023s_pm_ops, /* * The I2C operations in hx9023s_reg_init() and hx9023s_ch_cfg() * are time-consuming. Prefer async so we don't delay boot * if we're builtin to the kernel. */ .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = hx9023s_probe, .id_table = hx9023s_id, }; module_i2c_driver(hx9023s_driver); MODULE_AUTHOR("Yasin Lee "); MODULE_DESCRIPTION("Driver for TYHX HX9023S SAR sensor"); MODULE_LICENSE("GPL");