// SPDX-License-Identifier: GPL-2.0-only /* * rotary_encoder.c * * (c) 2009 Daniel Mack * Copyright (C) 2011 Johan Hovold * * state machine code inspired by code from Tim Ruetz * * A generic driver for rotary encoders connected to GPIO lines. * See file:Documentation/input/devices/rotary-encoder.rst for more information */ #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "rotary-encoder" enum rotary_encoder_encoding { ROTENC_GRAY, ROTENC_BINARY, }; struct rotary_encoder { struct input_dev *input; struct mutex access_mutex; u32 steps; u32 axis; bool relative_axis; bool rollover; enum rotary_encoder_encoding encoding; unsigned int pos; struct gpio_descs *gpios; unsigned int *irq; bool armed; signed char dir; /* 1 - clockwise, -1 - CCW */ unsigned int last_stable; }; static unsigned int rotary_encoder_get_state(struct rotary_encoder *encoder) { int i; unsigned int ret = 0; for (i = 0; i < encoder->gpios->ndescs; ++i) { int val = gpiod_get_value_cansleep(encoder->gpios->desc[i]); /* convert from gray encoding to normal */ if (encoder->encoding == ROTENC_GRAY && ret & 1) val = !val; ret = ret << 1 | val; } return ret & 3; } static void rotary_encoder_report_event(struct rotary_encoder *encoder) { if (encoder->relative_axis) { input_report_rel(encoder->input, encoder->axis, encoder->dir); } else { unsigned int pos = encoder->pos; if (encoder->dir < 0) { /* turning counter-clockwise */ if (encoder->rollover) pos += encoder->steps; if (pos) pos--; } else { /* turning clockwise */ if (encoder->rollover || pos < encoder->steps) pos++; } if (encoder->rollover) pos %= encoder->steps; encoder->pos = pos; input_report_abs(encoder->input, encoder->axis, encoder->pos); } input_sync(encoder->input); } static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; guard(mutex)(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); switch (state) { case 0x0: if (encoder->armed) { rotary_encoder_report_event(encoder); encoder->armed = false; } break; case 0x1: case 0x3: if (encoder->armed) encoder->dir = 2 - state; break; case 0x2: encoder->armed = true; break; } return IRQ_HANDLED; } static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; guard(mutex)(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if (state & 1) { encoder->dir = ((encoder->last_stable - state + 1) % 4) - 1; } else { if (state != encoder->last_stable) { rotary_encoder_report_event(encoder); encoder->last_stable = state; } } return IRQ_HANDLED; } static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; guard(mutex)(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if ((encoder->last_stable + 1) % 4 == state) { encoder->dir = 1; rotary_encoder_report_event(encoder); } else if (encoder->last_stable == (state + 1) % 4) { encoder->dir = -1; rotary_encoder_report_event(encoder); } encoder->last_stable = state; return IRQ_HANDLED; } static int rotary_encoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; u32 steps_per_period; unsigned int i; int err; encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; mutex_init(&encoder->access_mutex); device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps); err = device_property_read_u32(dev, "rotary-encoder,steps-per-period", &steps_per_period); if (err) { /* * The 'half-period' property has been deprecated, you must * use 'steps-per-period' and set an appropriate value, but * we still need to parse it to maintain compatibility. If * neither property is present we fall back to the one step * per period behavior. */ steps_per_period = device_property_read_bool(dev, "rotary-encoder,half-period") ? 2 : 1; } encoder->rollover = device_property_read_bool(dev, "rotary-encoder,rollover"); if (!device_property_present(dev, "rotary-encoder,encoding") || !device_property_match_string(dev, "rotary-encoder,encoding", "gray")) { dev_info(dev, "gray"); encoder->encoding = ROTENC_GRAY; } else if (!device_property_match_string(dev, "rotary-encoder,encoding", "binary")) { dev_info(dev, "binary"); encoder->encoding = ROTENC_BINARY; } else { dev_err(dev, "unknown encoding setting\n"); return -EINVAL; } device_property_read_u32(dev, "linux,axis", &encoder->axis); encoder->relative_axis = device_property_read_bool(dev, "rotary-encoder,relative-axis"); encoder->gpios = devm_gpiod_get_array(dev, NULL, GPIOD_IN); if (IS_ERR(encoder->gpios)) return dev_err_probe(dev, PTR_ERR(encoder->gpios), "unable to get gpios\n"); if (encoder->gpios->ndescs < 2) { dev_err(dev, "not enough gpios found\n"); return -EINVAL; } input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; encoder->input = input; input->name = pdev->name; input->id.bustype = BUS_HOST; if (encoder->relative_axis) input_set_capability(input, EV_REL, encoder->axis); else input_set_abs_params(input, encoder->axis, 0, encoder->steps, 0, 1); switch (steps_per_period >> (encoder->gpios->ndescs - 2)) { case 4: handler = &rotary_encoder_quarter_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 2: handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 1: handler = &rotary_encoder_irq; break; default: dev_err(dev, "'%d' is not a valid steps-per-period value\n", steps_per_period); return -EINVAL; } encoder->irq = devm_kcalloc(dev, encoder->gpios->ndescs, sizeof(*encoder->irq), GFP_KERNEL); if (!encoder->irq) return -ENOMEM; for (i = 0; i < encoder->gpios->ndescs; ++i) { encoder->irq[i] = gpiod_to_irq(encoder->gpios->desc[i]); err = devm_request_threaded_irq(dev, encoder->irq[i], NULL, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d (gpio#%d)\n", encoder->irq[i], i); return err; } } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); return err; } device_init_wakeup(dev, device_property_read_bool(dev, "wakeup-source")); platform_set_drvdata(pdev, encoder); return 0; } static int rotary_encoder_suspend(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); unsigned int i; if (device_may_wakeup(dev)) { for (i = 0; i < encoder->gpios->ndescs; ++i) enable_irq_wake(encoder->irq[i]); } return 0; } static int rotary_encoder_resume(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); unsigned int i; if (device_may_wakeup(dev)) { for (i = 0; i < encoder->gpios->ndescs; ++i) disable_irq_wake(encoder->irq[i]); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops, rotary_encoder_suspend, rotary_encoder_resume); #ifdef CONFIG_OF static const struct of_device_id rotary_encoder_of_match[] = { { .compatible = "rotary-encoder", }, { }, }; MODULE_DEVICE_TABLE(of, rotary_encoder_of_match); #endif static struct platform_driver rotary_encoder_driver = { .probe = rotary_encoder_probe, .driver = { .name = DRV_NAME, .pm = pm_sleep_ptr(&rotary_encoder_pm_ops), .of_match_table = of_match_ptr(rotary_encoder_of_match), } }; module_platform_driver(rotary_encoder_driver); MODULE_ALIAS("platform:" DRV_NAME); MODULE_DESCRIPTION("GPIO rotary encoder driver"); MODULE_AUTHOR("Daniel Mack , Johan Hovold"); MODULE_LICENSE("GPL v2");