// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/mmc/core/sd_ops.h * * Copyright 2006-2007 Pierre Ossman */ #include #include #include #include #include #include #include #include #include "core.h" #include "card.h" #include "sd_ops.h" #include "mmc_ops.h" /* * Extensive testing has shown that some specific SD cards * require an increased command timeout to be successfully * initialized. */ #define SD_APP_OP_COND_PERIOD_US (10 * 1000) /* 10ms */ #define SD_APP_OP_COND_TIMEOUT_MS 2000 /* 2s */ struct sd_app_op_cond_busy_data { struct mmc_host *host; u32 ocr; struct mmc_command *cmd; }; int mmc_app_cmd(struct mmc_host *host, struct mmc_card *card) { int err; struct mmc_command cmd = {}; if (WARN_ON(card && card->host != host)) return -EINVAL; /* * UHS2 packet has APP bit so only set APP_CMD flag here. * Will set the APP bit when assembling UHS2 packet. */ if (host->uhs2_sd_tran) { host->uhs2_app_cmd = true; return 0; } cmd.opcode = MMC_APP_CMD; if (card) { cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } else { cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_BCR; } err = mmc_wait_for_cmd(host, &cmd, 0); if (err) return err; /* Check that card supported application commands */ if (!mmc_host_is_spi(host) && !(cmd.resp[0] & R1_APP_CMD)) return -EOPNOTSUPP; return 0; } EXPORT_SYMBOL_GPL(mmc_app_cmd); static int mmc_wait_for_app_cmd(struct mmc_host *host, struct mmc_card *card, struct mmc_command *cmd) { struct mmc_request mrq = {}; int i, err = -EIO; /* * We have to resend MMC_APP_CMD for each attempt so * we cannot use the retries field in mmc_command. */ for (i = 0; i <= MMC_CMD_RETRIES; i++) { err = mmc_app_cmd(host, card); if (err) { /* no point in retrying; no APP commands allowed */ if (mmc_host_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) break; } continue; } memset(&mrq, 0, sizeof(struct mmc_request)); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = 0; mrq.cmd = cmd; cmd->data = NULL; mmc_wait_for_req(host, &mrq); err = cmd->error; if (!cmd->error) break; /* no point in retrying illegal APP commands */ if (mmc_host_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) break; } } return err; } int mmc_app_set_bus_width(struct mmc_card *card, int width) { struct mmc_command cmd = {}; cmd.opcode = SD_APP_SET_BUS_WIDTH; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; switch (width) { case MMC_BUS_WIDTH_1: cmd.arg = SD_BUS_WIDTH_1; break; case MMC_BUS_WIDTH_4: cmd.arg = SD_BUS_WIDTH_4; break; default: return -EINVAL; } return mmc_wait_for_app_cmd(card->host, card, &cmd); } static int sd_app_op_cond_cb(void *cb_data, bool *busy) { struct sd_app_op_cond_busy_data *data = cb_data; struct mmc_host *host = data->host; struct mmc_command *cmd = data->cmd; u32 ocr = data->ocr; int err; *busy = false; err = mmc_wait_for_app_cmd(host, NULL, cmd); if (err) return err; /* If we're just probing, do a single pass. */ if (ocr == 0) return 0; /* Wait until reset completes. */ if (mmc_host_is_spi(host)) { if (!(cmd->resp[0] & R1_SPI_IDLE)) return 0; } else if (cmd->resp[0] & MMC_CARD_BUSY) { return 0; } *busy = true; return 0; } int mmc_send_app_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) { struct mmc_command cmd = {}; struct sd_app_op_cond_busy_data cb_data = { .host = host, .ocr = ocr, .cmd = &cmd }; int err; cmd.opcode = SD_APP_OP_COND; if (mmc_host_is_spi(host)) cmd.arg = ocr & (1 << 30); /* SPI only defines one bit */ else cmd.arg = ocr; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; err = __mmc_poll_for_busy(host, SD_APP_OP_COND_PERIOD_US, SD_APP_OP_COND_TIMEOUT_MS, &sd_app_op_cond_cb, &cb_data); if (err) return err; if (rocr && !mmc_host_is_spi(host)) *rocr = cmd.resp[0]; return 0; } int mmc_send_ext_addr(struct mmc_host *host, u32 addr) { struct mmc_command cmd = { .opcode = SD_ADDR_EXT, .arg = addr, .flags = MMC_RSP_R1 | MMC_CMD_AC, }; if (!mmc_card_ult_capacity(host->card)) return 0; return mmc_wait_for_cmd(host, &cmd, 0); } static int __mmc_send_if_cond(struct mmc_host *host, u32 ocr, u8 pcie_bits, u32 *resp) { struct mmc_command cmd = {}; int err; static const u8 test_pattern = 0xAA; u8 result_pattern; /* * To support SD 2.0 cards, we must always invoke SD_SEND_IF_COND * before SD_APP_OP_COND. This command will harmlessly fail for * SD 1.0 cards. */ cmd.opcode = SD_SEND_IF_COND; cmd.arg = ((ocr & 0xFF8000) != 0) << 8 | pcie_bits << 8 | test_pattern; cmd.flags = MMC_RSP_SPI_R7 | MMC_RSP_R7 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, 0); if (err) return err; if (mmc_host_is_spi(host)) result_pattern = cmd.resp[1] & 0xFF; else result_pattern = cmd.resp[0] & 0xFF; if (result_pattern != test_pattern) return -EIO; if (resp) *resp = cmd.resp[0]; return 0; } int mmc_send_if_cond(struct mmc_host *host, u32 ocr) { return __mmc_send_if_cond(host, ocr, 0, NULL); } int mmc_send_if_cond_pcie(struct mmc_host *host, u32 ocr) { u32 resp = 0; u8 pcie_bits = 0; int ret; if (host->caps2 & MMC_CAP2_SD_EXP) { /* Probe card for SD express support via PCIe. */ pcie_bits = 0x10; if (host->caps2 & MMC_CAP2_SD_EXP_1_2V) /* Probe also for 1.2V support. */ pcie_bits = 0x30; } ret = __mmc_send_if_cond(host, ocr, pcie_bits, &resp); if (ret) return 0; /* Continue with the SD express init, if the card supports it. */ resp &= 0x3000; if (pcie_bits && resp) { if (resp == 0x3000) host->ios.timing = MMC_TIMING_SD_EXP_1_2V; else host->ios.timing = MMC_TIMING_SD_EXP; /* * According to the spec the clock shall also be gated, but * let's leave this to the host driver for more flexibility. */ return host->ops->init_sd_express(host, &host->ios); } return 0; } int mmc_send_relative_addr(struct mmc_host *host, unsigned int *rca) { int err; struct mmc_command cmd = {}; cmd.opcode = SD_SEND_RELATIVE_ADDR; cmd.arg = 0; cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); if (err) return err; *rca = cmd.resp[0] >> 16; return 0; } int mmc_app_send_scr(struct mmc_card *card) { int err; struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; __be32 *scr; /* NOTE: caller guarantees scr is heap-allocated */ err = mmc_app_cmd(card->host, card); if (err) return err; /* dma onto stack is unsafe/nonportable, but callers to this * routine normally provide temporary on-stack buffers ... */ scr = kmalloc(sizeof(card->raw_scr), GFP_KERNEL); if (!scr) return -ENOMEM; mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = SD_APP_SEND_SCR; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = 8; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, scr, 8); mmc_set_data_timeout(&data, card); mmc_wait_for_req(card->host, &mrq); card->raw_scr[0] = be32_to_cpu(scr[0]); card->raw_scr[1] = be32_to_cpu(scr[1]); kfree(scr); if (cmd.error) return cmd.error; if (data.error) return data.error; return 0; } int mmc_sd_switch(struct mmc_card *card, bool mode, int group, u8 value, u8 *resp) { u32 cmd_args; /* NOTE: caller guarantees resp is heap-allocated */ value &= 0xF; cmd_args = mode << 31 | 0x00FFFFFF; cmd_args &= ~(0xF << (group * 4)); cmd_args |= value << (group * 4); return mmc_send_adtc_data(card, card->host, SD_SWITCH, cmd_args, resp, 64); } EXPORT_SYMBOL_GPL(mmc_sd_switch); int mmc_app_sd_status(struct mmc_card *card, void *ssr) { int err; struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; /* NOTE: caller guarantees ssr is heap-allocated */ err = mmc_app_cmd(card->host, card); if (err) return err; mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = SD_APP_SD_STATUS; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = 64; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, ssr, 64); mmc_set_data_timeout(&data, card); mmc_wait_for_req(card->host, &mrq); if (cmd.error) return cmd.error; if (data.error) return data.error; return 0; }