// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2015, 2022 MediaTek Inc. * Author: Chaotian.Jing */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cqhci.h" #include "mmc_hsq.h" #define MAX_BD_NUM 1024 #define MSDC_NR_CLOCKS 3 /*--------------------------------------------------------------------------*/ /* Common Definition */ /*--------------------------------------------------------------------------*/ #define MSDC_BUS_1BITS 0x0 #define MSDC_BUS_4BITS 0x1 #define MSDC_BUS_8BITS 0x2 #define MSDC_BURST_64B 0x6 /*--------------------------------------------------------------------------*/ /* Register Offset */ /*--------------------------------------------------------------------------*/ #define MSDC_CFG 0x0 #define MSDC_IOCON 0x04 #define MSDC_PS 0x08 #define MSDC_INT 0x0c #define MSDC_INTEN 0x10 #define MSDC_FIFOCS 0x14 #define SDC_CFG 0x30 #define SDC_CMD 0x34 #define SDC_ARG 0x38 #define SDC_STS 0x3c #define SDC_RESP0 0x40 #define SDC_RESP1 0x44 #define SDC_RESP2 0x48 #define SDC_RESP3 0x4c #define SDC_BLK_NUM 0x50 #define SDC_ADV_CFG0 0x64 #define MSDC_NEW_RX_CFG 0x68 #define EMMC_IOCON 0x7c #define SDC_ACMD_RESP 0x80 #define DMA_SA_H4BIT 0x8c #define MSDC_DMA_SA 0x90 #define MSDC_DMA_CTRL 0x98 #define MSDC_DMA_CFG 0x9c #define MSDC_PATCH_BIT 0xb0 #define MSDC_PATCH_BIT1 0xb4 #define MSDC_PATCH_BIT2 0xb8 #define MSDC_PAD_TUNE 0xec #define MSDC_PAD_TUNE0 0xf0 #define PAD_DS_TUNE 0x188 #define PAD_CMD_TUNE 0x18c #define EMMC51_CFG0 0x204 #define EMMC50_CFG0 0x208 #define EMMC50_CFG1 0x20c #define EMMC50_CFG3 0x220 #define SDC_FIFO_CFG 0x228 #define CQHCI_SETTING 0x7fc /*--------------------------------------------------------------------------*/ /* Top Pad Register Offset */ /*--------------------------------------------------------------------------*/ #define EMMC_TOP_CONTROL 0x00 #define EMMC_TOP_CMD 0x04 #define EMMC50_PAD_DS_TUNE 0x0c #define LOOP_TEST_CONTROL 0x30 /*--------------------------------------------------------------------------*/ /* Register Mask */ /*--------------------------------------------------------------------------*/ /* MSDC_CFG mask */ #define MSDC_CFG_MODE BIT(0) /* RW */ #define MSDC_CFG_CKPDN BIT(1) /* RW */ #define MSDC_CFG_RST BIT(2) /* RW */ #define MSDC_CFG_PIO BIT(3) /* RW */ #define MSDC_CFG_CKDRVEN BIT(4) /* RW */ #define MSDC_CFG_BV18SDT BIT(5) /* RW */ #define MSDC_CFG_BV18PSS BIT(6) /* R */ #define MSDC_CFG_CKSTB BIT(7) /* R */ #define MSDC_CFG_CKDIV GENMASK(15, 8) /* RW */ #define MSDC_CFG_CKMOD GENMASK(17, 16) /* RW */ #define MSDC_CFG_HS400_CK_MODE BIT(18) /* RW */ #define MSDC_CFG_HS400_CK_MODE_EXTRA BIT(22) /* RW */ #define MSDC_CFG_CKDIV_EXTRA GENMASK(19, 8) /* RW */ #define MSDC_CFG_CKMOD_EXTRA GENMASK(21, 20) /* RW */ /* MSDC_IOCON mask */ #define MSDC_IOCON_SDR104CKS BIT(0) /* RW */ #define MSDC_IOCON_RSPL BIT(1) /* RW */ #define MSDC_IOCON_DSPL BIT(2) /* RW */ #define MSDC_IOCON_DDLSEL BIT(3) /* RW */ #define MSDC_IOCON_DDR50CKD BIT(4) /* RW */ #define MSDC_IOCON_DSPLSEL BIT(5) /* RW */ #define MSDC_IOCON_W_DSPL BIT(8) /* RW */ #define MSDC_IOCON_D0SPL BIT(16) /* RW */ #define MSDC_IOCON_D1SPL BIT(17) /* RW */ #define MSDC_IOCON_D2SPL BIT(18) /* RW */ #define MSDC_IOCON_D3SPL BIT(19) /* RW */ #define MSDC_IOCON_D4SPL BIT(20) /* RW */ #define MSDC_IOCON_D5SPL BIT(21) /* RW */ #define MSDC_IOCON_D6SPL BIT(22) /* RW */ #define MSDC_IOCON_D7SPL BIT(23) /* RW */ #define MSDC_IOCON_RISCSZ GENMASK(25, 24) /* RW */ /* MSDC_PS mask */ #define MSDC_PS_CDEN BIT(0) /* RW */ #define MSDC_PS_CDSTS BIT(1) /* R */ #define MSDC_PS_CDDEBOUNCE GENMASK(15, 12) /* RW */ #define MSDC_PS_DAT GENMASK(23, 16) /* R */ #define MSDC_PS_DATA1 BIT(17) /* R */ #define MSDC_PS_CMD BIT(24) /* R */ #define MSDC_PS_WP BIT(31) /* R */ /* MSDC_INT mask */ #define MSDC_INT_MMCIRQ BIT(0) /* W1C */ #define MSDC_INT_CDSC BIT(1) /* W1C */ #define MSDC_INT_ACMDRDY BIT(3) /* W1C */ #define MSDC_INT_ACMDTMO BIT(4) /* W1C */ #define MSDC_INT_ACMDCRCERR BIT(5) /* W1C */ #define MSDC_INT_DMAQ_EMPTY BIT(6) /* W1C */ #define MSDC_INT_SDIOIRQ BIT(7) /* W1C */ #define MSDC_INT_CMDRDY BIT(8) /* W1C */ #define MSDC_INT_CMDTMO BIT(9) /* W1C */ #define MSDC_INT_RSPCRCERR BIT(10) /* W1C */ #define MSDC_INT_CSTA BIT(11) /* R */ #define MSDC_INT_XFER_COMPL BIT(12) /* W1C */ #define MSDC_INT_DXFER_DONE BIT(13) /* W1C */ #define MSDC_INT_DATTMO BIT(14) /* W1C */ #define MSDC_INT_DATCRCERR BIT(15) /* W1C */ #define MSDC_INT_ACMD19_DONE BIT(16) /* W1C */ #define MSDC_INT_DMA_BDCSERR BIT(17) /* W1C */ #define MSDC_INT_DMA_GPDCSERR BIT(18) /* W1C */ #define MSDC_INT_DMA_PROTECT BIT(19) /* W1C */ #define MSDC_INT_CMDQ BIT(28) /* W1C */ /* MSDC_INTEN mask */ #define MSDC_INTEN_MMCIRQ BIT(0) /* RW */ #define MSDC_INTEN_CDSC BIT(1) /* RW */ #define MSDC_INTEN_ACMDRDY BIT(3) /* RW */ #define MSDC_INTEN_ACMDTMO BIT(4) /* RW */ #define MSDC_INTEN_ACMDCRCERR BIT(5) /* RW */ #define MSDC_INTEN_DMAQ_EMPTY BIT(6) /* RW */ #define MSDC_INTEN_SDIOIRQ BIT(7) /* RW */ #define MSDC_INTEN_CMDRDY BIT(8) /* RW */ #define MSDC_INTEN_CMDTMO BIT(9) /* RW */ #define MSDC_INTEN_RSPCRCERR BIT(10) /* RW */ #define MSDC_INTEN_CSTA BIT(11) /* RW */ #define MSDC_INTEN_XFER_COMPL BIT(12) /* RW */ #define MSDC_INTEN_DXFER_DONE BIT(13) /* RW */ #define MSDC_INTEN_DATTMO BIT(14) /* RW */ #define MSDC_INTEN_DATCRCERR BIT(15) /* RW */ #define MSDC_INTEN_ACMD19_DONE BIT(16) /* RW */ #define MSDC_INTEN_DMA_BDCSERR BIT(17) /* RW */ #define MSDC_INTEN_DMA_GPDCSERR BIT(18) /* RW */ #define MSDC_INTEN_DMA_PROTECT BIT(19) /* RW */ /* MSDC_FIFOCS mask */ #define MSDC_FIFOCS_RXCNT GENMASK(7, 0) /* R */ #define MSDC_FIFOCS_TXCNT GENMASK(23, 16) /* R */ #define MSDC_FIFOCS_CLR BIT(31) /* RW */ /* SDC_CFG mask */ #define SDC_CFG_SDIOINTWKUP BIT(0) /* RW */ #define SDC_CFG_INSWKUP BIT(1) /* RW */ #define SDC_CFG_WRDTOC GENMASK(14, 2) /* RW */ #define SDC_CFG_BUSWIDTH GENMASK(17, 16) /* RW */ #define SDC_CFG_SDIO BIT(19) /* RW */ #define SDC_CFG_SDIOIDE BIT(20) /* RW */ #define SDC_CFG_INTATGAP BIT(21) /* RW */ #define SDC_CFG_DTOC GENMASK(31, 24) /* RW */ /* SDC_STS mask */ #define SDC_STS_SDCBUSY BIT(0) /* RW */ #define SDC_STS_CMDBUSY BIT(1) /* RW */ #define SDC_STS_SWR_COMPL BIT(31) /* RW */ /* SDC_ADV_CFG0 mask */ #define SDC_DAT1_IRQ_TRIGGER BIT(19) /* RW */ #define SDC_RX_ENHANCE_EN BIT(20) /* RW */ #define SDC_NEW_TX_EN BIT(31) /* RW */ /* MSDC_NEW_RX_CFG mask */ #define MSDC_NEW_RX_PATH_SEL BIT(0) /* RW */ /* DMA_SA_H4BIT mask */ #define DMA_ADDR_HIGH_4BIT GENMASK(3, 0) /* RW */ /* MSDC_DMA_CTRL mask */ #define MSDC_DMA_CTRL_START BIT(0) /* W */ #define MSDC_DMA_CTRL_STOP BIT(1) /* W */ #define MSDC_DMA_CTRL_RESUME BIT(2) /* W */ #define MSDC_DMA_CTRL_MODE BIT(8) /* RW */ #define MSDC_DMA_CTRL_LASTBUF BIT(10) /* RW */ #define MSDC_DMA_CTRL_BRUSTSZ GENMASK(14, 12) /* RW */ /* MSDC_DMA_CFG mask */ #define MSDC_DMA_CFG_STS BIT(0) /* R */ #define MSDC_DMA_CFG_DECSEN BIT(1) /* RW */ #define MSDC_DMA_CFG_AHBHPROT2 BIT(9) /* RW */ #define MSDC_DMA_CFG_ACTIVEEN BIT(13) /* RW */ #define MSDC_DMA_CFG_CS12B16B BIT(16) /* RW */ /* MSDC_PATCH_BIT mask */ #define MSDC_PATCH_BIT_ODDSUPP BIT(1) /* RW */ #define MSDC_PATCH_BIT_RD_DAT_SEL BIT(3) /* RW */ #define MSDC_INT_DAT_LATCH_CK_SEL GENMASK(9, 7) #define MSDC_CKGEN_MSDC_DLY_SEL GENMASK(14, 10) #define MSDC_PATCH_BIT_IODSSEL BIT(16) /* RW */ #define MSDC_PATCH_BIT_IOINTSEL BIT(17) /* RW */ #define MSDC_PATCH_BIT_BUSYDLY GENMASK(21, 18) /* RW */ #define MSDC_PATCH_BIT_WDOD GENMASK(25, 22) /* RW */ #define MSDC_PATCH_BIT_IDRTSEL BIT(26) /* RW */ #define MSDC_PATCH_BIT_CMDFSEL BIT(27) /* RW */ #define MSDC_PATCH_BIT_INTDLSEL BIT(28) /* RW */ #define MSDC_PATCH_BIT_SPCPUSH BIT(29) /* RW */ #define MSDC_PATCH_BIT_DECRCTMO BIT(30) /* RW */ #define MSDC_PATCH_BIT1_CMDTA GENMASK(5, 3) /* RW */ #define MSDC_PB1_BUSY_CHECK_SEL BIT(7) /* RW */ #define MSDC_PATCH_BIT1_STOP_DLY GENMASK(11, 8) /* RW */ #define MSDC_PATCH_BIT2_CFGRESP BIT(15) /* RW */ #define MSDC_PATCH_BIT2_CFGCRCSTS BIT(28) /* RW */ #define MSDC_PB2_SUPPORT_64G BIT(1) /* RW */ #define MSDC_PB2_RESPWAIT GENMASK(3, 2) /* RW */ #define MSDC_PB2_RESPSTSENSEL GENMASK(18, 16) /* RW */ #define MSDC_PB2_POP_EN_CNT GENMASK(23, 20) /* RW */ #define MSDC_PB2_CFGCRCSTSEDGE BIT(25) /* RW */ #define MSDC_PB2_CRCSTSENSEL GENMASK(31, 29) /* RW */ #define MSDC_PAD_TUNE_DATWRDLY GENMASK(4, 0) /* RW */ #define MSDC_PAD_TUNE_DATRRDLY GENMASK(12, 8) /* RW */ #define MSDC_PAD_TUNE_DATRRDLY2 GENMASK(12, 8) /* RW */ #define MSDC_PAD_TUNE_CMDRDLY GENMASK(20, 16) /* RW */ #define MSDC_PAD_TUNE_CMDRDLY2 GENMASK(20, 16) /* RW */ #define MSDC_PAD_TUNE_CMDRRDLY GENMASK(26, 22) /* RW */ #define MSDC_PAD_TUNE_CLKTDLY GENMASK(31, 27) /* RW */ #define MSDC_PAD_TUNE_RXDLYSEL BIT(15) /* RW */ #define MSDC_PAD_TUNE_RD_SEL BIT(13) /* RW */ #define MSDC_PAD_TUNE_CMD_SEL BIT(21) /* RW */ #define MSDC_PAD_TUNE_RD2_SEL BIT(13) /* RW */ #define MSDC_PAD_TUNE_CMD2_SEL BIT(21) /* RW */ #define PAD_DS_TUNE_DLY_SEL BIT(0) /* RW */ #define PAD_DS_TUNE_DLY1 GENMASK(6, 2) /* RW */ #define PAD_DS_TUNE_DLY2 GENMASK(11, 7) /* RW */ #define PAD_DS_TUNE_DLY3 GENMASK(16, 12) /* RW */ #define PAD_CMD_TUNE_RX_DLY3 GENMASK(5, 1) /* RW */ /* EMMC51_CFG0 mask */ #define CMDQ_RDAT_CNT GENMASK(21, 12) /* RW */ #define EMMC50_CFG_PADCMD_LATCHCK BIT(0) /* RW */ #define EMMC50_CFG_CRCSTS_EDGE BIT(3) /* RW */ #define EMMC50_CFG_CFCSTS_SEL BIT(4) /* RW */ #define EMMC50_CFG_CMD_RESP_SEL BIT(9) /* RW */ /* EMMC50_CFG1 mask */ #define EMMC50_CFG1_DS_CFG BIT(28) /* RW */ #define EMMC50_CFG3_OUTS_WR GENMASK(4, 0) /* RW */ #define SDC_FIFO_CFG_WRVALIDSEL BIT(24) /* RW */ #define SDC_FIFO_CFG_RDVALIDSEL BIT(25) /* RW */ /* CQHCI_SETTING */ #define CQHCI_RD_CMD_WND_SEL BIT(14) /* RW */ #define CQHCI_WR_CMD_WND_SEL BIT(15) /* RW */ /* EMMC_TOP_CONTROL mask */ #define PAD_RXDLY_SEL BIT(0) /* RW */ #define DELAY_EN BIT(1) /* RW */ #define PAD_DAT_RD_RXDLY2 GENMASK(6, 2) /* RW */ #define PAD_DAT_RD_RXDLY GENMASK(11, 7) /* RW */ #define PAD_DAT_RD_RXDLY2_SEL BIT(12) /* RW */ #define PAD_DAT_RD_RXDLY_SEL BIT(13) /* RW */ #define DATA_K_VALUE_SEL BIT(14) /* RW */ #define SDC_RX_ENH_EN BIT(15) /* TW */ /* EMMC_TOP_CMD mask */ #define PAD_CMD_RXDLY2 GENMASK(4, 0) /* RW */ #define PAD_CMD_RXDLY GENMASK(9, 5) /* RW */ #define PAD_CMD_RD_RXDLY2_SEL BIT(10) /* RW */ #define PAD_CMD_RD_RXDLY_SEL BIT(11) /* RW */ #define PAD_CMD_TX_DLY GENMASK(16, 12) /* RW */ /* EMMC50_PAD_DS_TUNE mask */ #define PAD_DS_DLY_SEL BIT(16) /* RW */ #define PAD_DS_DLY1 GENMASK(14, 10) /* RW */ #define PAD_DS_DLY3 GENMASK(4, 0) /* RW */ /* LOOP_TEST_CONTROL mask */ #define TEST_LOOP_DSCLK_MUX_SEL BIT(0) /* RW */ #define TEST_LOOP_LATCH_MUX_SEL BIT(1) /* RW */ #define LOOP_EN_SEL_CLK BIT(20) /* RW */ #define TEST_HS400_CMD_LOOP_MUX_SEL BIT(31) /* RW */ #define REQ_CMD_EIO BIT(0) #define REQ_CMD_TMO BIT(1) #define REQ_DAT_ERR BIT(2) #define REQ_STOP_EIO BIT(3) #define REQ_STOP_TMO BIT(4) #define REQ_CMD_BUSY BIT(5) #define MSDC_PREPARE_FLAG BIT(0) #define MSDC_ASYNC_FLAG BIT(1) #define MSDC_MMAP_FLAG BIT(2) #define MTK_MMC_AUTOSUSPEND_DELAY 50 #define CMD_TIMEOUT (HZ/10 * 5) /* 100ms x5 */ #define DAT_TIMEOUT (HZ * 5) /* 1000ms x5 */ #define DEFAULT_DEBOUNCE (8) /* 8 cycles CD debounce */ #define TUNING_REG2_FIXED_OFFEST 4 #define PAD_DELAY_HALF 32 /* PAD delay cells */ #define PAD_DELAY_FULL 64 /*--------------------------------------------------------------------------*/ /* Descriptor Structure */ /*--------------------------------------------------------------------------*/ struct mt_gpdma_desc { u32 gpd_info; #define GPDMA_DESC_HWO BIT(0) #define GPDMA_DESC_BDP BIT(1) #define GPDMA_DESC_CHECKSUM GENMASK(15, 8) #define GPDMA_DESC_INT BIT(16) #define GPDMA_DESC_NEXT_H4 GENMASK(27, 24) #define GPDMA_DESC_PTR_H4 GENMASK(31, 28) u32 next; u32 ptr; u32 gpd_data_len; #define GPDMA_DESC_BUFLEN GENMASK(15, 0) #define GPDMA_DESC_EXTLEN GENMASK(23, 16) u32 arg; u32 blknum; u32 cmd; }; struct mt_bdma_desc { u32 bd_info; #define BDMA_DESC_EOL BIT(0) #define BDMA_DESC_CHECKSUM GENMASK(15, 8) #define BDMA_DESC_BLKPAD BIT(17) #define BDMA_DESC_DWPAD BIT(18) #define BDMA_DESC_NEXT_H4 GENMASK(27, 24) #define BDMA_DESC_PTR_H4 GENMASK(31, 28) u32 next; u32 ptr; u32 bd_data_len; #define BDMA_DESC_BUFLEN GENMASK(15, 0) #define BDMA_DESC_BUFLEN_EXT GENMASK(23, 0) }; struct msdc_dma { struct scatterlist *sg; /* I/O scatter list */ struct mt_gpdma_desc *gpd; /* pointer to gpd array */ struct mt_bdma_desc *bd; /* pointer to bd array */ dma_addr_t gpd_addr; /* the physical address of gpd array */ dma_addr_t bd_addr; /* the physical address of bd array */ }; struct msdc_save_para { u32 msdc_cfg; u32 iocon; u32 sdc_cfg; u32 pad_tune; u32 patch_bit0; u32 patch_bit1; u32 patch_bit2; u32 pad_ds_tune; u32 pad_cmd_tune; u32 emmc50_cfg0; u32 emmc50_cfg3; u32 sdc_fifo_cfg; u32 emmc_top_control; u32 emmc_top_cmd; u32 emmc50_pad_ds_tune; u32 loop_test_control; }; struct mtk_mmc_compatible { u8 clk_div_bits; bool recheck_sdio_irq; bool hs400_tune; /* only used for MT8173 */ u32 pad_tune_reg; bool async_fifo; bool data_tune; bool busy_check; bool stop_clk_fix; u8 stop_dly_sel; u8 pop_en_cnt; bool enhance_rx; bool support_64g; bool use_internal_cd; bool support_new_tx; bool support_new_rx; }; struct msdc_tune_para { u32 iocon; u32 pad_tune; u32 pad_cmd_tune; u32 emmc_top_control; u32 emmc_top_cmd; }; struct msdc_delay_phase { u8 maxlen; u8 start; u8 final_phase; }; struct msdc_host { struct device *dev; const struct mtk_mmc_compatible *dev_comp; int cmd_rsp; spinlock_t lock; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; int error; void __iomem *base; /* host base address */ void __iomem *top_base; /* host top register base address */ struct msdc_dma dma; /* dma channel */ u64 dma_mask; u32 timeout_ns; /* data timeout ns */ u32 timeout_clks; /* data timeout clks */ struct pinctrl *pinctrl; struct pinctrl_state *pins_default; struct pinctrl_state *pins_uhs; struct pinctrl_state *pins_eint; struct delayed_work req_timeout; int irq; /* host interrupt */ int eint_irq; /* interrupt from sdio device for waking up system */ struct reset_control *reset; struct clk *src_clk; /* msdc source clock */ struct clk *h_clk; /* msdc h_clk */ struct clk *bus_clk; /* bus clock which used to access register */ struct clk *src_clk_cg; /* msdc source clock control gate */ struct clk *sys_clk_cg; /* msdc subsys clock control gate */ struct clk *crypto_clk; /* msdc crypto clock control gate */ struct clk_bulk_data bulk_clks[MSDC_NR_CLOCKS]; u32 mclk; /* mmc subsystem clock frequency */ u32 src_clk_freq; /* source clock frequency */ unsigned char timing; bool vqmmc_enabled; u32 latch_ck; u32 hs400_ds_delay; u32 hs400_ds_dly3; u32 hs200_cmd_int_delay; /* cmd internal delay for HS200/SDR104 */ u32 hs400_cmd_int_delay; /* cmd internal delay for HS400 */ u32 tuning_step; bool hs400_cmd_resp_sel_rising; /* cmd response sample selection for HS400 */ bool hs400_mode; /* current eMMC will run at hs400 mode */ bool hs400_tuning; /* hs400 mode online tuning */ bool internal_cd; /* Use internal card-detect logic */ bool cqhci; /* support eMMC hw cmdq */ bool hsq_en; /* Host Software Queue is enabled */ struct msdc_save_para save_para; /* used when gate HCLK */ struct msdc_tune_para def_tune_para; /* default tune setting */ struct msdc_tune_para saved_tune_para; /* tune result of CMD21/CMD19 */ struct cqhci_host *cq_host; u32 cq_ssc1_time; }; static const struct mtk_mmc_compatible mt2701_compat = { .clk_div_bits = 12, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .support_64g = false, }; static const struct mtk_mmc_compatible mt2712_compat = { .clk_div_bits = 12, .recheck_sdio_irq = false, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, .enhance_rx = true, .support_64g = true, }; static const struct mtk_mmc_compatible mt6779_compat = { .clk_div_bits = 12, .recheck_sdio_irq = false, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, .enhance_rx = true, .support_64g = true, }; static const struct mtk_mmc_compatible mt6795_compat = { .clk_div_bits = 8, .recheck_sdio_irq = false, .hs400_tune = true, .pad_tune_reg = MSDC_PAD_TUNE, .async_fifo = false, .data_tune = false, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .support_64g = false, }; static const struct mtk_mmc_compatible mt7620_compat = { .clk_div_bits = 8, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE, .async_fifo = false, .data_tune = false, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .use_internal_cd = true, }; static const struct mtk_mmc_compatible mt7622_compat = { .clk_div_bits = 12, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, .enhance_rx = true, .support_64g = false, }; static const struct mtk_mmc_compatible mt7986_compat = { .clk_div_bits = 12, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, .enhance_rx = true, .support_64g = true, }; static const struct mtk_mmc_compatible mt8135_compat = { .clk_div_bits = 8, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE, .async_fifo = false, .data_tune = false, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .support_64g = false, }; static const struct mtk_mmc_compatible mt8173_compat = { .clk_div_bits = 8, .recheck_sdio_irq = true, .hs400_tune = true, .pad_tune_reg = MSDC_PAD_TUNE, .async_fifo = false, .data_tune = false, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .support_64g = false, }; static const struct mtk_mmc_compatible mt8183_compat = { .clk_div_bits = 12, .recheck_sdio_irq = false, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, .enhance_rx = true, .support_64g = true, }; static const struct mtk_mmc_compatible mt8516_compat = { .clk_div_bits = 12, .recheck_sdio_irq = true, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 3, }; static const struct mtk_mmc_compatible mt8196_compat = { .clk_div_bits = 12, .recheck_sdio_irq = false, .hs400_tune = false, .pad_tune_reg = MSDC_PAD_TUNE0, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .stop_dly_sel = 1, .pop_en_cnt = 2, .enhance_rx = true, .support_64g = true, .support_new_tx = true, .support_new_rx = true, }; static const struct of_device_id msdc_of_ids[] = { { .compatible = "mediatek,mt2701-mmc", .data = &mt2701_compat}, { .compatible = "mediatek,mt2712-mmc", .data = &mt2712_compat}, { .compatible = "mediatek,mt6779-mmc", .data = &mt6779_compat}, { .compatible = "mediatek,mt6795-mmc", .data = &mt6795_compat}, { .compatible = "mediatek,mt7620-mmc", .data = &mt7620_compat}, { .compatible = "mediatek,mt7622-mmc", .data = &mt7622_compat}, { .compatible = "mediatek,mt7986-mmc", .data = &mt7986_compat}, { .compatible = "mediatek,mt7988-mmc", .data = &mt7986_compat}, { .compatible = "mediatek,mt8135-mmc", .data = &mt8135_compat}, { .compatible = "mediatek,mt8173-mmc", .data = &mt8173_compat}, { .compatible = "mediatek,mt8183-mmc", .data = &mt8183_compat}, { .compatible = "mediatek,mt8196-mmc", .data = &mt8196_compat}, { .compatible = "mediatek,mt8516-mmc", .data = &mt8516_compat}, {} }; MODULE_DEVICE_TABLE(of, msdc_of_ids); static void sdr_set_bits(void __iomem *reg, u32 bs) { u32 val = readl(reg); val |= bs; writel(val, reg); } static void sdr_clr_bits(void __iomem *reg, u32 bs) { u32 val = readl(reg); val &= ~bs; writel(val, reg); } static void sdr_set_field(void __iomem *reg, u32 field, u32 val) { unsigned int tv = readl(reg); tv &= ~field; tv |= ((val) << (ffs((unsigned int)field) - 1)); writel(tv, reg); } static void sdr_get_field(void __iomem *reg, u32 field, u32 *val) { unsigned int tv = readl(reg); *val = ((tv & field) >> (ffs((unsigned int)field) - 1)); } static void msdc_reset_hw(struct msdc_host *host) { u32 val; sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_RST); readl_poll_timeout_atomic(host->base + MSDC_CFG, val, !(val & MSDC_CFG_RST), 0, 0); sdr_set_bits(host->base + MSDC_FIFOCS, MSDC_FIFOCS_CLR); readl_poll_timeout_atomic(host->base + MSDC_FIFOCS, val, !(val & MSDC_FIFOCS_CLR), 0, 0); val = readl(host->base + MSDC_INT); writel(val, host->base + MSDC_INT); } static void msdc_cmd_next(struct msdc_host *host, struct mmc_request *mrq, struct mmc_command *cmd); static void __msdc_enable_sdio_irq(struct msdc_host *host, int enb); static const u32 cmd_ints_mask = MSDC_INTEN_CMDRDY | MSDC_INTEN_RSPCRCERR | MSDC_INTEN_CMDTMO | MSDC_INTEN_ACMDRDY | MSDC_INTEN_ACMDCRCERR | MSDC_INTEN_ACMDTMO; static const u32 data_ints_mask = MSDC_INTEN_XFER_COMPL | MSDC_INTEN_DATTMO | MSDC_INTEN_DATCRCERR | MSDC_INTEN_DMA_BDCSERR | MSDC_INTEN_DMA_GPDCSERR | MSDC_INTEN_DMA_PROTECT; static u8 msdc_dma_calcs(u8 *buf, u32 len) { u32 i, sum = 0; for (i = 0; i < len; i++) sum += buf[i]; return 0xff - (u8) sum; } static inline void msdc_dma_setup(struct msdc_host *host, struct msdc_dma *dma, struct mmc_data *data) { unsigned int j, dma_len; dma_addr_t dma_address; u32 dma_ctrl; struct scatterlist *sg; struct mt_gpdma_desc *gpd; struct mt_bdma_desc *bd; sg = data->sg; gpd = dma->gpd; bd = dma->bd; /* modify gpd */ gpd->gpd_info |= GPDMA_DESC_HWO; gpd->gpd_info |= GPDMA_DESC_BDP; /* need to clear first. use these bits to calc checksum */ gpd->gpd_info &= ~GPDMA_DESC_CHECKSUM; gpd->gpd_info |= msdc_dma_calcs((u8 *) gpd, 16) << 8; /* modify bd */ for_each_sg(data->sg, sg, data->sg_count, j) { dma_address = sg_dma_address(sg); dma_len = sg_dma_len(sg); /* init bd */ bd[j].bd_info &= ~BDMA_DESC_BLKPAD; bd[j].bd_info &= ~BDMA_DESC_DWPAD; bd[j].ptr = lower_32_bits(dma_address); if (host->dev_comp->support_64g) { bd[j].bd_info &= ~BDMA_DESC_PTR_H4; bd[j].bd_info |= (upper_32_bits(dma_address) & 0xf) << 28; } if (host->dev_comp->support_64g) { bd[j].bd_data_len &= ~BDMA_DESC_BUFLEN_EXT; bd[j].bd_data_len |= (dma_len & BDMA_DESC_BUFLEN_EXT); } else { bd[j].bd_data_len &= ~BDMA_DESC_BUFLEN; bd[j].bd_data_len |= (dma_len & BDMA_DESC_BUFLEN); } if (j == data->sg_count - 1) /* the last bd */ bd[j].bd_info |= BDMA_DESC_EOL; else bd[j].bd_info &= ~BDMA_DESC_EOL; /* checksum need to clear first */ bd[j].bd_info &= ~BDMA_DESC_CHECKSUM; bd[j].bd_info |= msdc_dma_calcs((u8 *)(&bd[j]), 16) << 8; } sdr_set_field(host->base + MSDC_DMA_CFG, MSDC_DMA_CFG_DECSEN, 1); dma_ctrl = readl_relaxed(host->base + MSDC_DMA_CTRL); dma_ctrl &= ~(MSDC_DMA_CTRL_BRUSTSZ | MSDC_DMA_CTRL_MODE); dma_ctrl |= (MSDC_BURST_64B << 12 | BIT(8)); writel_relaxed(dma_ctrl, host->base + MSDC_DMA_CTRL); if (host->dev_comp->support_64g) sdr_set_field(host->base + DMA_SA_H4BIT, DMA_ADDR_HIGH_4BIT, upper_32_bits(dma->gpd_addr) & 0xf); writel(lower_32_bits(dma->gpd_addr), host->base + MSDC_DMA_SA); } static void msdc_prepare_data(struct msdc_host *host, struct mmc_data *data) { if (!(data->host_cookie & MSDC_PREPARE_FLAG)) { data->host_cookie |= MSDC_PREPARE_FLAG; data->sg_count = dma_map_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } } static void msdc_unprepare_data(struct msdc_host *host, struct mmc_data *data) { if (data->host_cookie & MSDC_ASYNC_FLAG) return; if (data->host_cookie & MSDC_PREPARE_FLAG) { dma_unmap_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); data->host_cookie &= ~MSDC_PREPARE_FLAG; } } static u64 msdc_timeout_cal(struct msdc_host *host, u64 ns, u64 clks) { struct mmc_host *mmc = mmc_from_priv(host); u64 timeout; u32 clk_ns, mode = 0; if (mmc->actual_clock == 0) { timeout = 0; } else { clk_ns = 1000000000U / mmc->actual_clock; timeout = ns + clk_ns - 1; do_div(timeout, clk_ns); timeout += clks; /* in 1048576 sclk cycle unit */ timeout = DIV_ROUND_UP(timeout, BIT(20)); if (host->dev_comp->clk_div_bits == 8) sdr_get_field(host->base + MSDC_CFG, MSDC_CFG_CKMOD, &mode); else sdr_get_field(host->base + MSDC_CFG, MSDC_CFG_CKMOD_EXTRA, &mode); /*DDR mode will double the clk cycles for data timeout */ timeout = mode >= 2 ? timeout * 2 : timeout; timeout = timeout > 1 ? timeout - 1 : 0; } return timeout; } /* clock control primitives */ static void msdc_set_timeout(struct msdc_host *host, u64 ns, u64 clks) { u64 timeout; host->timeout_ns = ns; host->timeout_clks = clks; timeout = msdc_timeout_cal(host, ns, clks); sdr_set_field(host->base + SDC_CFG, SDC_CFG_DTOC, min_t(u32, timeout, 255)); } static void msdc_set_busy_timeout(struct msdc_host *host, u64 ns, u64 clks) { u64 timeout; timeout = msdc_timeout_cal(host, ns, clks); sdr_set_field(host->base + SDC_CFG, SDC_CFG_WRDTOC, min_t(u32, timeout, 8191)); } static void msdc_gate_clock(struct msdc_host *host) { clk_bulk_disable_unprepare(MSDC_NR_CLOCKS, host->bulk_clks); clk_disable_unprepare(host->crypto_clk); clk_disable_unprepare(host->src_clk_cg); clk_disable_unprepare(host->src_clk); clk_disable_unprepare(host->bus_clk); clk_disable_unprepare(host->h_clk); } static int msdc_ungate_clock(struct msdc_host *host) { u32 val; int ret; clk_prepare_enable(host->h_clk); clk_prepare_enable(host->bus_clk); clk_prepare_enable(host->src_clk); clk_prepare_enable(host->src_clk_cg); clk_prepare_enable(host->crypto_clk); ret = clk_bulk_prepare_enable(MSDC_NR_CLOCKS, host->bulk_clks); if (ret) { dev_err(host->dev, "Cannot enable pclk/axi/ahb clock gates\n"); return ret; } return readl_poll_timeout(host->base + MSDC_CFG, val, (val & MSDC_CFG_CKSTB), 1, 20000); } static void msdc_new_tx_setting(struct msdc_host *host) { if (!host->top_base) return; sdr_set_bits(host->top_base + LOOP_TEST_CONTROL, TEST_LOOP_DSCLK_MUX_SEL); sdr_set_bits(host->top_base + LOOP_TEST_CONTROL, TEST_LOOP_LATCH_MUX_SEL); sdr_clr_bits(host->top_base + LOOP_TEST_CONTROL, TEST_HS400_CMD_LOOP_MUX_SEL); switch (host->timing) { case MMC_TIMING_LEGACY: case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR12: case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: sdr_clr_bits(host->top_base + LOOP_TEST_CONTROL, LOOP_EN_SEL_CLK); break; case MMC_TIMING_UHS_SDR50: case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: case MMC_TIMING_MMC_HS400: sdr_set_bits(host->top_base + LOOP_TEST_CONTROL, LOOP_EN_SEL_CLK); break; default: break; } } static void msdc_set_mclk(struct msdc_host *host, unsigned char timing, u32 hz) { struct mmc_host *mmc = mmc_from_priv(host); u32 mode; u32 flags; u32 div; u32 sclk; u32 tune_reg = host->dev_comp->pad_tune_reg; u32 val; bool timing_changed; if (!hz) { dev_dbg(host->dev, "set mclk to 0\n"); host->mclk = 0; mmc->actual_clock = 0; sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN); return; } if (host->timing != timing) timing_changed = true; else timing_changed = false; flags = readl(host->base + MSDC_INTEN); sdr_clr_bits(host->base + MSDC_INTEN, flags); if (host->dev_comp->clk_div_bits == 8) sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_HS400_CK_MODE); else sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_HS400_CK_MODE_EXTRA); if (timing == MMC_TIMING_UHS_DDR50 || timing == MMC_TIMING_MMC_DDR52 || timing == MMC_TIMING_MMC_HS400) { if (timing == MMC_TIMING_MMC_HS400) mode = 0x3; else mode = 0x2; /* ddr mode and use divisor */ if (hz >= (host->src_clk_freq >> 2)) { div = 0; /* mean div = 1/4 */ sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */ } else { div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2); sclk = (host->src_clk_freq >> 2) / div; div = (div >> 1); } if (timing == MMC_TIMING_MMC_HS400 && hz >= (host->src_clk_freq >> 1)) { if (host->dev_comp->clk_div_bits == 8) sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_HS400_CK_MODE); else sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_HS400_CK_MODE_EXTRA); sclk = host->src_clk_freq >> 1; div = 0; /* div is ignore when bit18 is set */ } } else if (hz >= host->src_clk_freq) { mode = 0x1; /* no divisor */ div = 0; sclk = host->src_clk_freq; } else { mode = 0x0; /* use divisor */ if (hz >= (host->src_clk_freq >> 1)) { div = 0; /* mean div = 1/2 */ sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */ } else { div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2); sclk = (host->src_clk_freq >> 2) / div; } } sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN); clk_disable_unprepare(host->src_clk_cg); if (host->dev_comp->clk_div_bits == 8) sdr_set_field(host->base + MSDC_CFG, MSDC_CFG_CKMOD | MSDC_CFG_CKDIV, (mode << 8) | div); else sdr_set_field(host->base + MSDC_CFG, MSDC_CFG_CKMOD_EXTRA | MSDC_CFG_CKDIV_EXTRA, (mode << 12) | div); clk_prepare_enable(host->src_clk_cg); readl_poll_timeout(host->base + MSDC_CFG, val, (val & MSDC_CFG_CKSTB), 0, 0); sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN); mmc->actual_clock = sclk; host->mclk = hz; host->timing = timing; /* need because clk changed. */ msdc_set_timeout(host, host->timeout_ns, host->timeout_clks); sdr_set_bits(host->base + MSDC_INTEN, flags); /* * mmc_select_hs400() will drop to 50Mhz and High speed mode, * tune result of hs200/200Mhz is not suitable for 50Mhz */ if (mmc->actual_clock <= 52000000) { writel(host->def_tune_para.iocon, host->base + MSDC_IOCON); if (host->top_base) { writel(host->def_tune_para.emmc_top_control, host->top_base + EMMC_TOP_CONTROL); writel(host->def_tune_para.emmc_top_cmd, host->top_base + EMMC_TOP_CMD); } else { writel(host->def_tune_para.pad_tune, host->base + tune_reg); } } else { writel(host->saved_tune_para.iocon, host->base + MSDC_IOCON); writel(host->saved_tune_para.pad_cmd_tune, host->base + PAD_CMD_TUNE); if (host->top_base) { writel(host->saved_tune_para.emmc_top_control, host->top_base + EMMC_TOP_CONTROL); writel(host->saved_tune_para.emmc_top_cmd, host->top_base + EMMC_TOP_CMD); } else { writel(host->saved_tune_para.pad_tune, host->base + tune_reg); } } if (timing == MMC_TIMING_MMC_HS400 && host->dev_comp->hs400_tune) sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRRDLY, host->hs400_cmd_int_delay); if (host->dev_comp->support_new_tx && timing_changed) msdc_new_tx_setting(host); dev_dbg(host->dev, "sclk: %d, timing: %d\n", mmc->actual_clock, timing); } static inline u32 msdc_cmd_find_resp(struct msdc_host *host, struct mmc_command *cmd) { u32 resp; switch (mmc_resp_type(cmd)) { /* Actually, R1, R5, R6, R7 are the same */ case MMC_RSP_R1: resp = 0x1; break; case MMC_RSP_R1B: resp = 0x7; break; case MMC_RSP_R2: resp = 0x2; break; case MMC_RSP_R3: resp = 0x3; break; case MMC_RSP_NONE: default: resp = 0x0; break; } return resp; } static inline u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host, struct mmc_request *mrq, struct mmc_command *cmd) { struct mmc_host *mmc = mmc_from_priv(host); /* rawcmd : * vol_swt << 30 | auto_cmd << 28 | blklen << 16 | go_irq << 15 | * stop << 14 | rw << 13 | dtype << 11 | rsptyp << 7 | brk << 6 | opcode */ u32 opcode = cmd->opcode; u32 resp = msdc_cmd_find_resp(host, cmd); u32 rawcmd = (opcode & 0x3f) | ((resp & 0x7) << 7); host->cmd_rsp = resp; if ((opcode == SD_IO_RW_DIRECT && cmd->flags == (unsigned int) -1) || opcode == MMC_STOP_TRANSMISSION) rawcmd |= BIT(14); else if (opcode == SD_SWITCH_VOLTAGE) rawcmd |= BIT(30); else if (opcode == SD_APP_SEND_SCR || opcode == SD_APP_SEND_NUM_WR_BLKS || (opcode == SD_SWITCH && mmc_cmd_type(cmd) == MMC_CMD_ADTC) || (opcode == SD_APP_SD_STATUS && mmc_cmd_type(cmd) == MMC_CMD_ADTC) || (opcode == MMC_SEND_EXT_CSD && mmc_cmd_type(cmd) == MMC_CMD_ADTC)) rawcmd |= BIT(11); if (cmd->data) { struct mmc_data *data = cmd->data; if (mmc_op_multi(opcode)) { if (mmc_card_mmc(mmc->card) && mrq->sbc && !(mrq->sbc->arg & 0xFFFF0000)) rawcmd |= BIT(29); /* AutoCMD23 */ } rawcmd |= ((data->blksz & 0xFFF) << 16); if (data->flags & MMC_DATA_WRITE) rawcmd |= BIT(13); if (data->blocks > 1) rawcmd |= BIT(12); else rawcmd |= BIT(11); /* Always use dma mode */ sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_PIO); if (host->timeout_ns != data->timeout_ns || host->timeout_clks != data->timeout_clks) msdc_set_timeout(host, data->timeout_ns, data->timeout_clks); writel(data->blocks, host->base + SDC_BLK_NUM); } return rawcmd; } static void msdc_start_data(struct msdc_host *host, struct mmc_command *cmd, struct mmc_data *data) { bool read; WARN_ON(host->data); host->data = data; read = data->flags & MMC_DATA_READ; mod_delayed_work(system_wq, &host->req_timeout, DAT_TIMEOUT); msdc_dma_setup(host, &host->dma, data); sdr_set_bits(host->base + MSDC_INTEN, data_ints_mask); sdr_set_field(host->base + MSDC_DMA_CTRL, MSDC_DMA_CTRL_START, 1); dev_dbg(host->dev, "DMA start\n"); dev_dbg(host->dev, "%s: cmd=%d DMA data: %d blocks; read=%d\n", __func__, cmd->opcode, data->blocks, read); } static int msdc_auto_cmd_done(struct msdc_host *host, int events, struct mmc_command *cmd) { u32 *rsp = cmd->resp; rsp[0] = readl(host->base + SDC_ACMD_RESP); if (events & MSDC_INT_ACMDRDY) { cmd->error = 0; } else { msdc_reset_hw(host); if (events & MSDC_INT_ACMDCRCERR) { cmd->error = -EILSEQ; host->error |= REQ_STOP_EIO; } else if (events & MSDC_INT_ACMDTMO) { cmd->error = -ETIMEDOUT; host->error |= REQ_STOP_TMO; } dev_err(host->dev, "%s: AUTO_CMD%d arg=%08X; rsp %08X; cmd_error=%d\n", __func__, cmd->opcode, cmd->arg, rsp[0], cmd->error); } return cmd->error; } /* * msdc_recheck_sdio_irq - recheck whether the SDIO irq is lost * * Host controller may lost interrupt in some special case. * Add SDIO irq recheck mechanism to make sure all interrupts * can be processed immediately */ static void msdc_recheck_sdio_irq(struct msdc_host *host) { struct mmc_host *mmc = mmc_from_priv(host); u32 reg_int, reg_inten, reg_ps; if (mmc->caps & MMC_CAP_SDIO_IRQ) { reg_inten = readl(host->base + MSDC_INTEN); if (reg_inten & MSDC_INTEN_SDIOIRQ) { reg_int = readl(host->base + MSDC_INT); reg_ps = readl(host->base + MSDC_PS); if (!(reg_int & MSDC_INT_SDIOIRQ || reg_ps & MSDC_PS_DATA1)) { __msdc_enable_sdio_irq(host, 0); sdio_signal_irq(mmc); } } } } static void msdc_track_cmd_data(struct msdc_host *host, struct mmc_command *cmd) { if (host->error && ((!mmc_op_tuning(cmd->opcode) && !host->hs400_tuning) || cmd->error == -ETIMEDOUT)) dev_warn(host->dev, "%s: cmd=%d arg=%08X; host->error=0x%08X\n", __func__, cmd->opcode, cmd->arg, host->error); } static void msdc_request_done(struct msdc_host *host, struct mmc_request *mrq) { struct mmc_host *mmc = mmc_from_priv(host); unsigned long flags; bool hsq_req_done; /* * No need check the return value of cancel_delayed_work, as only ONE * path will go here! */ cancel_delayed_work(&host->req_timeout); /* * If the request was handled from Host Software Queue, there's almost * nothing to do here, and we also don't need to reset mrq as any race * condition would not have any room to happen, since HSQ stores the * "scheduled" mrqs in an internal array of mrq slots anyway. * However, if the controller experienced an error, we still want to * reset it as soon as possible. * * Note that non-HSQ requests will still be happening at times, even * though it is enabled, and that's what is going to reset host->mrq. * Also, msdc_unprepare_data() is going to be called by HSQ when needed * as HSQ request finalization will eventually call the .post_req() * callback of this driver which, in turn, unprepares the data. */ hsq_req_done = host->hsq_en ? mmc_hsq_finalize_request(mmc, mrq) : false; if (hsq_req_done) { if (host->error) msdc_reset_hw(host); return; } spin_lock_irqsave(&host->lock, flags); host->mrq = NULL; spin_unlock_irqrestore(&host->lock, flags); msdc_track_cmd_data(host, mrq->cmd); if (mrq->data) msdc_unprepare_data(host, mrq->data); if (host->error) msdc_reset_hw(host); mmc_request_done(mmc, mrq); if (host->dev_comp->recheck_sdio_irq) msdc_recheck_sdio_irq(host); } /* returns true if command is fully handled; returns false otherwise */ static bool msdc_cmd_done(struct msdc_host *host, int events, struct mmc_request *mrq, struct mmc_command *cmd) { bool done = false; bool sbc_error; unsigned long flags; u32 *rsp; if (mrq->sbc && cmd == mrq->cmd && (events & (MSDC_INT_ACMDRDY | MSDC_INT_ACMDCRCERR | MSDC_INT_ACMDTMO))) msdc_auto_cmd_done(host, events, mrq->sbc); sbc_error = mrq->sbc && mrq->sbc->error; if (!sbc_error && !(events & (MSDC_INT_CMDRDY | MSDC_INT_RSPCRCERR | MSDC_INT_CMDTMO))) return done; spin_lock_irqsave(&host->lock, flags); done = !host->cmd; host->cmd = NULL; spin_unlock_irqrestore(&host->lock, flags); if (done) return true; rsp = cmd->resp; sdr_clr_bits(host->base + MSDC_INTEN, cmd_ints_mask); if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { rsp[0] = readl(host->base + SDC_RESP3); rsp[1] = readl(host->base + SDC_RESP2); rsp[2] = readl(host->base + SDC_RESP1); rsp[3] = readl(host->base + SDC_RESP0); } else { rsp[0] = readl(host->base + SDC_RESP0); } } if (!sbc_error && !(events & MSDC_INT_CMDRDY)) { if ((events & MSDC_INT_CMDTMO && !host->hs400_tuning) || (!mmc_op_tuning(cmd->opcode) && !host->hs400_tuning)) /* * should not clear fifo/interrupt as the tune data * may have already come when cmd19/cmd21 gets response * CRC error. */ msdc_reset_hw(host); if (events & MSDC_INT_RSPCRCERR) { cmd->error = -EILSEQ; host->error |= REQ_CMD_EIO; } else if (events & MSDC_INT_CMDTMO) { cmd->error = -ETIMEDOUT; host->error |= REQ_CMD_TMO; } } if (cmd->error) dev_dbg(host->dev, "%s: cmd=%d arg=%08X; rsp %08X; cmd_error=%d\n", __func__, cmd->opcode, cmd->arg, rsp[0], cmd->error); msdc_cmd_next(host, mrq, cmd); return true; } /* It is the core layer's responsibility to ensure card status * is correct before issue a request. but host design do below * checks recommended. */ static inline bool msdc_cmd_is_ready(struct msdc_host *host, struct mmc_request *mrq, struct mmc_command *cmd) { u32 val; int ret; /* The max busy time we can endure is 20ms */ ret = readl_poll_timeout_atomic(host->base + SDC_STS, val, !(val & SDC_STS_CMDBUSY), 1, 20000); if (ret) { dev_err(host->dev, "CMD bus busy detected\n"); host->error |= REQ_CMD_BUSY; msdc_cmd_done(host, MSDC_INT_CMDTMO, mrq, cmd); return false; } if (mmc_resp_type(cmd) == MMC_RSP_R1B || cmd->data) { /* R1B or with data, should check SDCBUSY */ ret = readl_poll_timeout_atomic(host->base + SDC_STS, val, !(val & SDC_STS_SDCBUSY), 1, 20000); if (ret) { dev_err(host->dev, "Controller busy detected\n"); host->error |= REQ_CMD_BUSY; msdc_cmd_done(host, MSDC_INT_CMDTMO, mrq, cmd); return false; } } return true; } static void msdc_start_command(struct msdc_host *host, struct mmc_request *mrq, struct mmc_command *cmd) { u32 rawcmd; unsigned long flags; WARN_ON(host->cmd); host->cmd = cmd; mod_delayed_work(system_wq, &host->req_timeout, DAT_TIMEOUT); if (!msdc_cmd_is_ready(host, mrq, cmd)) return; if ((readl(host->base + MSDC_FIFOCS) & MSDC_FIFOCS_TXCNT) >> 16 || readl(host->base + MSDC_FIFOCS) & MSDC_FIFOCS_RXCNT) { dev_err(host->dev, "TX/RX FIFO non-empty before start of IO. Reset\n"); msdc_reset_hw(host); } cmd->error = 0; rawcmd = msdc_cmd_prepare_raw_cmd(host, mrq, cmd); spin_lock_irqsave(&host->lock, flags); sdr_set_bits(host->base + MSDC_INTEN, cmd_ints_mask); spin_unlock_irqrestore(&host->lock, flags); writel(cmd->arg, host->base + SDC_ARG); writel(rawcmd, host->base + SDC_CMD); } static void msdc_cmd_next(struct msdc_host *host, struct mmc_request *mrq, struct mmc_command *cmd) { if ((cmd->error && !host->hs400_tuning && !(cmd->error == -EILSEQ && mmc_op_tuning(cmd->opcode))) || (mrq->sbc && mrq->sbc->error)) msdc_request_done(host, mrq); else if (cmd == mrq->sbc) msdc_start_command(host, mrq, mrq->cmd); else if (!cmd->data) msdc_request_done(host, mrq); else msdc_start_data(host, cmd, cmd->data); } static void msdc_ops_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct msdc_host *host = mmc_priv(mmc); host->error = 0; WARN_ON(!host->hsq_en && host->mrq); host->mrq = mrq; if (mrq->data) msdc_prepare_data(host, mrq->data); /* if SBC is required, we have HW option and SW option. * if HW option is enabled, and SBC does not have "special" flags, * use HW option, otherwise use SW option */ if (mrq->sbc && (!mmc_card_mmc(mmc->card) || (mrq->sbc->arg & 0xFFFF0000))) msdc_start_command(host, mrq, mrq->sbc); else msdc_start_command(host, mrq, mrq->cmd); } static void msdc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct msdc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data) return; msdc_prepare_data(host, data); data->host_cookie |= MSDC_ASYNC_FLAG; } static void msdc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct msdc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data) return; if (data->host_cookie) { data->host_cookie &= ~MSDC_ASYNC_FLAG; msdc_unprepare_data(host, data); } } static void msdc_data_xfer_next(struct msdc_host *host, struct mmc_request *mrq) { if (mmc_op_multi(mrq->cmd->opcode) && mrq->stop && !mrq->stop->error && !mrq->sbc) msdc_start_command(host, mrq, mrq->stop); else msdc_request_done(host, mrq); } static void msdc_data_xfer_done(struct msdc_host *host, u32 events, struct mmc_request *mrq, struct mmc_data *data) { struct mmc_command *stop; unsigned long flags; bool done; unsigned int check_data = events & (MSDC_INT_XFER_COMPL | MSDC_INT_DATCRCERR | MSDC_INT_DATTMO | MSDC_INT_DMA_BDCSERR | MSDC_INT_DMA_GPDCSERR | MSDC_INT_DMA_PROTECT); u32 val; int ret; spin_lock_irqsave(&host->lock, flags); done = !host->data; if (check_data) host->data = NULL; spin_unlock_irqrestore(&host->lock, flags); if (done) return; stop = data->stop; if (check_data || (stop && stop->error)) { dev_dbg(host->dev, "DMA status: 0x%8X\n", readl(host->base + MSDC_DMA_CFG)); sdr_set_field(host->base + MSDC_DMA_CTRL, MSDC_DMA_CTRL_STOP, 1); ret = readl_poll_timeout_atomic(host->base + MSDC_DMA_CTRL, val, !(val & MSDC_DMA_CTRL_STOP), 1, 20000); if (ret) dev_dbg(host->dev, "DMA stop timed out\n"); ret = readl_poll_timeout_atomic(host->base + MSDC_DMA_CFG, val, !(val & MSDC_DMA_CFG_STS), 1, 20000); if (ret) dev_dbg(host->dev, "DMA inactive timed out\n"); sdr_clr_bits(host->base + MSDC_INTEN, data_ints_mask); dev_dbg(host->dev, "DMA stop\n"); if ((events & MSDC_INT_XFER_COMPL) && (!stop || !stop->error)) { data->bytes_xfered = data->blocks * data->blksz; } else { dev_dbg(host->dev, "interrupt events: %x\n", events); msdc_reset_hw(host); host->error |= REQ_DAT_ERR; data->bytes_xfered = 0; if (events & MSDC_INT_DATTMO) data->error = -ETIMEDOUT; else if (events & MSDC_INT_DATCRCERR) data->error = -EILSEQ; dev_dbg(host->dev, "%s: cmd=%d; blocks=%d", __func__, mrq->cmd->opcode, data->blocks); dev_dbg(host->dev, "data_error=%d xfer_size=%d\n", (int)data->error, data->bytes_xfered); } msdc_data_xfer_next(host, mrq); } } static void msdc_set_buswidth(struct msdc_host *host, u32 width) { u32 val = readl(host->base + SDC_CFG); val &= ~SDC_CFG_BUSWIDTH; switch (width) { default: case MMC_BUS_WIDTH_1: val |= (MSDC_BUS_1BITS << 16); break; case MMC_BUS_WIDTH_4: val |= (MSDC_BUS_4BITS << 16); break; case MMC_BUS_WIDTH_8: val |= (MSDC_BUS_8BITS << 16); break; } writel(val, host->base + SDC_CFG); dev_dbg(host->dev, "Bus Width = %d", width); } static int msdc_ops_switch_volt(struct mmc_host *mmc, struct mmc_ios *ios) { struct msdc_host *host = mmc_priv(mmc); int ret; if (!IS_ERR(mmc->supply.vqmmc)) { if (ios->signal_voltage != MMC_SIGNAL_VOLTAGE_330 && ios->signal_voltage != MMC_SIGNAL_VOLTAGE_180) { dev_err(host->dev, "Unsupported signal voltage!\n"); return -EINVAL; } ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret < 0) { dev_dbg(host->dev, "Regulator set error %d (%d)\n", ret, ios->signal_voltage); return ret; } /* Apply different pinctrl settings for different signal voltage */ if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) pinctrl_select_state(host->pinctrl, host->pins_uhs); else pinctrl_select_state(host->pinctrl, host->pins_default); } return 0; } static int msdc_card_busy(struct mmc_host *mmc) { struct msdc_host *host = mmc_priv(mmc); u32 status = readl(host->base + MSDC_PS); /* only check if data0 is low */ return !(status & BIT(16)); } static void msdc_request_timeout(struct work_struct *work) { struct msdc_host *host = container_of(work, struct msdc_host, req_timeout.work); /* simulate HW timeout status */ dev_err(host->dev, "%s: aborting cmd/data/mrq\n", __func__); if (host->mrq) { dev_err(host->dev, "%s: aborting mrq=%p cmd=%d\n", __func__, host->mrq, host->mrq->cmd->opcode); if (host->cmd) { dev_err(host->dev, "%s: aborting cmd=%d\n", __func__, host->cmd->opcode); msdc_cmd_done(host, MSDC_INT_CMDTMO, host->mrq, host->cmd); } else if (host->data) { dev_err(host->dev, "%s: abort data: cmd%d; %d blocks\n", __func__, host->mrq->cmd->opcode, host->data->blocks); msdc_data_xfer_done(host, MSDC_INT_DATTMO, host->mrq, host->data); } } } static void __msdc_enable_sdio_irq(struct msdc_host *host, int enb) { if (enb) { sdr_set_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ); sdr_set_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE); if (host->dev_comp->recheck_sdio_irq) msdc_recheck_sdio_irq(host); } else { sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ); sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE); } } static void msdc_enable_sdio_irq(struct mmc_host *mmc, int enb) { struct msdc_host *host = mmc_priv(mmc); unsigned long flags; int ret; spin_lock_irqsave(&host->lock, flags); __msdc_enable_sdio_irq(host, enb); spin_unlock_irqrestore(&host->lock, flags); if (mmc_card_enable_async_irq(mmc->card) && host->pins_eint) { if (enb) { /* * In dev_pm_set_dedicated_wake_irq_reverse(), eint pin will be set to * GPIO mode. We need to restore it to SDIO DAT1 mode after that. * Since the current pinstate is pins_uhs, to ensure pinctrl select take * affect successfully, we change the pinstate to pins_eint firstly. */ pinctrl_select_state(host->pinctrl, host->pins_eint); ret = dev_pm_set_dedicated_wake_irq_reverse(host->dev, host->eint_irq); if (ret) { dev_err(host->dev, "Failed to register SDIO wakeup irq!\n"); host->pins_eint = NULL; pm_runtime_get_noresume(host->dev); } else { dev_dbg(host->dev, "SDIO eint irq: %d!\n", host->eint_irq); } pinctrl_select_state(host->pinctrl, host->pins_uhs); } else { dev_pm_clear_wake_irq(host->dev); } } else { if (enb) { /* Ensure host->pins_eint is NULL */ host->pins_eint = NULL; pm_runtime_get_noresume(host->dev); } else { pm_runtime_put_noidle(host->dev); } } } static irqreturn_t msdc_cmdq_irq(struct msdc_host *host, u32 intsts) { struct mmc_host *mmc = mmc_from_priv(host); int cmd_err = 0, dat_err = 0; if (intsts & MSDC_INT_RSPCRCERR) { cmd_err = -EILSEQ; dev_err(host->dev, "%s: CMD CRC ERR", __func__); } else if (intsts & MSDC_INT_CMDTMO) { cmd_err = -ETIMEDOUT; dev_err(host->dev, "%s: CMD TIMEOUT ERR", __func__); } if (intsts & MSDC_INT_DATCRCERR) { dat_err = -EILSEQ; dev_err(host->dev, "%s: DATA CRC ERR", __func__); } else if (intsts & MSDC_INT_DATTMO) { dat_err = -ETIMEDOUT; dev_err(host->dev, "%s: DATA TIMEOUT ERR", __func__); } if (cmd_err || dat_err) { dev_err(host->dev, "cmd_err = %d, dat_err = %d, intsts = 0x%x", cmd_err, dat_err, intsts); } return cqhci_irq(mmc, 0, cmd_err, dat_err); } static irqreturn_t msdc_irq(int irq, void *dev_id) { struct msdc_host *host = (struct msdc_host *) dev_id; struct mmc_host *mmc = mmc_from_priv(host); while (true) { struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; u32 events, event_mask; spin_lock(&host->lock); events = readl(host->base + MSDC_INT); event_mask = readl(host->base + MSDC_INTEN); if ((events & event_mask) & MSDC_INT_SDIOIRQ) __msdc_enable_sdio_irq(host, 0); /* clear interrupts */ writel(events & event_mask, host->base + MSDC_INT); mrq = host->mrq; cmd = host->cmd; data = host->data; spin_unlock(&host->lock); if ((events & event_mask) & MSDC_INT_SDIOIRQ) sdio_signal_irq(mmc); if ((events & event_mask) & MSDC_INT_CDSC) { if (host->internal_cd) mmc_detect_change(mmc, msecs_to_jiffies(20)); events &= ~MSDC_INT_CDSC; } if (!(events & (event_mask & ~MSDC_INT_SDIOIRQ))) break; if ((mmc->caps2 & MMC_CAP2_CQE) && (events & MSDC_INT_CMDQ)) { msdc_cmdq_irq(host, events); /* clear interrupts */ writel(events, host->base + MSDC_INT); return IRQ_HANDLED; } if (!mrq) { dev_err(host->dev, "%s: MRQ=NULL; events=%08X; event_mask=%08X\n", __func__, events, event_mask); WARN_ON(1); break; } dev_dbg(host->dev, "%s: events=%08X\n", __func__, events); if (cmd) msdc_cmd_done(host, events, mrq, cmd); else if (data) msdc_data_xfer_done(host, events, mrq, data); } return IRQ_HANDLED; } static void msdc_init_hw(struct msdc_host *host) { u32 val; u32 tune_reg = host->dev_comp->pad_tune_reg; struct mmc_host *mmc = mmc_from_priv(host); if (host->reset) { reset_control_assert(host->reset); usleep_range(10, 50); reset_control_deassert(host->reset); } /* New tx/rx enable bit need to be 0->1 for hardware check */ if (host->dev_comp->support_new_tx) { sdr_clr_bits(host->base + SDC_ADV_CFG0, SDC_NEW_TX_EN); sdr_set_bits(host->base + SDC_ADV_CFG0, SDC_NEW_TX_EN); msdc_new_tx_setting(host); } if (host->dev_comp->support_new_rx) { sdr_clr_bits(host->base + MSDC_NEW_RX_CFG, MSDC_NEW_RX_PATH_SEL); sdr_set_bits(host->base + MSDC_NEW_RX_CFG, MSDC_NEW_RX_PATH_SEL); } /* Configure to MMC/SD mode, clock free running */ sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_MODE | MSDC_CFG_CKPDN); /* Reset */ msdc_reset_hw(host); /* Disable and clear all interrupts */ writel(0, host->base + MSDC_INTEN); val = readl(host->base + MSDC_INT); writel(val, host->base + MSDC_INT); /* Configure card detection */ if (host->internal_cd) { sdr_set_field(host->base + MSDC_PS, MSDC_PS_CDDEBOUNCE, DEFAULT_DEBOUNCE); sdr_set_bits(host->base + MSDC_PS, MSDC_PS_CDEN); sdr_set_bits(host->base + MSDC_INTEN, MSDC_INTEN_CDSC); sdr_set_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP); } else { sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP); sdr_clr_bits(host->base + MSDC_PS, MSDC_PS_CDEN); sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_CDSC); } if (host->top_base) { writel(0, host->top_base + EMMC_TOP_CONTROL); writel(0, host->top_base + EMMC_TOP_CMD); } else { writel(0, host->base + tune_reg); } writel(0, host->base + MSDC_IOCON); sdr_set_field(host->base + MSDC_IOCON, MSDC_IOCON_DDLSEL, 0); writel(0x403c0046, host->base + MSDC_PATCH_BIT); sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_CKGEN_MSDC_DLY_SEL, 1); writel(0xffff4089, host->base + MSDC_PATCH_BIT1); sdr_set_bits(host->base + EMMC50_CFG0, EMMC50_CFG_CFCSTS_SEL); if (host->dev_comp->stop_clk_fix) { if (host->dev_comp->stop_dly_sel) sdr_set_field(host->base + MSDC_PATCH_BIT1, MSDC_PATCH_BIT1_STOP_DLY, host->dev_comp->stop_dly_sel); if (host->dev_comp->pop_en_cnt) sdr_set_field(host->base + MSDC_PATCH_BIT2, MSDC_PB2_POP_EN_CNT, host->dev_comp->pop_en_cnt); sdr_clr_bits(host->base + SDC_FIFO_CFG, SDC_FIFO_CFG_WRVALIDSEL); sdr_clr_bits(host->base + SDC_FIFO_CFG, SDC_FIFO_CFG_RDVALIDSEL); } if (host->dev_comp->busy_check) sdr_clr_bits(host->base + MSDC_PATCH_BIT1, BIT(7)); if (host->dev_comp->async_fifo) { sdr_set_field(host->base + MSDC_PATCH_BIT2, MSDC_PB2_RESPWAIT, 3); if (host->dev_comp->enhance_rx) { if (host->top_base) sdr_set_bits(host->top_base + EMMC_TOP_CONTROL, SDC_RX_ENH_EN); else sdr_set_bits(host->base + SDC_ADV_CFG0, SDC_RX_ENHANCE_EN); } else { sdr_set_field(host->base + MSDC_PATCH_BIT2, MSDC_PB2_RESPSTSENSEL, 2); sdr_set_field(host->base + MSDC_PATCH_BIT2, MSDC_PB2_CRCSTSENSEL, 2); } /* use async fifo, then no need tune internal delay */ sdr_clr_bits(host->base + MSDC_PATCH_BIT2, MSDC_PATCH_BIT2_CFGRESP); sdr_set_bits(host->base + MSDC_PATCH_BIT2, MSDC_PATCH_BIT2_CFGCRCSTS); } if (host->dev_comp->support_64g) sdr_set_bits(host->base + MSDC_PATCH_BIT2, MSDC_PB2_SUPPORT_64G); if (host->dev_comp->data_tune) { if (host->top_base) { sdr_set_bits(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY_SEL); sdr_clr_bits(host->top_base + EMMC_TOP_CONTROL, DATA_K_VALUE_SEL); sdr_set_bits(host->top_base + EMMC_TOP_CMD, PAD_CMD_RD_RXDLY_SEL); if (host->tuning_step > PAD_DELAY_HALF) { sdr_set_bits(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY2_SEL); sdr_set_bits(host->top_base + EMMC_TOP_CMD, PAD_CMD_RD_RXDLY2_SEL); } } else { sdr_set_bits(host->base + tune_reg, MSDC_PAD_TUNE_RD_SEL | MSDC_PAD_TUNE_CMD_SEL); if (host->tuning_step > PAD_DELAY_HALF) sdr_set_bits(host->base + tune_reg + TUNING_REG2_FIXED_OFFEST, MSDC_PAD_TUNE_RD2_SEL | MSDC_PAD_TUNE_CMD2_SEL); } } else { /* choose clock tune */ if (host->top_base) sdr_set_bits(host->top_base + EMMC_TOP_CONTROL, PAD_RXDLY_SEL); else sdr_set_bits(host->base + tune_reg, MSDC_PAD_TUNE_RXDLYSEL); } if (mmc->caps2 & MMC_CAP2_NO_SDIO) { sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIO); sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ); sdr_clr_bits(host->base + SDC_ADV_CFG0, SDC_DAT1_IRQ_TRIGGER); } else { /* Configure to enable SDIO mode, otherwise SDIO CMD5 fails */ sdr_set_bits(host->base + SDC_CFG, SDC_CFG_SDIO); /* Config SDIO device detect interrupt function */ sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE); sdr_set_bits(host->base + SDC_ADV_CFG0, SDC_DAT1_IRQ_TRIGGER); } /* Configure to default data timeout */ sdr_set_field(host->base + SDC_CFG, SDC_CFG_DTOC, 3); host->def_tune_para.iocon = readl(host->base + MSDC_IOCON); host->saved_tune_para.iocon = readl(host->base + MSDC_IOCON); if (host->top_base) { host->def_tune_para.emmc_top_control = readl(host->top_base + EMMC_TOP_CONTROL); host->def_tune_para.emmc_top_cmd = readl(host->top_base + EMMC_TOP_CMD); host->saved_tune_para.emmc_top_control = readl(host->top_base + EMMC_TOP_CONTROL); host->saved_tune_para.emmc_top_cmd = readl(host->top_base + EMMC_TOP_CMD); } else { host->def_tune_para.pad_tune = readl(host->base + tune_reg); host->saved_tune_para.pad_tune = readl(host->base + tune_reg); } dev_dbg(host->dev, "init hardware done!"); } static void msdc_deinit_hw(struct msdc_host *host) { u32 val; if (host->internal_cd) { /* Disabled card-detect */ sdr_clr_bits(host->base + MSDC_PS, MSDC_PS_CDEN); sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP); } /* Disable and clear all interrupts */ writel(0, host->base + MSDC_INTEN); val = readl(host->base + MSDC_INT); writel(val, host->base + MSDC_INT); } /* init gpd and bd list in msdc_drv_probe */ static void msdc_init_gpd_bd(struct msdc_host *host, struct msdc_dma *dma) { struct mt_gpdma_desc *gpd = dma->gpd; struct mt_bdma_desc *bd = dma->bd; dma_addr_t dma_addr; int i; memset(gpd, 0, sizeof(struct mt_gpdma_desc) * 2); dma_addr = dma->gpd_addr + sizeof(struct mt_gpdma_desc); gpd->gpd_info = GPDMA_DESC_BDP; /* hwo, cs, bd pointer */ /* gpd->next is must set for desc DMA * That's why must alloc 2 gpd structure. */ gpd->next = lower_32_bits(dma_addr); if (host->dev_comp->support_64g) gpd->gpd_info |= (upper_32_bits(dma_addr) & 0xf) << 24; dma_addr = dma->bd_addr; gpd->ptr = lower_32_bits(dma->bd_addr); /* physical address */ if (host->dev_comp->support_64g) gpd->gpd_info |= (upper_32_bits(dma_addr) & 0xf) << 28; memset(bd, 0, sizeof(struct mt_bdma_desc) * MAX_BD_NUM); for (i = 0; i < (MAX_BD_NUM - 1); i++) { dma_addr = dma->bd_addr + sizeof(*bd) * (i + 1); bd[i].next = lower_32_bits(dma_addr); if (host->dev_comp->support_64g) bd[i].bd_info |= (upper_32_bits(dma_addr) & 0xf) << 24; } } static void msdc_ops_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct msdc_host *host = mmc_priv(mmc); int ret; msdc_set_buswidth(host, ios->bus_width); /* Suspend/Resume will do power off/on */ switch (ios->power_mode) { case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) { msdc_init_hw(host); ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (ret) { dev_err(host->dev, "Failed to set vmmc power!\n"); return; } } break; case MMC_POWER_ON: if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { ret = regulator_enable(mmc->supply.vqmmc); if (ret) dev_err(host->dev, "Failed to set vqmmc power!\n"); else host->vqmmc_enabled = true; } break; case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; } break; default: break; } if (host->mclk != ios->clock || host->timing != ios->timing) msdc_set_mclk(host, ios->timing, ios->clock); } static u64 test_delay_bit(u64 delay, u32 bit) { bit %= PAD_DELAY_FULL; return delay & BIT_ULL(bit); } static int get_delay_len(u64 delay, u32 start_bit) { int i; for (i = 0; i < (PAD_DELAY_FULL - start_bit); i++) { if (test_delay_bit(delay, start_bit + i) == 0) return i; } return PAD_DELAY_FULL - start_bit; } static struct msdc_delay_phase get_best_delay(struct msdc_host *host, u64 delay) { int start = 0, len = 0; int start_final = 0, len_final = 0; u8 final_phase = 0xff; struct msdc_delay_phase delay_phase = { 0, }; if (delay == 0) { dev_err(host->dev, "phase error: [map:%016llx]\n", delay); delay_phase.final_phase = final_phase; return delay_phase; } while (start < PAD_DELAY_FULL) { len = get_delay_len(delay, start); if (len_final < len) { start_final = start; len_final = len; } start += len ? len : 1; if (!upper_32_bits(delay) && len >= 12 && start_final < 4) break; } /* The rule is that to find the smallest delay cell */ if (start_final == 0) final_phase = (start_final + len_final / 3) % PAD_DELAY_FULL; else final_phase = (start_final + len_final / 2) % PAD_DELAY_FULL; dev_dbg(host->dev, "phase: [map:%016llx] [maxlen:%d] [final:%d]\n", delay, len_final, final_phase); delay_phase.maxlen = len_final; delay_phase.start = start_final; delay_phase.final_phase = final_phase; return delay_phase; } static inline void msdc_set_cmd_delay(struct msdc_host *host, u32 value) { u32 tune_reg = host->dev_comp->pad_tune_reg; if (host->top_base) { if (value < PAD_DELAY_HALF) { sdr_set_field(host->top_base + EMMC_TOP_CMD, PAD_CMD_RXDLY, value); sdr_set_field(host->top_base + EMMC_TOP_CMD, PAD_CMD_RXDLY2, 0); } else { sdr_set_field(host->top_base + EMMC_TOP_CMD, PAD_CMD_RXDLY, PAD_DELAY_HALF - 1); sdr_set_field(host->top_base + EMMC_TOP_CMD, PAD_CMD_RXDLY2, value - PAD_DELAY_HALF); } } else { if (value < PAD_DELAY_HALF) { sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRDLY, value); sdr_set_field(host->base + tune_reg + TUNING_REG2_FIXED_OFFEST, MSDC_PAD_TUNE_CMDRDLY2, 0); } else { sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRDLY, PAD_DELAY_HALF - 1); sdr_set_field(host->base + tune_reg + TUNING_REG2_FIXED_OFFEST, MSDC_PAD_TUNE_CMDRDLY2, value - PAD_DELAY_HALF); } } } static inline void msdc_set_data_delay(struct msdc_host *host, u32 value) { u32 tune_reg = host->dev_comp->pad_tune_reg; if (host->top_base) { if (value < PAD_DELAY_HALF) { sdr_set_field(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY, value); sdr_set_field(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY2, 0); } else { sdr_set_field(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY, PAD_DELAY_HALF - 1); sdr_set_field(host->top_base + EMMC_TOP_CONTROL, PAD_DAT_RD_RXDLY2, value - PAD_DELAY_HALF); } } else { if (value < PAD_DELAY_HALF) { sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_DATRRDLY, value); sdr_set_field(host->base + tune_reg + TUNING_REG2_FIXED_OFFEST, MSDC_PAD_TUNE_DATRRDLY2, 0); } else { sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_DATRRDLY, PAD_DELAY_HALF - 1); sdr_set_field(host->base + tune_reg + TUNING_REG2_FIXED_OFFEST, MSDC_PAD_TUNE_DATRRDLY2, value - PAD_DELAY_HALF); } } } static inline void msdc_set_data_sample_edge(struct msdc_host *host, bool rising) { u32 value = rising ? 0 : 1; if (host->dev_comp->support_new_rx) { sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_PATCH_BIT_RD_DAT_SEL, value); sdr_set_field(host->base + MSDC_PATCH_BIT2, MSDC_PB2_CFGCRCSTSEDGE, value); } else { sdr_set_field(host->base + MSDC_IOCON, MSDC_IOCON_DSPL, value); sdr_set_field(host->base + MSDC_IOCON, MSDC_IOCON_W_DSPL, value); } } static int msdc_tune_response(struct mmc_host *mmc, u32 opcode) { struct msdc_host *host = mmc_priv(mmc); u64 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,}; struct msdc_delay_phase internal_delay_phase; u8 final_delay, final_maxlen; u32 internal_delay = 0; u32 tune_reg = host->dev_comp->pad_tune_reg; int cmd_err; int i, j; if (mmc->ios.timing == MMC_TIMING_MMC_HS200 || mmc->ios.timing == MMC_TIMING_UHS_SDR104) sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRRDLY, host->hs200_cmd_int_delay); sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); for (i = 0; i < host->tuning_step; i++) { msdc_set_cmd_delay(host, i); /* * Using the same parameters, it may sometimes pass the test, * but sometimes it may fail. To make sure the parameters are * more stable, we test each set of parameters 3 times. */ for (j = 0; j < 3; j++) { mmc_send_tuning(mmc, opcode, &cmd_err); if (!cmd_err) { rise_delay |= BIT_ULL(i); } else { rise_delay &= ~BIT_ULL(i); break; } } } final_rise_delay = get_best_delay(host, rise_delay); /* if rising edge has enough margin, then do not scan falling edge */ if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); for (i = 0; i < host->tuning_step; i++) { msdc_set_cmd_delay(host, i); /* * Using the same parameters, it may sometimes pass the test, * but sometimes it may fail. To make sure the parameters are * more stable, we test each set of parameters 3 times. */ for (j = 0; j < 3; j++) { mmc_send_tuning(mmc, opcode, &cmd_err); if (!cmd_err) { fall_delay |= BIT_ULL(i); } else { fall_delay &= ~BIT_ULL(i); break; } } } final_fall_delay = get_best_delay(host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_fall_delay.maxlen >= 12 && final_fall_delay.start < 4) final_maxlen = final_fall_delay.maxlen; if (final_maxlen == final_rise_delay.maxlen) { sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); final_delay = final_rise_delay.final_phase; } else { sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); final_delay = final_fall_delay.final_phase; } msdc_set_cmd_delay(host, final_delay); if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay) goto skip_internal; for (i = 0; i < host->tuning_step; i++) { sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRRDLY, i); mmc_send_tuning(mmc, opcode, &cmd_err); if (!cmd_err) internal_delay |= BIT_ULL(i); } dev_dbg(host->dev, "Final internal delay: 0x%x\n", internal_delay); internal_delay_phase = get_best_delay(host, internal_delay); sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRRDLY, internal_delay_phase.final_phase); skip_internal: dev_dbg(host->dev, "Final cmd pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int hs400_tune_response(struct mmc_host *mmc, u32 opcode) { struct msdc_host *host = mmc_priv(mmc); u32 cmd_delay = 0; struct msdc_delay_phase final_cmd_delay = { 0,}; u8 final_delay; int cmd_err; int i, j; /* select EMMC50 PAD CMD tune */ sdr_set_bits(host->base + PAD_CMD_TUNE, BIT(0)); sdr_set_field(host->base + MSDC_PATCH_BIT1, MSDC_PATCH_BIT1_CMDTA, 2); if (mmc->ios.timing == MMC_TIMING_MMC_HS200 || mmc->ios.timing == MMC_TIMING_UHS_SDR104) sdr_set_field(host->base + MSDC_PAD_TUNE, MSDC_PAD_TUNE_CMDRRDLY, host->hs200_cmd_int_delay); if (host->hs400_cmd_resp_sel_rising) sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); else sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); for (i = 0; i < PAD_DELAY_HALF; i++) { sdr_set_field(host->base + PAD_CMD_TUNE, PAD_CMD_TUNE_RX_DLY3, i); /* * Using the same parameters, it may sometimes pass the test, * but sometimes it may fail. To make sure the parameters are * more stable, we test each set of parameters 3 times. */ for (j = 0; j < 3; j++) { mmc_send_tuning(mmc, opcode, &cmd_err); if (!cmd_err) { cmd_delay |= BIT(i); } else { cmd_delay &= ~BIT(i); break; } } } final_cmd_delay = get_best_delay(host, cmd_delay); sdr_set_field(host->base + PAD_CMD_TUNE, PAD_CMD_TUNE_RX_DLY3, final_cmd_delay.final_phase); final_delay = final_cmd_delay.final_phase; dev_dbg(host->dev, "Final cmd pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int msdc_tune_data(struct mmc_host *mmc, u32 opcode) { struct msdc_host *host = mmc_priv(mmc); u64 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,}; u8 final_delay, final_maxlen; int i, ret; sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_INT_DAT_LATCH_CK_SEL, host->latch_ck); msdc_set_data_sample_edge(host, true); for (i = 0; i < host->tuning_step; i++) { msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode, NULL); if (!ret) rise_delay |= BIT_ULL(i); } final_rise_delay = get_best_delay(host, rise_delay); /* if rising edge has enough margin, then do not scan falling edge */ if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; msdc_set_data_sample_edge(host, false); for (i = 0; i < host->tuning_step; i++) { msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode, NULL); if (!ret) fall_delay |= BIT_ULL(i); } final_fall_delay = get_best_delay(host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_maxlen == final_rise_delay.maxlen) { msdc_set_data_sample_edge(host, true); final_delay = final_rise_delay.final_phase; } else { msdc_set_data_sample_edge(host, false); final_delay = final_fall_delay.final_phase; } msdc_set_data_delay(host, final_delay); dev_dbg(host->dev, "Final data pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } /* * MSDC IP which supports data tune + async fifo can do CMD/DAT tune * together, which can save the tuning time. */ static int msdc_tune_together(struct mmc_host *mmc, u32 opcode) { struct msdc_host *host = mmc_priv(mmc); u64 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,}; u8 final_delay, final_maxlen; int i, ret; sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_INT_DAT_LATCH_CK_SEL, host->latch_ck); sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); msdc_set_data_sample_edge(host, true); for (i = 0; i < host->tuning_step; i++) { msdc_set_cmd_delay(host, i); msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode, NULL); if (!ret) rise_delay |= BIT_ULL(i); } final_rise_delay = get_best_delay(host, rise_delay); /* if rising edge has enough margin, then do not scan falling edge */ if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); msdc_set_data_sample_edge(host, false); for (i = 0; i < host->tuning_step; i++) { msdc_set_cmd_delay(host, i); msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode, NULL); if (!ret) fall_delay |= BIT_ULL(i); } final_fall_delay = get_best_delay(host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_maxlen == final_rise_delay.maxlen) { sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); msdc_set_data_sample_edge(host, true); final_delay = final_rise_delay.final_phase; } else { sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL); msdc_set_data_sample_edge(host, false); final_delay = final_fall_delay.final_phase; } msdc_set_cmd_delay(host, final_delay); msdc_set_data_delay(host, final_delay); dev_dbg(host->dev, "Final pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int msdc_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct msdc_host *host = mmc_priv(mmc); int ret; u32 tune_reg = host->dev_comp->pad_tune_reg; if (host->dev_comp->data_tune && host->dev_comp->async_fifo) { ret = msdc_tune_together(mmc, opcode); if (host->hs400_mode) { msdc_set_data_sample_edge(host, true); msdc_set_data_delay(host, 0); } goto tune_done; } if (host->hs400_mode && host->dev_comp->hs400_tune) ret = hs400_tune_response(mmc, opcode); else ret = msdc_tune_response(mmc, opcode); if (ret == -EIO) { dev_err(host->dev, "Tune response fail!\n"); return ret; } if (host->hs400_mode == false) { ret = msdc_tune_data(mmc, opcode); if (ret == -EIO) dev_err(host->dev, "Tune data fail!\n"); } tune_done: host->saved_tune_para.iocon = readl(host->base + MSDC_IOCON); host->saved_tune_para.pad_tune = readl(host->base + tune_reg); host->saved_tune_para.pad_cmd_tune = readl(host->base + PAD_CMD_TUNE); if (host->top_base) { host->saved_tune_para.emmc_top_control = readl(host->top_base + EMMC_TOP_CONTROL); host->saved_tune_para.emmc_top_cmd = readl(host->top_base + EMMC_TOP_CMD); } return ret; } static int msdc_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios) { struct msdc_host *host = mmc_priv(mmc); host->hs400_mode = true; if (host->top_base) writel(host->hs400_ds_delay, host->top_base + EMMC50_PAD_DS_TUNE); else writel(host->hs400_ds_delay, host->base + PAD_DS_TUNE); /* hs400 mode must set it to 0 */ sdr_clr_bits(host->base + MSDC_PATCH_BIT2, MSDC_PATCH_BIT2_CFGCRCSTS); /* to improve read performance, set outstanding to 2 */ sdr_set_field(host->base + EMMC50_CFG3, EMMC50_CFG3_OUTS_WR, 2); return 0; } static int msdc_execute_hs400_tuning(struct mmc_host *mmc, struct mmc_card *card) { struct msdc_host *host = mmc_priv(mmc); struct msdc_delay_phase dly1_delay; u32 val, result_dly1 = 0; u8 *ext_csd; int i, ret; if (host->top_base) { sdr_set_bits(host->top_base + EMMC50_PAD_DS_TUNE, PAD_DS_DLY_SEL); if (host->hs400_ds_dly3) sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE, PAD_DS_DLY3, host->hs400_ds_dly3); } else { sdr_set_bits(host->base + PAD_DS_TUNE, PAD_DS_TUNE_DLY_SEL); if (host->hs400_ds_dly3) sdr_set_field(host->base + PAD_DS_TUNE, PAD_DS_TUNE_DLY3, host->hs400_ds_dly3); } host->hs400_tuning = true; for (i = 0; i < PAD_DELAY_HALF; i++) { if (host->top_base) sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE, PAD_DS_DLY1, i); else sdr_set_field(host->base + PAD_DS_TUNE, PAD_DS_TUNE_DLY1, i); ret = mmc_get_ext_csd(card, &ext_csd); if (!ret) { result_dly1 |= BIT(i); kfree(ext_csd); } } host->hs400_tuning = false; dly1_delay = get_best_delay(host, result_dly1); if (dly1_delay.maxlen == 0) { dev_err(host->dev, "Failed to get DLY1 delay!\n"); goto fail; } if (host->top_base) sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE, PAD_DS_DLY1, dly1_delay.final_phase); else sdr_set_field(host->base + PAD_DS_TUNE, PAD_DS_TUNE_DLY1, dly1_delay.final_phase); if (host->top_base) val = readl(host->top_base + EMMC50_PAD_DS_TUNE); else val = readl(host->base + PAD_DS_TUNE); dev_info(host->dev, "Final PAD_DS_TUNE: 0x%x\n", val); return 0; fail: dev_err(host->dev, "Failed to tuning DS pin delay!\n"); return -EIO; } static void msdc_hw_reset(struct mmc_host *mmc) { struct msdc_host *host = mmc_priv(mmc); sdr_set_bits(host->base + EMMC_IOCON, 1); udelay(10); /* 10us is enough */ sdr_clr_bits(host->base + EMMC_IOCON, 1); } static void msdc_ack_sdio_irq(struct mmc_host *mmc) { unsigned long flags; struct msdc_host *host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); __msdc_enable_sdio_irq(host, 1); spin_unlock_irqrestore(&host->lock, flags); } static int msdc_get_cd(struct mmc_host *mmc) { struct msdc_host *host = mmc_priv(mmc); int val; if (mmc->caps & MMC_CAP_NONREMOVABLE) return 1; if (!host->internal_cd) return mmc_gpio_get_cd(mmc); val = readl(host->base + MSDC_PS) & MSDC_PS_CDSTS; if (mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH) return !!val; else return !val; } static void msdc_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct msdc_host *host = mmc_priv(mmc); if (ios->enhanced_strobe) { msdc_prepare_hs400_tuning(mmc, ios); sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_PADCMD_LATCHCK, 1); sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_CMD_RESP_SEL, 1); sdr_set_field(host->base + EMMC50_CFG1, EMMC50_CFG1_DS_CFG, 1); sdr_clr_bits(host->base + CQHCI_SETTING, CQHCI_RD_CMD_WND_SEL); sdr_clr_bits(host->base + CQHCI_SETTING, CQHCI_WR_CMD_WND_SEL); sdr_clr_bits(host->base + EMMC51_CFG0, CMDQ_RDAT_CNT); } else { sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_PADCMD_LATCHCK, 0); sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_CMD_RESP_SEL, 0); sdr_set_field(host->base + EMMC50_CFG1, EMMC50_CFG1_DS_CFG, 0); sdr_set_bits(host->base + CQHCI_SETTING, CQHCI_RD_CMD_WND_SEL); sdr_set_bits(host->base + CQHCI_SETTING, CQHCI_WR_CMD_WND_SEL); sdr_set_field(host->base + EMMC51_CFG0, CMDQ_RDAT_CNT, 0xb4); } } static void msdc_cqe_cit_cal(struct msdc_host *host, u64 timer_ns) { struct mmc_host *mmc = mmc_from_priv(host); struct cqhci_host *cq_host = mmc->cqe_private; u8 itcfmul; u64 hclk_freq, value; /* * On MediaTek SoCs the MSDC controller's CQE uses msdc_hclk as ITCFVAL * so we multiply/divide the HCLK frequency by ITCFMUL to calculate the * Send Status Command Idle Timer (CIT) value. */ hclk_freq = (u64)clk_get_rate(host->h_clk); itcfmul = CQHCI_ITCFMUL(cqhci_readl(cq_host, CQHCI_CAP)); switch (itcfmul) { case 0x0: do_div(hclk_freq, 1000); break; case 0x1: do_div(hclk_freq, 100); break; case 0x2: do_div(hclk_freq, 10); break; case 0x3: break; case 0x4: hclk_freq = hclk_freq * 10; break; default: host->cq_ssc1_time = 0x40; return; } value = hclk_freq * timer_ns; do_div(value, 1000000000); host->cq_ssc1_time = value; } static void msdc_cqe_enable(struct mmc_host *mmc) { struct msdc_host *host = mmc_priv(mmc); struct cqhci_host *cq_host = mmc->cqe_private; /* enable cmdq irq */ writel(MSDC_INT_CMDQ, host->base + MSDC_INTEN); /* enable busy check */ sdr_set_bits(host->base + MSDC_PATCH_BIT1, MSDC_PB1_BUSY_CHECK_SEL); /* default write data / busy timeout 20s */ msdc_set_busy_timeout(host, 20 * 1000000000ULL, 0); /* default read data timeout 1s */ msdc_set_timeout(host, 1000000000ULL, 0); /* Set the send status command idle timer */ cqhci_writel(cq_host, host->cq_ssc1_time, CQHCI_SSC1); } static void msdc_cqe_disable(struct mmc_host *mmc, bool recovery) { struct msdc_host *host = mmc_priv(mmc); unsigned int val = 0; /* disable cmdq irq */ sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INT_CMDQ); /* disable busy check */ sdr_clr_bits(host->base + MSDC_PATCH_BIT1, MSDC_PB1_BUSY_CHECK_SEL); val = readl(host->base + MSDC_INT); writel(val, host->base + MSDC_INT); if (recovery) { sdr_set_field(host->base + MSDC_DMA_CTRL, MSDC_DMA_CTRL_STOP, 1); if (WARN_ON(readl_poll_timeout(host->base + MSDC_DMA_CTRL, val, !(val & MSDC_DMA_CTRL_STOP), 1, 3000))) return; if (WARN_ON(readl_poll_timeout(host->base + MSDC_DMA_CFG, val, !(val & MSDC_DMA_CFG_STS), 1, 3000))) return; msdc_reset_hw(host); } } static void msdc_cqe_pre_enable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; u32 reg; reg = cqhci_readl(cq_host, CQHCI_CFG); reg |= CQHCI_ENABLE; cqhci_writel(cq_host, reg, CQHCI_CFG); } static void msdc_cqe_post_disable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; u32 reg; reg = cqhci_readl(cq_host, CQHCI_CFG); reg &= ~CQHCI_ENABLE; cqhci_writel(cq_host, reg, CQHCI_CFG); } static const struct mmc_host_ops mt_msdc_ops = { .post_req = msdc_post_req, .pre_req = msdc_pre_req, .request = msdc_ops_request, .set_ios = msdc_ops_set_ios, .get_ro = mmc_gpio_get_ro, .get_cd = msdc_get_cd, .hs400_enhanced_strobe = msdc_hs400_enhanced_strobe, .enable_sdio_irq = msdc_enable_sdio_irq, .ack_sdio_irq = msdc_ack_sdio_irq, .start_signal_voltage_switch = msdc_ops_switch_volt, .card_busy = msdc_card_busy, .execute_tuning = msdc_execute_tuning, .prepare_hs400_tuning = msdc_prepare_hs400_tuning, .execute_hs400_tuning = msdc_execute_hs400_tuning, .card_hw_reset = msdc_hw_reset, }; static const struct cqhci_host_ops msdc_cmdq_ops = { .enable = msdc_cqe_enable, .disable = msdc_cqe_disable, .pre_enable = msdc_cqe_pre_enable, .post_disable = msdc_cqe_post_disable, }; static void msdc_of_property_parse(struct platform_device *pdev, struct msdc_host *host) { struct mmc_host *mmc = mmc_from_priv(host); of_property_read_u32(pdev->dev.of_node, "mediatek,latch-ck", &host->latch_ck); of_property_read_u32(pdev->dev.of_node, "hs400-ds-delay", &host->hs400_ds_delay); of_property_read_u32(pdev->dev.of_node, "mediatek,hs400-ds-dly3", &host->hs400_ds_dly3); of_property_read_u32(pdev->dev.of_node, "mediatek,hs200-cmd-int-delay", &host->hs200_cmd_int_delay); of_property_read_u32(pdev->dev.of_node, "mediatek,hs400-cmd-int-delay", &host->hs400_cmd_int_delay); if (of_property_read_bool(pdev->dev.of_node, "mediatek,hs400-cmd-resp-sel-rising")) host->hs400_cmd_resp_sel_rising = true; else host->hs400_cmd_resp_sel_rising = false; if (of_property_read_u32(pdev->dev.of_node, "mediatek,tuning-step", &host->tuning_step)) { if (mmc->caps2 & MMC_CAP2_NO_MMC) host->tuning_step = PAD_DELAY_FULL; else host->tuning_step = PAD_DELAY_HALF; } if (of_property_read_bool(pdev->dev.of_node, "supports-cqe")) host->cqhci = true; else host->cqhci = false; } static int msdc_of_clock_parse(struct platform_device *pdev, struct msdc_host *host) { int ret; host->src_clk = devm_clk_get(&pdev->dev, "source"); if (IS_ERR(host->src_clk)) return PTR_ERR(host->src_clk); host->h_clk = devm_clk_get(&pdev->dev, "hclk"); if (IS_ERR(host->h_clk)) return PTR_ERR(host->h_clk); host->bus_clk = devm_clk_get_optional(&pdev->dev, "bus_clk"); if (IS_ERR(host->bus_clk)) host->bus_clk = NULL; /*source clock control gate is optional clock*/ host->src_clk_cg = devm_clk_get_optional(&pdev->dev, "source_cg"); if (IS_ERR(host->src_clk_cg)) return PTR_ERR(host->src_clk_cg); /* * Fallback for legacy device-trees: src_clk and HCLK use the same * bit to control gating but they are parented to a different mux, * hence if our intention is to gate only the source, required * during a clk mode switch to avoid hw hangs, we need to gate * its parent (specified as a different clock only on new DTs). */ if (!host->src_clk_cg) { host->src_clk_cg = clk_get_parent(host->src_clk); if (IS_ERR(host->src_clk_cg)) return PTR_ERR(host->src_clk_cg); } /* If present, always enable for this clock gate */ host->sys_clk_cg = devm_clk_get_optional_enabled(&pdev->dev, "sys_cg"); if (IS_ERR(host->sys_clk_cg)) host->sys_clk_cg = NULL; host->bulk_clks[0].id = "pclk_cg"; host->bulk_clks[1].id = "axi_cg"; host->bulk_clks[2].id = "ahb_cg"; ret = devm_clk_bulk_get_optional(&pdev->dev, MSDC_NR_CLOCKS, host->bulk_clks); if (ret) { dev_err(&pdev->dev, "Cannot get pclk/axi/ahb clock gates\n"); return ret; } return 0; } static int msdc_drv_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct msdc_host *host; int ret; if (!pdev->dev.of_node) { dev_err(&pdev->dev, "No DT found\n"); return -EINVAL; } /* Allocate MMC host for this device */ mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct msdc_host)); if (!mmc) return -ENOMEM; host = mmc_priv(mmc); ret = mmc_of_parse(mmc); if (ret) return ret; host->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(host->base)) return PTR_ERR(host->base); host->top_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(host->top_base)) host->top_base = NULL; ret = mmc_regulator_get_supply(mmc); if (ret) return ret; ret = msdc_of_clock_parse(pdev, host); if (ret) return ret; host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev, "hrst"); if (IS_ERR(host->reset)) return PTR_ERR(host->reset); /* only eMMC has crypto property */ if (!(mmc->caps2 & MMC_CAP2_NO_MMC)) { host->crypto_clk = devm_clk_get_optional(&pdev->dev, "crypto"); if (IS_ERR(host->crypto_clk)) return PTR_ERR(host->crypto_clk); else if (host->crypto_clk) mmc->caps2 |= MMC_CAP2_CRYPTO; } host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) return host->irq; host->pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR(host->pinctrl)) return dev_err_probe(&pdev->dev, PTR_ERR(host->pinctrl), "Cannot find pinctrl"); host->pins_default = pinctrl_lookup_state(host->pinctrl, "default"); if (IS_ERR(host->pins_default)) { dev_err(&pdev->dev, "Cannot find pinctrl default!\n"); return PTR_ERR(host->pins_default); } host->pins_uhs = pinctrl_lookup_state(host->pinctrl, "state_uhs"); if (IS_ERR(host->pins_uhs)) { dev_err(&pdev->dev, "Cannot find pinctrl uhs!\n"); return PTR_ERR(host->pins_uhs); } /* Support for SDIO eint irq ? */ if ((mmc->pm_caps & MMC_PM_WAKE_SDIO_IRQ) && (mmc->pm_caps & MMC_PM_KEEP_POWER)) { host->eint_irq = platform_get_irq_byname_optional(pdev, "sdio_wakeup"); if (host->eint_irq > 0) { host->pins_eint = pinctrl_lookup_state(host->pinctrl, "state_eint"); if (IS_ERR(host->pins_eint)) { dev_err(&pdev->dev, "Cannot find pinctrl eint!\n"); host->pins_eint = NULL; } else { device_init_wakeup(&pdev->dev, true); } } } msdc_of_property_parse(pdev, host); host->dev = &pdev->dev; host->dev_comp = of_device_get_match_data(&pdev->dev); host->src_clk_freq = clk_get_rate(host->src_clk); /* Set host parameters to mmc */ mmc->ops = &mt_msdc_ops; if (host->dev_comp->clk_div_bits == 8) mmc->f_min = DIV_ROUND_UP(host->src_clk_freq, 4 * 255); else mmc->f_min = DIV_ROUND_UP(host->src_clk_freq, 4 * 4095); if (!(mmc->caps & MMC_CAP_NONREMOVABLE) && !mmc_can_gpio_cd(mmc) && host->dev_comp->use_internal_cd) { /* * Is removable but no GPIO declared, so * use internal functionality. */ host->internal_cd = true; } if (mmc->caps & MMC_CAP_SDIO_IRQ) mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; mmc->caps |= MMC_CAP_CMD23; if (host->cqhci) mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; /* MMC core transfer sizes tunable parameters */ mmc->max_segs = MAX_BD_NUM; if (host->dev_comp->support_64g) mmc->max_seg_size = BDMA_DESC_BUFLEN_EXT; else mmc->max_seg_size = BDMA_DESC_BUFLEN; mmc->max_blk_size = 2048; mmc->max_req_size = 512 * 1024; mmc->max_blk_count = mmc->max_req_size / 512; if (host->dev_comp->support_64g) host->dma_mask = DMA_BIT_MASK(36); else host->dma_mask = DMA_BIT_MASK(32); mmc_dev(mmc)->dma_mask = &host->dma_mask; host->timeout_clks = 3 * 1048576; host->dma.gpd = dma_alloc_coherent(&pdev->dev, 2 * sizeof(struct mt_gpdma_desc), &host->dma.gpd_addr, GFP_KERNEL); host->dma.bd = dma_alloc_coherent(&pdev->dev, MAX_BD_NUM * sizeof(struct mt_bdma_desc), &host->dma.bd_addr, GFP_KERNEL); if (!host->dma.gpd || !host->dma.bd) { ret = -ENOMEM; goto release_mem; } msdc_init_gpd_bd(host, &host->dma); INIT_DELAYED_WORK(&host->req_timeout, msdc_request_timeout); spin_lock_init(&host->lock); platform_set_drvdata(pdev, mmc); ret = msdc_ungate_clock(host); if (ret) { dev_err(&pdev->dev, "Cannot ungate clocks!\n"); goto release_clk; } msdc_init_hw(host); if (mmc->caps2 & MMC_CAP2_CQE) { host->cq_host = devm_kzalloc(mmc->parent, sizeof(*host->cq_host), GFP_KERNEL); if (!host->cq_host) { ret = -ENOMEM; goto release; } host->cq_host->caps |= CQHCI_TASK_DESC_SZ_128; host->cq_host->mmio = host->base + 0x800; host->cq_host->ops = &msdc_cmdq_ops; ret = cqhci_init(host->cq_host, mmc, true); if (ret) goto release; mmc->max_segs = 128; /* cqhci 16bit length */ /* 0 size, means 65536 so we don't have to -1 here */ mmc->max_seg_size = 64 * 1024; /* Reduce CIT to 0x40 that corresponds to 2.35us */ msdc_cqe_cit_cal(host, 2350); } else if (mmc->caps2 & MMC_CAP2_NO_SDIO) { /* Use HSQ on eMMC/SD (but not on SDIO) if HW CQE not supported */ struct mmc_hsq *hsq = devm_kzalloc(&pdev->dev, sizeof(*hsq), GFP_KERNEL); if (!hsq) { ret = -ENOMEM; goto release; } ret = mmc_hsq_init(hsq, mmc); if (ret) goto release; host->hsq_en = true; } ret = devm_request_irq(&pdev->dev, host->irq, msdc_irq, IRQF_TRIGGER_NONE, pdev->name, host); if (ret) goto release; pm_runtime_set_active(host->dev); pm_runtime_set_autosuspend_delay(host->dev, MTK_MMC_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(host->dev); pm_runtime_enable(host->dev); ret = mmc_add_host(mmc); if (ret) goto end; return 0; end: pm_runtime_disable(host->dev); release: msdc_deinit_hw(host); release_clk: msdc_gate_clock(host); platform_set_drvdata(pdev, NULL); release_mem: device_init_wakeup(&pdev->dev, false); if (host->dma.gpd) dma_free_coherent(&pdev->dev, 2 * sizeof(struct mt_gpdma_desc), host->dma.gpd, host->dma.gpd_addr); if (host->dma.bd) dma_free_coherent(&pdev->dev, MAX_BD_NUM * sizeof(struct mt_bdma_desc), host->dma.bd, host->dma.bd_addr); return ret; } static void msdc_drv_remove(struct platform_device *pdev) { struct mmc_host *mmc; struct msdc_host *host; mmc = platform_get_drvdata(pdev); host = mmc_priv(mmc); pm_runtime_get_sync(host->dev); platform_set_drvdata(pdev, NULL); mmc_remove_host(mmc); msdc_deinit_hw(host); msdc_gate_clock(host); pm_runtime_disable(host->dev); pm_runtime_put_noidle(host->dev); dma_free_coherent(&pdev->dev, 2 * sizeof(struct mt_gpdma_desc), host->dma.gpd, host->dma.gpd_addr); dma_free_coherent(&pdev->dev, MAX_BD_NUM * sizeof(struct mt_bdma_desc), host->dma.bd, host->dma.bd_addr); device_init_wakeup(&pdev->dev, false); } static void msdc_save_reg(struct msdc_host *host) { u32 tune_reg = host->dev_comp->pad_tune_reg; host->save_para.msdc_cfg = readl(host->base + MSDC_CFG); host->save_para.iocon = readl(host->base + MSDC_IOCON); host->save_para.sdc_cfg = readl(host->base + SDC_CFG); host->save_para.patch_bit0 = readl(host->base + MSDC_PATCH_BIT); host->save_para.patch_bit1 = readl(host->base + MSDC_PATCH_BIT1); host->save_para.patch_bit2 = readl(host->base + MSDC_PATCH_BIT2); host->save_para.pad_ds_tune = readl(host->base + PAD_DS_TUNE); host->save_para.pad_cmd_tune = readl(host->base + PAD_CMD_TUNE); host->save_para.emmc50_cfg0 = readl(host->base + EMMC50_CFG0); host->save_para.emmc50_cfg3 = readl(host->base + EMMC50_CFG3); host->save_para.sdc_fifo_cfg = readl(host->base + SDC_FIFO_CFG); if (host->top_base) { host->save_para.emmc_top_control = readl(host->top_base + EMMC_TOP_CONTROL); host->save_para.emmc_top_cmd = readl(host->top_base + EMMC_TOP_CMD); host->save_para.emmc50_pad_ds_tune = readl(host->top_base + EMMC50_PAD_DS_TUNE); host->save_para.loop_test_control = readl(host->top_base + LOOP_TEST_CONTROL); } else { host->save_para.pad_tune = readl(host->base + tune_reg); } } static void msdc_restore_reg(struct msdc_host *host) { struct mmc_host *mmc = mmc_from_priv(host); u32 tune_reg = host->dev_comp->pad_tune_reg; if (host->dev_comp->support_new_tx) { sdr_clr_bits(host->base + SDC_ADV_CFG0, SDC_NEW_TX_EN); sdr_set_bits(host->base + SDC_ADV_CFG0, SDC_NEW_TX_EN); } if (host->dev_comp->support_new_rx) { sdr_clr_bits(host->base + MSDC_NEW_RX_CFG, MSDC_NEW_RX_PATH_SEL); sdr_set_bits(host->base + MSDC_NEW_RX_CFG, MSDC_NEW_RX_PATH_SEL); } writel(host->save_para.msdc_cfg, host->base + MSDC_CFG); writel(host->save_para.iocon, host->base + MSDC_IOCON); writel(host->save_para.sdc_cfg, host->base + SDC_CFG); writel(host->save_para.patch_bit0, host->base + MSDC_PATCH_BIT); writel(host->save_para.patch_bit1, host->base + MSDC_PATCH_BIT1); writel(host->save_para.patch_bit2, host->base + MSDC_PATCH_BIT2); writel(host->save_para.pad_ds_tune, host->base + PAD_DS_TUNE); writel(host->save_para.pad_cmd_tune, host->base + PAD_CMD_TUNE); writel(host->save_para.emmc50_cfg0, host->base + EMMC50_CFG0); writel(host->save_para.emmc50_cfg3, host->base + EMMC50_CFG3); writel(host->save_para.sdc_fifo_cfg, host->base + SDC_FIFO_CFG); if (host->top_base) { writel(host->save_para.emmc_top_control, host->top_base + EMMC_TOP_CONTROL); writel(host->save_para.emmc_top_cmd, host->top_base + EMMC_TOP_CMD); writel(host->save_para.emmc50_pad_ds_tune, host->top_base + EMMC50_PAD_DS_TUNE); writel(host->save_para.loop_test_control, host->top_base + LOOP_TEST_CONTROL); } else { writel(host->save_para.pad_tune, host->base + tune_reg); } if (sdio_irq_claimed(mmc)) __msdc_enable_sdio_irq(host, 1); } static int __maybe_unused msdc_runtime_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct msdc_host *host = mmc_priv(mmc); if (host->hsq_en) mmc_hsq_suspend(mmc); msdc_save_reg(host); if (sdio_irq_claimed(mmc)) { if (host->pins_eint) { disable_irq(host->irq); pinctrl_select_state(host->pinctrl, host->pins_eint); } __msdc_enable_sdio_irq(host, 0); } msdc_gate_clock(host); return 0; } static int __maybe_unused msdc_runtime_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct msdc_host *host = mmc_priv(mmc); int ret; ret = msdc_ungate_clock(host); if (ret) return ret; msdc_restore_reg(host); if (sdio_irq_claimed(mmc) && host->pins_eint) { pinctrl_select_state(host->pinctrl, host->pins_uhs); enable_irq(host->irq); } if (host->hsq_en) mmc_hsq_resume(mmc); return 0; } static int __maybe_unused msdc_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct msdc_host *host = mmc_priv(mmc); int ret; u32 val; if (mmc->caps2 & MMC_CAP2_CQE) { ret = cqhci_suspend(mmc); if (ret) return ret; val = readl(host->base + MSDC_INT); writel(val, host->base + MSDC_INT); } /* * Bump up runtime PM usage counter otherwise dev->power.needs_force_resume will * not be marked as 1, pm_runtime_force_resume() will go out directly. */ if (sdio_irq_claimed(mmc) && host->pins_eint) pm_runtime_get_noresume(dev); return pm_runtime_force_suspend(dev); } static int __maybe_unused msdc_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct msdc_host *host = mmc_priv(mmc); if (sdio_irq_claimed(mmc) && host->pins_eint) pm_runtime_put_noidle(dev); return pm_runtime_force_resume(dev); } static const struct dev_pm_ops msdc_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(msdc_suspend, msdc_resume) SET_RUNTIME_PM_OPS(msdc_runtime_suspend, msdc_runtime_resume, NULL) }; static struct platform_driver mt_msdc_driver = { .probe = msdc_drv_probe, .remove = msdc_drv_remove, .driver = { .name = "mtk-msdc", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = msdc_of_ids, .pm = &msdc_dev_pm_ops, }, }; module_platform_driver(mt_msdc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MediaTek SD/MMC Card Driver");