/* * Broadcom NetXtreme-E RoCE driver. * * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * BSD license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: Slow Path Operators */ #define dev_fmt(fmt) "QPLIB: " fmt #include #include #include #include #include "roce_hsi.h" #include "qplib_res.h" #include "qplib_rcfw.h" #include "qplib_sp.h" #include "qplib_tlv.h" const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; /* Device */ static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw) { u16 pcie_ctl2 = 0; if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) return false; pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2); return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); } static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw, char *fw_ver) { struct creq_query_version_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_query_version req = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_QUERY_VERSION, sizeof(req)); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return; fw_ver[0] = resp.fw_maj; fw_ver[1] = resp.fw_minor; fw_ver[2] = resp.fw_bld; fw_ver[3] = resp.fw_rsvd; } int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_dev_attr *attr) { struct creq_query_func_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct creq_query_func_resp_sb *sb; struct bnxt_qplib_rcfw_sbuf sbuf; struct bnxt_qplib_chip_ctx *cctx; struct cmdq_query_func req = {}; u8 *tqm_alloc; int i, rc; u32 temp; cctx = rcfw->res->cctx; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_QUERY_FUNC, sizeof(req)); sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, &sbuf.dma_addr, GFP_KERNEL); if (!sbuf.sb) return -ENOMEM; sb = sbuf.sb; req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) goto bail; /* Extract the context from the side buffer */ attr->max_qp = le32_to_cpu(sb->max_qp); /* max_qp value reported by FW doesn't include the QP1 */ attr->max_qp += 1; attr->max_qp_rd_atom = sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom; attr->max_qp_init_rd_atom = sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom; attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr) - 1; if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) { /* * 128 WQEs needs to be reserved for the HW (8916). Prevent * reporting the max number on legacy devices */ attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1; } /* Adjust for max_qp_wqes for variable wqe */ if (cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE) attr->max_qp_wqes = BNXT_VAR_MAX_WQE - 1; attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ? min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6; attr->max_cq = le32_to_cpu(sb->max_cq); attr->max_cq_wqes = le32_to_cpu(sb->max_cqe); if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx)) attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes); attr->max_cq_sges = attr->max_qp_sges; attr->max_mr = le32_to_cpu(sb->max_mr); attr->max_mw = le32_to_cpu(sb->max_mw); attr->max_mr_size = le64_to_cpu(sb->max_mr_size); attr->max_pd = 64 * 1024; attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp); attr->max_ah = le32_to_cpu(sb->max_ah); attr->max_srq = le16_to_cpu(sb->max_srq); attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1; attr->max_srq_sges = sb->max_srq_sge; attr->max_pkey = 1; attr->max_inline_data = le32_to_cpu(sb->max_inline_data); if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx)) attr->l2_db_size = (sb->l2_db_space_size + 1) * (0x01 << RCFW_DBR_BASE_PAGE_SHIFT); /* * Read the max gid supported by HW. * For each entry in HW GID in HW table, we consume 2 * GID entries in the kernel GID table. So max_gid reported * to stack can be up to twice the value reported by the HW, up to 256 gids. */ attr->max_sgid = le32_to_cpu(sb->max_gid); attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid); attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags); attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2); bnxt_qplib_query_version(rcfw, attr->fw_ver); for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) { temp = le32_to_cpu(sb->tqm_alloc_reqs[i]); tqm_alloc = (u8 *)&temp; attr->tqm_alloc_reqs[i * 4] = *tqm_alloc; attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc); attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc); attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc); } if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI) attr->max_dpi = le32_to_cpu(sb->max_dpi); attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw); bail: dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr); return rc; } int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res, struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_ctx *ctx) { struct creq_set_func_resources_resp resp = {}; struct cmdq_set_func_resources req = {}; struct bnxt_qplib_cmdqmsg msg = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES, sizeof(req)); req.number_of_qp = cpu_to_le32(ctx->qpc_count); req.number_of_mrw = cpu_to_le32(ctx->mrw_count); req.number_of_srq = cpu_to_le32(ctx->srqc_count); req.number_of_cq = cpu_to_le32(ctx->cq_count); req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf); req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf); req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf); req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf); req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) { dev_err(&res->pdev->dev, "Failed to set function resources\n"); } return rc; } /* SGID */ int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl, int index, struct bnxt_qplib_gid *gid) { if (index >= sgid_tbl->max) { dev_err(&res->pdev->dev, "Index %d exceeded SGID table max (%d)\n", index, sgid_tbl->max); return -EINVAL; } memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid)); return 0; } int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, u16 vlan_id, bool update) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; int index; /* Do we need a sgid_lock here? */ if (!sgid_tbl->active) { dev_err(&res->pdev->dev, "SGID table has no active entries\n"); return -ENOMEM; } for (index = 0; index < sgid_tbl->max; index++) { if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) && vlan_id == sgid_tbl->tbl[index].vlan_id) break; } if (index == sgid_tbl->max) { dev_warn(&res->pdev->dev, "GID not found in the SGID table\n"); return 0; } /* Remove GID from the SGID table */ if (update) { struct creq_delete_gid_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_delete_gid req = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_DELETE_GID, sizeof(req)); if (sgid_tbl->hw_id[index] == 0xFFFF) { dev_err(&res->pdev->dev, "GID entry contains an invalid HW id\n"); return -EINVAL; } req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; } memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero)); sgid_tbl->tbl[index].vlan_id = 0xFFFF; sgid_tbl->vlan[index] = 0; sgid_tbl->active--; dev_dbg(&res->pdev->dev, "SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n", index, sgid_tbl->hw_id[index], sgid_tbl->active); sgid_tbl->hw_id[index] = (u16)-1; /* unlock */ return 0; } int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, const u8 *smac, u16 vlan_id, bool update, u32 *index) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; int i, free_idx; /* Do we need a sgid_lock here? */ if (sgid_tbl->active == sgid_tbl->max) { dev_err(&res->pdev->dev, "SGID table is full\n"); return -ENOMEM; } free_idx = sgid_tbl->max; for (i = 0; i < sgid_tbl->max; i++) { if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) && sgid_tbl->tbl[i].vlan_id == vlan_id) { dev_dbg(&res->pdev->dev, "SGID entry already exist in entry %d!\n", i); *index = i; return -EALREADY; } else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero)) && free_idx == sgid_tbl->max) { free_idx = i; } } if (free_idx == sgid_tbl->max) { dev_err(&res->pdev->dev, "SGID table is FULL but count is not MAX??\n"); return -ENOMEM; } if (update) { struct creq_add_gid_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_add_gid req = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_ADD_GID, sizeof(req)); req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); /* * driver should ensure that all RoCE traffic is always VLAN * tagged if RoCE traffic is running on non-zero VLAN ID or * RoCE traffic is running on non-zero Priority. */ if ((vlan_id != 0xFFFF) || res->prio) { if (vlan_id != 0xFFFF) req.vlan = cpu_to_le16 (vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK); req.vlan |= cpu_to_le16 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | CMDQ_ADD_GID_VLAN_VLAN_EN); } /* MAC in network format */ req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid); } /* Add GID to the sgid_tbl */ memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid)); sgid_tbl->tbl[free_idx].vlan_id = vlan_id; sgid_tbl->active++; if (vlan_id != 0xFFFF) sgid_tbl->vlan[free_idx] = 1; dev_dbg(&res->pdev->dev, "SGID added hw_id[0x%x] = 0x%x active = 0x%x\n", free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active); *index = free_idx; /* unlock */ return 0; } int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, u16 gid_idx, const u8 *smac) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_modify_gid_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_modify_gid req = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_MODIFY_GID, sizeof(req)); req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); if (res->prio) { req.vlan |= cpu_to_le16 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | CMDQ_ADD_GID_VLAN_VLAN_EN); } /* MAC in network format */ req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); req.gid_index = cpu_to_le16(gid_idx); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); return rc; } /* AH */ int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_create_ah_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_create_ah req = {}; u32 temp32[4]; u16 temp16[3]; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_CREATE_AH, sizeof(req)); memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid)); req.dgid[0] = cpu_to_le32(temp32[0]); req.dgid[1] = cpu_to_le32(temp32[1]); req.dgid[2] = cpu_to_le32(temp32[2]); req.dgid[3] = cpu_to_le32(temp32[3]); req.type = ah->nw_type; req.hop_limit = ah->hop_limit; req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]); req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label & CMDQ_CREATE_AH_FLOW_LABEL_MASK) | CMDQ_CREATE_AH_DEST_VLAN_ID_MASK); req.pd_id = cpu_to_le32(ah->pd->id); req.traffic_class = ah->traffic_class; /* MAC in network format */ memcpy(temp16, ah->dmac, 6); req.dest_mac[0] = cpu_to_le16(temp16[0]); req.dest_mac[1] = cpu_to_le16(temp16[1]); req.dest_mac[2] = cpu_to_le16(temp16[2]); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), block); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; ah->id = le32_to_cpu(resp.xid); return 0; } int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_destroy_ah_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_destroy_ah req = {}; int rc; /* Clean up the AH table in the device */ bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_DESTROY_AH, sizeof(req)); req.ah_cid = cpu_to_le32(ah->id); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), block); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); return rc; } /* MRW */ int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) { struct creq_deallocate_key_resp resp = {}; struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_deallocate_key req = {}; struct bnxt_qplib_cmdqmsg msg = {}; int rc; if (mrw->lkey == 0xFFFFFFFF) { dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n"); return 0; } bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_DEALLOCATE_KEY, sizeof(req)); req.mrw_flags = mrw->type; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) req.key = cpu_to_le32(mrw->rkey); else req.key = cpu_to_le32(mrw->lkey); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; /* Free the qplib's MRW memory */ if (mrw->hwq.max_elements) bnxt_qplib_free_hwq(res, &mrw->hwq); return 0; } int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_allocate_mrw_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_allocate_mrw req = {}; unsigned long tmp; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_ALLOCATE_MRW, sizeof(req)); req.pd_id = cpu_to_le32(mrw->pd->id); req.mrw_flags = mrw->type; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR && mrw->access_flags & BNXT_QPLIB_FR_PMR) || mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A || mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B) req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY; tmp = (unsigned long)mrw; req.mrw_handle = cpu_to_le64(tmp); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) mrw->rkey = le32_to_cpu(resp.xid); else mrw->lkey = le32_to_cpu(resp.xid); return 0; } int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_deregister_mr_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_deregister_mr req = {}; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_DEREGISTER_MR, sizeof(req)); req.lkey = cpu_to_le32(mrw->lkey); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), block); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) return rc; /* Free the qplib's MR memory */ if (mrw->hwq.max_elements) { mrw->va = 0; mrw->total_size = 0; bnxt_qplib_free_hwq(res, &mrw->hwq); } return 0; } int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr, struct ib_umem *umem, int num_pbls, u32 buf_pg_size) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; struct creq_register_mr_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_register_mr req = {}; int pages, rc; u32 pg_size; u16 level; if (num_pbls) { pages = roundup_pow_of_two(num_pbls); /* Allocate memory for the non-leaf pages to store buf ptrs. * Non-leaf pages always uses system PAGE_SIZE */ /* Free the hwq if it already exist, must be a rereg */ if (mr->hwq.max_elements) bnxt_qplib_free_hwq(res, &mr->hwq); hwq_attr.res = res; hwq_attr.depth = pages; hwq_attr.stride = sizeof(dma_addr_t); hwq_attr.type = HWQ_TYPE_MR; hwq_attr.sginfo = &sginfo; hwq_attr.sginfo->umem = umem; hwq_attr.sginfo->npages = pages; hwq_attr.sginfo->pgsize = buf_pg_size; hwq_attr.sginfo->pgshft = ilog2(buf_pg_size); rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr); if (rc) { dev_err(&res->pdev->dev, "SP: Reg MR memory allocation failed\n"); return -ENOMEM; } } bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_REGISTER_MR, sizeof(req)); /* Configure the request */ if (mr->hwq.level == PBL_LVL_MAX) { /* No PBL provided, just use system PAGE_SIZE */ level = 0; req.pbl = 0; pg_size = PAGE_SIZE; } else { level = mr->hwq.level; req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]); } pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE; req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) | ((ilog2(pg_size) << CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) & CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK); req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) << CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) & CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK)); req.access = (mr->access_flags & 0xFFFF); req.va = cpu_to_le64(mr->va); req.key = cpu_to_le32(mr->lkey); if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) req.key = cpu_to_le32(mr->pd->id); req.flags = cpu_to_le16(mr->flags); req.mr_size = cpu_to_le64(mr->total_size); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) goto fail; if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) { mr->lkey = le32_to_cpu(resp.xid); mr->rkey = mr->lkey; } return 0; fail: if (mr->hwq.max_elements) bnxt_qplib_free_hwq(res, &mr->hwq); return rc; } int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res, struct bnxt_qplib_frpl *frpl, int max_pg_ptrs) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; int pg_ptrs, pages, rc; /* Re-calculate the max to fit the HWQ allocation model */ pg_ptrs = roundup_pow_of_two(max_pg_ptrs); pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT; if (!pages) pages++; if (pages > MAX_PBL_LVL_1_PGS) return -ENOMEM; sginfo.pgsize = PAGE_SIZE; sginfo.nopte = true; hwq_attr.res = res; hwq_attr.depth = pg_ptrs; hwq_attr.stride = PAGE_SIZE; hwq_attr.sginfo = &sginfo; hwq_attr.type = HWQ_TYPE_CTX; rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr); if (!rc) frpl->max_pg_ptrs = pg_ptrs; return rc; } int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res, struct bnxt_qplib_frpl *frpl) { bnxt_qplib_free_hwq(res, &frpl->hwq); return 0; } int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_roce_stats *stats) { struct creq_query_roce_stats_resp resp = {}; struct creq_query_roce_stats_resp_sb *sb; struct cmdq_query_roce_stats req = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct bnxt_qplib_rcfw_sbuf sbuf; int rc; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_QUERY_ROCE_STATS, sizeof(req)); sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, &sbuf.dma_addr, GFP_KERNEL); if (!sbuf.sb) return -ENOMEM; sb = sbuf.sb; req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) goto bail; /* Extract the context from the side buffer */ stats->to_retransmits = le64_to_cpu(sb->to_retransmits); stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd); stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded); stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd); stats->missing_resp = le64_to_cpu(sb->missing_resp); stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err); stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err); stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err); stats->local_protection_err = le64_to_cpu(sb->local_protection_err); stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err); stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err); stats->remote_access_err = le64_to_cpu(sb->remote_access_err); stats->remote_op_err = le64_to_cpu(sb->remote_op_err); stats->dup_req = le64_to_cpu(sb->dup_req); stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max); stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch); stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe); stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err); stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey); stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err); stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm); stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err); stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey); stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err); stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm); stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err); stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow); stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode); stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic); stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err); stats->res_mem_error = le64_to_cpu(sb->res_mem_error); stats->res_srq_err = le64_to_cpu(sb->res_srq_err); stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err); stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey); stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err); stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err); stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err); stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err); stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err); if (!rcfw->init_oos_stats) { rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); rcfw->init_oos_stats = 1; } else { stats->res_oos_drop_count += (le64_to_cpu(sb->res_oos_drop_count) - rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK; rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); } bail: dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr); return rc; } int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid, struct bnxt_qplib_ext_stat *estat) { struct creq_query_roce_stats_ext_resp resp = {}; struct creq_query_roce_stats_ext_resp_sb *sb; struct cmdq_query_roce_stats_ext req = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct bnxt_qplib_rcfw_sbuf sbuf; int rc; sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, &sbuf.dma_addr, GFP_KERNEL); if (!sbuf.sb) return -ENOMEM; sb = sbuf.sb; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS, sizeof(req)); req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; req.resp_addr = cpu_to_le64(sbuf.dma_addr); req.function_id = cpu_to_le32(fid); req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID); bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) goto bail; estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts); estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts); estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts); estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts); estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts); estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts); estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes); estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts); estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts); estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts); estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts); estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts); estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts); estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes); estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts); estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes); estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts); estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts); estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts); estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts); estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts); bail: dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr); return rc; } static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req, struct bnxt_qplib_cc_param_ext *cc_ext) { ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask); cc_ext->ext_mask = 0; ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi); ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp); ext_req->init_cp = cpu_to_le16(cc_ext->init_cp); ext_req->tr_update_mode = cc_ext->tr_update_mode; ext_req->tr_update_cycles = cc_ext->tr_update_cyls; ext_req->fr_num_rtts = cc_ext->fr_rtt; ext_req->ai_rate_increase = cc_ext->ai_rate_incr; ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th); ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th); ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th); ext_req->bw_avg_weight = cc_ext->bw_avg_weight; ext_req->actual_cr_factor = cc_ext->cr_factor; ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp); ext_req->cp_bias_en = cc_ext->cp_bias_en; ext_req->cp_bias = cc_ext->cp_bias; ext_req->cnp_ecn = cc_ext->cnp_ecn; ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en; ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec); ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th); ext_req->cr_width = cc_ext->cr_width; ext_req->quota_period_min = cc_ext->min_quota; ext_req->quota_period_max = cc_ext->max_quota; ext_req->quota_period_abs_max = cc_ext->abs_max_quota; ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb); ext_req->cr_prob_factor = cc_ext->cr_prob_fac; ext_req->tr_prob_factor = cc_ext->tr_prob_fac; ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th); ext_req->red_div = cc_ext->red_div; ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th; ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt); ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio; ext_req->use_rate_table = cc_ext->low_rate_en; ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th); ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1); ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2); ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th); ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1); ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2); ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt); ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes; } int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res, struct bnxt_qplib_cc_param *cc_param) { struct bnxt_qplib_tlv_modify_cc_req tlv_req = {}; struct creq_modify_roce_cc_resp resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_modify_roce_cc *req; int req_size; void *cmd; int rc; /* Prepare the older base command */ req = &tlv_req.base_req; cmd = req; req_size = sizeof(*req); bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC, sizeof(*req)); req->modify_mask = cpu_to_le32(cc_param->mask); req->enable_cc = cc_param->enable; req->g = cc_param->g; req->num_phases_per_state = cc_param->nph_per_state; req->time_per_phase = cc_param->time_pph; req->pkts_per_phase = cc_param->pkts_pph; req->init_cr = cpu_to_le16(cc_param->init_cr); req->init_tr = cpu_to_le16(cc_param->init_tr); req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) | (cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK); req->alt_vlan_pcp = cc_param->alt_vlan_pcp; req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp); req->rtt = cpu_to_le16(cc_param->rtt); req->tcp_cp = cpu_to_le16(cc_param->tcp_cp); req->cc_mode = cc_param->cc_mode; req->inactivity_th = cpu_to_le16(cc_param->inact_th); /* For chip gen P5 onwards fill extended cmd and header */ if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) { struct roce_tlv *hdr; u32 payload; u32 chunks; cmd = &tlv_req; req_size = sizeof(tlv_req); /* Prepare primary tlv header */ hdr = &tlv_req.tlv_hdr; chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req)); payload = sizeof(struct cmdq_modify_roce_cc); __roce_1st_tlv_prep(hdr, chunks, payload, true); /* Prepare secondary tlv header */ hdr = (struct roce_tlv *)&tlv_req.ext_req; payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) - sizeof(struct roce_tlv); __roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true); bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext); } bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size, sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg); return rc; } int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type, u32 xid, u32 resp_size, void *resp_va) { struct creq_read_context resp = {}; struct bnxt_qplib_cmdqmsg msg = {}; struct cmdq_read_context req = {}; struct bnxt_qplib_rcfw_sbuf sbuf; int rc; sbuf.size = resp_size; sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, &sbuf.dma_addr, GFP_KERNEL); if (!sbuf.sb) return -ENOMEM; bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req)); req.resp_addr = cpu_to_le64(sbuf.dma_addr); req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS; req.xid = cpu_to_le32(xid); req.type = res_type; bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), sizeof(resp), 0); rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); if (rc) goto free_mem; memcpy(resp_va, sbuf.sb, resp_size); free_mem: dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr); return rc; }