// SPDX-License-Identifier: GPL-2.0 /* * Broadcom STB ASP 2.0 Driver * * Copyright (c) 2023 Broadcom */ #include #include #include #include #include #include #include #include #include #include #include #include "bcmasp.h" #include "bcmasp_intf_defs.h" static void _intr2_mask_clear(struct bcmasp_priv *priv, u32 mask) { intr2_core_wl(priv, mask, ASP_INTR2_MASK_CLEAR); priv->irq_mask &= ~mask; } static void _intr2_mask_set(struct bcmasp_priv *priv, u32 mask) { intr2_core_wl(priv, mask, ASP_INTR2_MASK_SET); priv->irq_mask |= mask; } void bcmasp_enable_phy_irq(struct bcmasp_intf *intf, int en) { struct bcmasp_priv *priv = intf->parent; /* Only supported with internal phys */ if (!intf->internal_phy) return; if (en) _intr2_mask_clear(priv, ASP_INTR2_PHY_EVENT(intf->channel)); else _intr2_mask_set(priv, ASP_INTR2_PHY_EVENT(intf->channel)); } void bcmasp_enable_tx_irq(struct bcmasp_intf *intf, int en) { struct bcmasp_priv *priv = intf->parent; if (en) _intr2_mask_clear(priv, ASP_INTR2_TX_DESC(intf->channel)); else _intr2_mask_set(priv, ASP_INTR2_TX_DESC(intf->channel)); } EXPORT_SYMBOL_GPL(bcmasp_enable_tx_irq); void bcmasp_enable_rx_irq(struct bcmasp_intf *intf, int en) { struct bcmasp_priv *priv = intf->parent; if (en) _intr2_mask_clear(priv, ASP_INTR2_RX_ECH(intf->channel)); else _intr2_mask_set(priv, ASP_INTR2_RX_ECH(intf->channel)); } EXPORT_SYMBOL_GPL(bcmasp_enable_rx_irq); static void bcmasp_intr2_mask_set_all(struct bcmasp_priv *priv) { _intr2_mask_set(priv, 0xffffffff); priv->irq_mask = 0xffffffff; } static void bcmasp_intr2_clear_all(struct bcmasp_priv *priv) { intr2_core_wl(priv, 0xffffffff, ASP_INTR2_CLEAR); } static void bcmasp_intr2_handling(struct bcmasp_intf *intf, u32 status) { if (status & ASP_INTR2_RX_ECH(intf->channel)) { if (likely(napi_schedule_prep(&intf->rx_napi))) { bcmasp_enable_rx_irq(intf, 0); __napi_schedule_irqoff(&intf->rx_napi); } } if (status & ASP_INTR2_TX_DESC(intf->channel)) { if (likely(napi_schedule_prep(&intf->tx_napi))) { bcmasp_enable_tx_irq(intf, 0); __napi_schedule_irqoff(&intf->tx_napi); } } if (status & ASP_INTR2_PHY_EVENT(intf->channel)) phy_mac_interrupt(intf->ndev->phydev); } static irqreturn_t bcmasp_isr(int irq, void *data) { struct bcmasp_priv *priv = data; struct bcmasp_intf *intf; u32 status; status = intr2_core_rl(priv, ASP_INTR2_STATUS) & ~intr2_core_rl(priv, ASP_INTR2_MASK_STATUS); intr2_core_wl(priv, status, ASP_INTR2_CLEAR); if (unlikely(status == 0)) { dev_warn(&priv->pdev->dev, "l2 spurious interrupt\n"); return IRQ_NONE; } /* Handle intferfaces */ list_for_each_entry(intf, &priv->intfs, list) bcmasp_intr2_handling(intf, status); return IRQ_HANDLED; } void bcmasp_flush_rx_port(struct bcmasp_intf *intf) { struct bcmasp_priv *priv = intf->parent; u32 mask; switch (intf->port) { case 0: mask = ASP_CTRL_UMAC0_FLUSH_MASK; break; case 1: mask = ASP_CTRL_UMAC1_FLUSH_MASK; break; case 2: mask = ASP_CTRL_SPB_FLUSH_MASK; break; default: /* Not valid port */ return; } rx_ctrl_core_wl(priv, mask, priv->hw_info->rx_ctrl_flush); } static void bcmasp_netfilt_hw_en_wake(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt) { rx_filter_core_wl(priv, ASP_RX_FILTER_NET_OFFSET_L3_1(64), ASP_RX_FILTER_NET_OFFSET(nfilt->hw_index)); rx_filter_core_wl(priv, ASP_RX_FILTER_NET_OFFSET_L2(32) | ASP_RX_FILTER_NET_OFFSET_L3_0(32) | ASP_RX_FILTER_NET_OFFSET_L3_1(96) | ASP_RX_FILTER_NET_OFFSET_L4(32), ASP_RX_FILTER_NET_OFFSET(nfilt->hw_index + 1)); rx_filter_core_wl(priv, ASP_RX_FILTER_NET_CFG_CH(nfilt->port + 8) | ASP_RX_FILTER_NET_CFG_EN | ASP_RX_FILTER_NET_CFG_L2_EN | ASP_RX_FILTER_NET_CFG_L3_EN | ASP_RX_FILTER_NET_CFG_L4_EN | ASP_RX_FILTER_NET_CFG_L3_FRM(2) | ASP_RX_FILTER_NET_CFG_L4_FRM(2) | ASP_RX_FILTER_NET_CFG_UMC(nfilt->port), ASP_RX_FILTER_NET_CFG(nfilt->hw_index)); rx_filter_core_wl(priv, ASP_RX_FILTER_NET_CFG_CH(nfilt->port + 8) | ASP_RX_FILTER_NET_CFG_EN | ASP_RX_FILTER_NET_CFG_L2_EN | ASP_RX_FILTER_NET_CFG_L3_EN | ASP_RX_FILTER_NET_CFG_L4_EN | ASP_RX_FILTER_NET_CFG_L3_FRM(2) | ASP_RX_FILTER_NET_CFG_L4_FRM(2) | ASP_RX_FILTER_NET_CFG_UMC(nfilt->port), ASP_RX_FILTER_NET_CFG(nfilt->hw_index + 1)); } #define MAX_WAKE_FILTER_SIZE 256 enum asp_netfilt_reg_type { ASP_NETFILT_MATCH = 0, ASP_NETFILT_MASK, ASP_NETFILT_MAX }; static int bcmasp_netfilt_get_reg_offset(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, enum asp_netfilt_reg_type reg_type, u32 offset) { u32 block_index, filter_sel; if (offset < 32) { block_index = ASP_RX_FILTER_NET_L2; filter_sel = nfilt->hw_index; } else if (offset < 64) { block_index = ASP_RX_FILTER_NET_L2; filter_sel = nfilt->hw_index + 1; } else if (offset < 96) { block_index = ASP_RX_FILTER_NET_L3_0; filter_sel = nfilt->hw_index; } else if (offset < 128) { block_index = ASP_RX_FILTER_NET_L3_0; filter_sel = nfilt->hw_index + 1; } else if (offset < 160) { block_index = ASP_RX_FILTER_NET_L3_1; filter_sel = nfilt->hw_index; } else if (offset < 192) { block_index = ASP_RX_FILTER_NET_L3_1; filter_sel = nfilt->hw_index + 1; } else if (offset < 224) { block_index = ASP_RX_FILTER_NET_L4; filter_sel = nfilt->hw_index; } else if (offset < 256) { block_index = ASP_RX_FILTER_NET_L4; filter_sel = nfilt->hw_index + 1; } else { return -EINVAL; } switch (reg_type) { case ASP_NETFILT_MATCH: return ASP_RX_FILTER_NET_PAT(filter_sel, block_index, (offset % 32)); case ASP_NETFILT_MASK: return ASP_RX_FILTER_NET_MASK(filter_sel, block_index, (offset % 32)); default: return -EINVAL; } } static void bcmasp_netfilt_wr(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, enum asp_netfilt_reg_type reg_type, u32 val, u32 offset) { int reg_offset; /* HW only accepts 4 byte aligned writes */ if (!IS_ALIGNED(offset, 4) || offset > MAX_WAKE_FILTER_SIZE) return; reg_offset = bcmasp_netfilt_get_reg_offset(priv, nfilt, reg_type, offset); rx_filter_core_wl(priv, val, reg_offset); } static u32 bcmasp_netfilt_rd(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, enum asp_netfilt_reg_type reg_type, u32 offset) { int reg_offset; /* HW only accepts 4 byte aligned writes */ if (!IS_ALIGNED(offset, 4) || offset > MAX_WAKE_FILTER_SIZE) return 0; reg_offset = bcmasp_netfilt_get_reg_offset(priv, nfilt, reg_type, offset); return rx_filter_core_rl(priv, reg_offset); } static int bcmasp_netfilt_wr_m_wake(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, u32 offset, void *match, void *mask, size_t size) { u32 shift, mask_val = 0, match_val = 0; bool first_byte = true; if ((offset + size) > MAX_WAKE_FILTER_SIZE) return -EINVAL; while (size--) { /* The HW only accepts 4 byte aligned writes, so if we * begin unaligned or if remaining bytes less than 4, * we need to read then write to avoid losing current * register state */ if (first_byte && (!IS_ALIGNED(offset, 4) || size < 3)) { match_val = bcmasp_netfilt_rd(priv, nfilt, ASP_NETFILT_MATCH, ALIGN_DOWN(offset, 4)); mask_val = bcmasp_netfilt_rd(priv, nfilt, ASP_NETFILT_MASK, ALIGN_DOWN(offset, 4)); } shift = (3 - (offset % 4)) * 8; match_val &= ~GENMASK(shift + 7, shift); mask_val &= ~GENMASK(shift + 7, shift); match_val |= (u32)(*((u8 *)match) << shift); mask_val |= (u32)(*((u8 *)mask) << shift); /* If last byte or last byte of word, write to reg */ if (!size || ((offset % 4) == 3)) { bcmasp_netfilt_wr(priv, nfilt, ASP_NETFILT_MATCH, match_val, ALIGN_DOWN(offset, 4)); bcmasp_netfilt_wr(priv, nfilt, ASP_NETFILT_MASK, mask_val, ALIGN_DOWN(offset, 4)); first_byte = true; } else { first_byte = false; } offset++; match++; mask++; } return 0; } static void bcmasp_netfilt_reset_hw(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt) { int i; for (i = 0; i < MAX_WAKE_FILTER_SIZE; i += 4) { bcmasp_netfilt_wr(priv, nfilt, ASP_NETFILT_MATCH, 0, i); bcmasp_netfilt_wr(priv, nfilt, ASP_NETFILT_MASK, 0, i); } } static void bcmasp_netfilt_tcpip4_wr(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, struct ethtool_tcpip4_spec *match, struct ethtool_tcpip4_spec *mask, u32 offset) { __be16 val_16, mask_16; val_16 = htons(ETH_P_IP); mask_16 = htons(0xFFFF); bcmasp_netfilt_wr_m_wake(priv, nfilt, (ETH_ALEN * 2) + offset, &val_16, &mask_16, sizeof(val_16)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 1, &match->tos, &mask->tos, sizeof(match->tos)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 12, &match->ip4src, &mask->ip4src, sizeof(match->ip4src)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 16, &match->ip4dst, &mask->ip4dst, sizeof(match->ip4dst)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 20, &match->psrc, &mask->psrc, sizeof(match->psrc)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 22, &match->pdst, &mask->pdst, sizeof(match->pdst)); } static void bcmasp_netfilt_tcpip6_wr(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt, struct ethtool_tcpip6_spec *match, struct ethtool_tcpip6_spec *mask, u32 offset) { __be16 val_16, mask_16; val_16 = htons(ETH_P_IPV6); mask_16 = htons(0xFFFF); bcmasp_netfilt_wr_m_wake(priv, nfilt, (ETH_ALEN * 2) + offset, &val_16, &mask_16, sizeof(val_16)); val_16 = htons(match->tclass << 4); mask_16 = htons(mask->tclass << 4); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset, &val_16, &mask_16, sizeof(val_16)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 8, &match->ip6src, &mask->ip6src, sizeof(match->ip6src)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 24, &match->ip6dst, &mask->ip6dst, sizeof(match->ip6dst)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 40, &match->psrc, &mask->psrc, sizeof(match->psrc)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 42, &match->pdst, &mask->pdst, sizeof(match->pdst)); } static int bcmasp_netfilt_wr_to_hw(struct bcmasp_priv *priv, struct bcmasp_net_filter *nfilt) { struct ethtool_rx_flow_spec *fs = &nfilt->fs; unsigned int offset = 0; __be16 val_16, mask_16; u8 val_8, mask_8; /* Currently only supports wake filters */ if (!nfilt->wake_filter) return -EINVAL; bcmasp_netfilt_reset_hw(priv, nfilt); if (fs->flow_type & FLOW_MAC_EXT) { bcmasp_netfilt_wr_m_wake(priv, nfilt, 0, &fs->h_ext.h_dest, &fs->m_ext.h_dest, sizeof(fs->h_ext.h_dest)); } if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype || fs->m_ext.vlan_tci)) { bcmasp_netfilt_wr_m_wake(priv, nfilt, (ETH_ALEN * 2), &fs->h_ext.vlan_etype, &fs->m_ext.vlan_etype, sizeof(fs->h_ext.vlan_etype)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ((ETH_ALEN * 2) + 2), &fs->h_ext.vlan_tci, &fs->m_ext.vlan_tci, sizeof(fs->h_ext.vlan_tci)); offset += VLAN_HLEN; } switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { case ETHER_FLOW: bcmasp_netfilt_wr_m_wake(priv, nfilt, 0, &fs->h_u.ether_spec.h_dest, &fs->m_u.ether_spec.h_dest, sizeof(fs->h_u.ether_spec.h_dest)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_ALEN, &fs->h_u.ether_spec.h_source, &fs->m_u.ether_spec.h_source, sizeof(fs->h_u.ether_spec.h_source)); bcmasp_netfilt_wr_m_wake(priv, nfilt, (ETH_ALEN * 2) + offset, &fs->h_u.ether_spec.h_proto, &fs->m_u.ether_spec.h_proto, sizeof(fs->h_u.ether_spec.h_proto)); break; case IP_USER_FLOW: val_16 = htons(ETH_P_IP); mask_16 = htons(0xFFFF); bcmasp_netfilt_wr_m_wake(priv, nfilt, (ETH_ALEN * 2) + offset, &val_16, &mask_16, sizeof(val_16)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 1, &fs->h_u.usr_ip4_spec.tos, &fs->m_u.usr_ip4_spec.tos, sizeof(fs->h_u.usr_ip4_spec.tos)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 9, &fs->h_u.usr_ip4_spec.proto, &fs->m_u.usr_ip4_spec.proto, sizeof(fs->h_u.usr_ip4_spec.proto)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 12, &fs->h_u.usr_ip4_spec.ip4src, &fs->m_u.usr_ip4_spec.ip4src, sizeof(fs->h_u.usr_ip4_spec.ip4src)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 16, &fs->h_u.usr_ip4_spec.ip4dst, &fs->m_u.usr_ip4_spec.ip4dst, sizeof(fs->h_u.usr_ip4_spec.ip4dst)); if (!fs->m_u.usr_ip4_spec.l4_4_bytes) break; /* Only supports 20 byte IPv4 header */ val_8 = 0x45; mask_8 = 0xFF; bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset, &val_8, &mask_8, sizeof(val_8)); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + 20 + offset, &fs->h_u.usr_ip4_spec.l4_4_bytes, &fs->m_u.usr_ip4_spec.l4_4_bytes, sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes) ); break; case TCP_V4_FLOW: val_8 = IPPROTO_TCP; mask_8 = 0xFF; bcmasp_netfilt_tcpip4_wr(priv, nfilt, &fs->h_u.tcp_ip4_spec, &fs->m_u.tcp_ip4_spec, offset); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 9, &val_8, &mask_8, sizeof(val_8)); break; case UDP_V4_FLOW: val_8 = IPPROTO_UDP; mask_8 = 0xFF; bcmasp_netfilt_tcpip4_wr(priv, nfilt, &fs->h_u.udp_ip4_spec, &fs->m_u.udp_ip4_spec, offset); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 9, &val_8, &mask_8, sizeof(val_8)); break; case TCP_V6_FLOW: val_8 = IPPROTO_TCP; mask_8 = 0xFF; bcmasp_netfilt_tcpip6_wr(priv, nfilt, &fs->h_u.tcp_ip6_spec, &fs->m_u.tcp_ip6_spec, offset); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 6, &val_8, &mask_8, sizeof(val_8)); break; case UDP_V6_FLOW: val_8 = IPPROTO_UDP; mask_8 = 0xFF; bcmasp_netfilt_tcpip6_wr(priv, nfilt, &fs->h_u.udp_ip6_spec, &fs->m_u.udp_ip6_spec, offset); bcmasp_netfilt_wr_m_wake(priv, nfilt, ETH_HLEN + offset + 6, &val_8, &mask_8, sizeof(val_8)); break; } bcmasp_netfilt_hw_en_wake(priv, nfilt); return 0; } void bcmasp_netfilt_suspend(struct bcmasp_intf *intf) { struct bcmasp_priv *priv = intf->parent; bool write = false; int ret, i; /* Write all filters to HW */ for (i = 0; i < NUM_NET_FILTERS; i++) { /* If the filter does not match the port, skip programming. */ if (!priv->net_filters[i].claimed || priv->net_filters[i].port != intf->port) continue; if (i > 0 && (i % 2) && priv->net_filters[i].wake_filter && priv->net_filters[i - 1].wake_filter) continue; ret = bcmasp_netfilt_wr_to_hw(priv, &priv->net_filters[i]); if (!ret) write = true; } /* Successfully programmed at least one wake filter * so enable top level wake config */ if (write) rx_filter_core_wl(priv, (ASP_RX_FILTER_OPUT_EN | ASP_RX_FILTER_LNR_MD | ASP_RX_FILTER_GEN_WK_EN | ASP_RX_FILTER_NT_FLT_EN), ASP_RX_FILTER_BLK_CTRL); } int bcmasp_netfilt_get_all_active(struct bcmasp_intf *intf, u32 *rule_locs, u32 *rule_cnt) { struct bcmasp_priv *priv = intf->parent; int j = 0, i; for (i = 0; i < NUM_NET_FILTERS; i++) { if (!priv->net_filters[i].claimed || priv->net_filters[i].port != intf->port) continue; if (i > 0 && (i % 2) && priv->net_filters[i].wake_filter && priv->net_filters[i - 1].wake_filter) continue; if (j == *rule_cnt) return -EMSGSIZE; rule_locs[j++] = priv->net_filters[i].fs.location; } *rule_cnt = j; return 0; } int bcmasp_netfilt_get_active(struct bcmasp_intf *intf) { struct bcmasp_priv *priv = intf->parent; int cnt = 0, i; for (i = 0; i < NUM_NET_FILTERS; i++) { if (!priv->net_filters[i].claimed || priv->net_filters[i].port != intf->port) continue; /* Skip over a wake filter pair */ if (i > 0 && (i % 2) && priv->net_filters[i].wake_filter && priv->net_filters[i - 1].wake_filter) continue; cnt++; } return cnt; } bool bcmasp_netfilt_check_dup(struct bcmasp_intf *intf, struct ethtool_rx_flow_spec *fs) { struct bcmasp_priv *priv = intf->parent; struct ethtool_rx_flow_spec *cur; size_t fs_size = 0; int i; for (i = 0; i < NUM_NET_FILTERS; i++) { if (!priv->net_filters[i].claimed || priv->net_filters[i].port != intf->port) continue; cur = &priv->net_filters[i].fs; if (cur->flow_type != fs->flow_type || cur->ring_cookie != fs->ring_cookie) continue; switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { case ETHER_FLOW: fs_size = sizeof(struct ethhdr); break; case IP_USER_FLOW: fs_size = sizeof(struct ethtool_usrip4_spec); break; case TCP_V6_FLOW: case UDP_V6_FLOW: fs_size = sizeof(struct ethtool_tcpip6_spec); break; case TCP_V4_FLOW: case UDP_V4_FLOW: fs_size = sizeof(struct ethtool_tcpip4_spec); break; default: continue; } if (memcmp(&cur->h_u, &fs->h_u, fs_size) || memcmp(&cur->m_u, &fs->m_u, fs_size)) continue; if (cur->flow_type & FLOW_EXT) { if (cur->h_ext.vlan_etype != fs->h_ext.vlan_etype || cur->m_ext.vlan_etype != fs->m_ext.vlan_etype || cur->h_ext.vlan_tci != fs->h_ext.vlan_tci || cur->m_ext.vlan_tci != fs->m_ext.vlan_tci || cur->h_ext.data[0] != fs->h_ext.data[0]) continue; } if (cur->flow_type & FLOW_MAC_EXT) { if (memcmp(&cur->h_ext.h_dest, &fs->h_ext.h_dest, ETH_ALEN) || memcmp(&cur->m_ext.h_dest, &fs->m_ext.h_dest, ETH_ALEN)) continue; } return true; } return false; } /* If no network filter found, return open filter. * If no more open filters return NULL */ struct bcmasp_net_filter *bcmasp_netfilt_get_init(struct bcmasp_intf *intf, u32 loc, bool wake_filter, bool init) { struct bcmasp_net_filter *nfilter = NULL; struct bcmasp_priv *priv = intf->parent; int i, open_index = -1; /* Check whether we exceed the filter table capacity */ if (loc != RX_CLS_LOC_ANY && loc >= NUM_NET_FILTERS) return ERR_PTR(-EINVAL); /* If the filter location is busy (already claimed) and we are initializing * the filter (insertion), return a busy error code. */ if (loc != RX_CLS_LOC_ANY && init && priv->net_filters[loc].claimed) return ERR_PTR(-EBUSY); /* We need two filters for wake-up, so we cannot use an odd filter */ if (wake_filter && loc != RX_CLS_LOC_ANY && (loc % 2)) return ERR_PTR(-EINVAL); /* Initialize the loop index based on the desired location or from 0 */ i = loc == RX_CLS_LOC_ANY ? 0 : loc; for ( ; i < NUM_NET_FILTERS; i++) { /* Found matching network filter */ if (!init && priv->net_filters[i].claimed && priv->net_filters[i].hw_index == i && priv->net_filters[i].port == intf->port) return &priv->net_filters[i]; /* If we don't need a new filter or new filter already found */ if (!init || open_index >= 0) continue; /* Wake filter conslidates two filters to cover more bytes * Wake filter is open if... * 1. It is an even filter * 2. The current and next filter is not claimed */ if (wake_filter && !(i % 2) && !priv->net_filters[i].claimed && !priv->net_filters[i + 1].claimed) open_index = i; else if (!priv->net_filters[i].claimed) open_index = i; } if (open_index >= 0) { nfilter = &priv->net_filters[open_index]; nfilter->claimed = true; nfilter->port = intf->port; nfilter->hw_index = open_index; } if (wake_filter && open_index >= 0) { /* Claim next filter */ priv->net_filters[open_index + 1].claimed = true; priv->net_filters[open_index + 1].wake_filter = true; nfilter->wake_filter = true; } return nfilter ? nfilter : ERR_PTR(-EINVAL); } void bcmasp_netfilt_release(struct bcmasp_intf *intf, struct bcmasp_net_filter *nfilt) { struct bcmasp_priv *priv = intf->parent; if (nfilt->wake_filter) { memset(&priv->net_filters[nfilt->hw_index + 1], 0, sizeof(struct bcmasp_net_filter)); } memset(nfilt, 0, sizeof(struct bcmasp_net_filter)); } static void bcmasp_addr_to_uint(unsigned char *addr, u32 *high, u32 *low) { *high = (u32)(addr[0] << 8 | addr[1]); *low = (u32)(addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5]); } static void bcmasp_set_mda_filter(struct bcmasp_intf *intf, const unsigned char *addr, unsigned char *mask, unsigned int i) { struct bcmasp_priv *priv = intf->parent; u32 addr_h, addr_l, mask_h, mask_l; /* Set local copy */ ether_addr_copy(priv->mda_filters[i].mask, mask); ether_addr_copy(priv->mda_filters[i].addr, addr); /* Write to HW */ bcmasp_addr_to_uint(priv->mda_filters[i].mask, &mask_h, &mask_l); bcmasp_addr_to_uint(priv->mda_filters[i].addr, &addr_h, &addr_l); rx_filter_core_wl(priv, addr_h, ASP_RX_FILTER_MDA_PAT_H(i)); rx_filter_core_wl(priv, addr_l, ASP_RX_FILTER_MDA_PAT_L(i)); rx_filter_core_wl(priv, mask_h, ASP_RX_FILTER_MDA_MSK_H(i)); rx_filter_core_wl(priv, mask_l, ASP_RX_FILTER_MDA_MSK_L(i)); } static void bcmasp_en_mda_filter(struct bcmasp_intf *intf, bool en, unsigned int i) { struct bcmasp_priv *priv = intf->parent; if (priv->mda_filters[i].en == en) return; priv->mda_filters[i].en = en; priv->mda_filters[i].port = intf->port; rx_filter_core_wl(priv, ((intf->channel + 8) | (en << ASP_RX_FILTER_MDA_CFG_EN_SHIFT) | ASP_RX_FILTER_MDA_CFG_UMC_SEL(intf->port)), ASP_RX_FILTER_MDA_CFG(i)); } /* There are 32 MDA filters shared between all ports, we reserve 4 filters per * port for the following. * - Promisc: Filter to allow all packets when promisc is enabled * - All Multicast * - Broadcast * - Own address * * The reserved filters are identified as so. * - Promisc: (index * 4) + 0 * - All Multicast: (index * 4) + 1 * - Broadcast: (index * 4) + 2 * - Own address: (index * 4) + 3 */ enum asp_rx_filter_id { ASP_RX_FILTER_MDA_PROMISC = 0, ASP_RX_FILTER_MDA_ALLMULTI, ASP_RX_FILTER_MDA_BROADCAST, ASP_RX_FILTER_MDA_OWN_ADDR, ASP_RX_FILTER_MDA_RES_MAX, }; #define ASP_RX_FILT_MDA(intf, name) (((intf)->index * \ ASP_RX_FILTER_MDA_RES_MAX) \ + ASP_RX_FILTER_MDA_##name) static int bcmasp_total_res_mda_cnt(struct bcmasp_priv *priv) { return list_count_nodes(&priv->intfs) * ASP_RX_FILTER_MDA_RES_MAX; } void bcmasp_set_promisc(struct bcmasp_intf *intf, bool en) { unsigned int i = ASP_RX_FILT_MDA(intf, PROMISC); unsigned char promisc[ETH_ALEN]; eth_zero_addr(promisc); /* Set mask to 00:00:00:00:00:00 to match all packets */ bcmasp_set_mda_filter(intf, promisc, promisc, i); bcmasp_en_mda_filter(intf, en, i); } void bcmasp_set_allmulti(struct bcmasp_intf *intf, bool en) { unsigned char allmulti[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned int i = ASP_RX_FILT_MDA(intf, ALLMULTI); /* Set mask to 01:00:00:00:00:00 to match all multicast */ bcmasp_set_mda_filter(intf, allmulti, allmulti, i); bcmasp_en_mda_filter(intf, en, i); } void bcmasp_set_broad(struct bcmasp_intf *intf, bool en) { unsigned int i = ASP_RX_FILT_MDA(intf, BROADCAST); unsigned char addr[ETH_ALEN]; eth_broadcast_addr(addr); bcmasp_set_mda_filter(intf, addr, addr, i); bcmasp_en_mda_filter(intf, en, i); } void bcmasp_set_oaddr(struct bcmasp_intf *intf, const unsigned char *addr, bool en) { unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; unsigned int i = ASP_RX_FILT_MDA(intf, OWN_ADDR); bcmasp_set_mda_filter(intf, addr, mask, i); bcmasp_en_mda_filter(intf, en, i); } void bcmasp_disable_all_filters(struct bcmasp_intf *intf) { struct bcmasp_priv *priv = intf->parent; unsigned int i; int res_count; res_count = bcmasp_total_res_mda_cnt(intf->parent); /* Disable all filters held by this port */ for (i = res_count; i < NUM_MDA_FILTERS; i++) { if (priv->mda_filters[i].en && priv->mda_filters[i].port == intf->port) bcmasp_en_mda_filter(intf, 0, i); } } static int bcmasp_combine_set_filter(struct bcmasp_intf *intf, unsigned char *addr, unsigned char *mask, int i) { struct bcmasp_priv *priv = intf->parent; u64 addr1, addr2, mask1, mask2, mask3; /* Switch to u64 to help with the calculations */ addr1 = ether_addr_to_u64(priv->mda_filters[i].addr); mask1 = ether_addr_to_u64(priv->mda_filters[i].mask); addr2 = ether_addr_to_u64(addr); mask2 = ether_addr_to_u64(mask); /* Check if one filter resides within the other */ mask3 = mask1 & mask2; if (mask3 == mask1 && ((addr1 & mask1) == (addr2 & mask1))) { /* Filter 2 resides within filter 1, so everything is good */ return 0; } else if (mask3 == mask2 && ((addr1 & mask2) == (addr2 & mask2))) { /* Filter 1 resides within filter 2, so swap filters */ bcmasp_set_mda_filter(intf, addr, mask, i); return 0; } /* Unable to combine */ return -EINVAL; } int bcmasp_set_en_mda_filter(struct bcmasp_intf *intf, unsigned char *addr, unsigned char *mask) { struct bcmasp_priv *priv = intf->parent; int ret, res_count; unsigned int i; res_count = bcmasp_total_res_mda_cnt(intf->parent); for (i = res_count; i < NUM_MDA_FILTERS; i++) { /* If filter not enabled or belongs to another port skip */ if (!priv->mda_filters[i].en || priv->mda_filters[i].port != intf->port) continue; /* Attempt to combine filters */ ret = bcmasp_combine_set_filter(intf, addr, mask, i); if (!ret) { intf->mib.filters_combine_cnt++; return 0; } } /* Create new filter if possible */ for (i = res_count; i < NUM_MDA_FILTERS; i++) { if (priv->mda_filters[i].en) continue; bcmasp_set_mda_filter(intf, addr, mask, i); bcmasp_en_mda_filter(intf, 1, i); return 0; } /* No room for new filter */ return -EINVAL; } static void bcmasp_core_init_filters(struct bcmasp_priv *priv) { unsigned int i; /* Disable all filters and reset software view since the HW * can lose context while in deep sleep suspend states */ for (i = 0; i < NUM_MDA_FILTERS; i++) { rx_filter_core_wl(priv, 0x0, ASP_RX_FILTER_MDA_CFG(i)); priv->mda_filters[i].en = 0; } for (i = 0; i < NUM_NET_FILTERS; i++) rx_filter_core_wl(priv, 0x0, ASP_RX_FILTER_NET_CFG(i)); /* Top level filter enable bit should be enabled at all times, set * GEN_WAKE_CLEAR to clear the network filter wake-up which would * otherwise be sticky */ rx_filter_core_wl(priv, (ASP_RX_FILTER_OPUT_EN | ASP_RX_FILTER_MDA_EN | ASP_RX_FILTER_GEN_WK_CLR | ASP_RX_FILTER_NT_FLT_EN), ASP_RX_FILTER_BLK_CTRL); } /* ASP core initialization */ static void bcmasp_core_init(struct bcmasp_priv *priv) { tx_analytics_core_wl(priv, 0x0, ASP_TX_ANALYTICS_CTRL); rx_analytics_core_wl(priv, 0x4, ASP_RX_ANALYTICS_CTRL); rx_edpkt_core_wl(priv, (ASP_EDPKT_HDR_SZ_128 << ASP_EDPKT_HDR_SZ_SHIFT), ASP_EDPKT_HDR_CFG); rx_edpkt_core_wl(priv, (ASP_EDPKT_ENDI_BT_SWP_WD << ASP_EDPKT_ENDI_DESC_SHIFT), ASP_EDPKT_ENDI); rx_edpkt_core_wl(priv, 0x1b, ASP_EDPKT_BURST_BUF_PSCAL_TOUT); rx_edpkt_core_wl(priv, 0x3e8, ASP_EDPKT_BURST_BUF_WRITE_TOUT); rx_edpkt_core_wl(priv, 0x3e8, ASP_EDPKT_BURST_BUF_READ_TOUT); rx_edpkt_core_wl(priv, ASP_EDPKT_ENABLE_EN, ASP_EDPKT_ENABLE); /* Disable and clear both UniMAC's wake-up interrupts to avoid * sticky interrupts. */ _intr2_mask_set(priv, ASP_INTR2_UMC0_WAKE | ASP_INTR2_UMC1_WAKE); intr2_core_wl(priv, ASP_INTR2_UMC0_WAKE | ASP_INTR2_UMC1_WAKE, ASP_INTR2_CLEAR); } static void bcmasp_core_clock_select_many(struct bcmasp_priv *priv, bool slow) { u32 reg; reg = ctrl2_core_rl(priv, ASP_CTRL2_CORE_CLOCK_SELECT); if (slow) reg &= ~ASP_CTRL2_CORE_CLOCK_SELECT_MAIN; else reg |= ASP_CTRL2_CORE_CLOCK_SELECT_MAIN; ctrl2_core_wl(priv, reg, ASP_CTRL2_CORE_CLOCK_SELECT); reg = ctrl2_core_rl(priv, ASP_CTRL2_CPU_CLOCK_SELECT); if (slow) reg &= ~ASP_CTRL2_CPU_CLOCK_SELECT_MAIN; else reg |= ASP_CTRL2_CPU_CLOCK_SELECT_MAIN; ctrl2_core_wl(priv, reg, ASP_CTRL2_CPU_CLOCK_SELECT); } static void bcmasp_core_clock_select_one(struct bcmasp_priv *priv, bool slow) { u32 reg; reg = ctrl_core_rl(priv, ASP_CTRL_CORE_CLOCK_SELECT); if (slow) reg &= ~ASP_CTRL_CORE_CLOCK_SELECT_MAIN; else reg |= ASP_CTRL_CORE_CLOCK_SELECT_MAIN; ctrl_core_wl(priv, reg, ASP_CTRL_CORE_CLOCK_SELECT); } static void bcmasp_core_clock_set_ll(struct bcmasp_priv *priv, u32 clr, u32 set) { u32 reg; reg = ctrl_core_rl(priv, ASP_CTRL_CLOCK_CTRL); reg &= ~clr; reg |= set; ctrl_core_wl(priv, reg, ASP_CTRL_CLOCK_CTRL); reg = ctrl_core_rl(priv, ASP_CTRL_SCRATCH_0); reg &= ~clr; reg |= set; ctrl_core_wl(priv, reg, ASP_CTRL_SCRATCH_0); } static void bcmasp_core_clock_set(struct bcmasp_priv *priv, u32 clr, u32 set) { unsigned long flags; spin_lock_irqsave(&priv->clk_lock, flags); bcmasp_core_clock_set_ll(priv, clr, set); spin_unlock_irqrestore(&priv->clk_lock, flags); } void bcmasp_core_clock_set_intf(struct bcmasp_intf *intf, bool en) { u32 intf_mask = ASP_CTRL_CLOCK_CTRL_ASP_RGMII_DIS(intf->port); struct bcmasp_priv *priv = intf->parent; unsigned long flags; u32 reg; /* When enabling an interface, if the RX or TX clocks were not enabled, * enable them. Conversely, while disabling an interface, if this is * the last one enabled, we can turn off the shared RX and TX clocks as * well. We control enable bits which is why we test for equality on * the RGMII clock bit mask. */ spin_lock_irqsave(&priv->clk_lock, flags); if (en) { intf_mask |= ASP_CTRL_CLOCK_CTRL_ASP_TX_DISABLE | ASP_CTRL_CLOCK_CTRL_ASP_RX_DISABLE; bcmasp_core_clock_set_ll(priv, intf_mask, 0); } else { reg = ctrl_core_rl(priv, ASP_CTRL_SCRATCH_0) | intf_mask; if ((reg & ASP_CTRL_CLOCK_CTRL_ASP_RGMII_MASK) == ASP_CTRL_CLOCK_CTRL_ASP_RGMII_MASK) intf_mask |= ASP_CTRL_CLOCK_CTRL_ASP_TX_DISABLE | ASP_CTRL_CLOCK_CTRL_ASP_RX_DISABLE; bcmasp_core_clock_set_ll(priv, 0, intf_mask); } spin_unlock_irqrestore(&priv->clk_lock, flags); } static irqreturn_t bcmasp_isr_wol(int irq, void *data) { struct bcmasp_priv *priv = data; u32 status; /* No L3 IRQ, so we good */ if (priv->wol_irq <= 0) goto irq_handled; status = wakeup_intr2_core_rl(priv, ASP_WAKEUP_INTR2_STATUS) & ~wakeup_intr2_core_rl(priv, ASP_WAKEUP_INTR2_MASK_STATUS); wakeup_intr2_core_wl(priv, status, ASP_WAKEUP_INTR2_CLEAR); irq_handled: pm_wakeup_event(&priv->pdev->dev, 0); return IRQ_HANDLED; } static int bcmasp_get_and_request_irq(struct bcmasp_priv *priv, int i) { struct platform_device *pdev = priv->pdev; int irq, ret; irq = platform_get_irq_optional(pdev, i); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, bcmasp_isr_wol, 0, pdev->name, priv); if (ret) return ret; return irq; } static void bcmasp_init_wol_shared(struct bcmasp_priv *priv) { struct platform_device *pdev = priv->pdev; struct device *dev = &pdev->dev; int irq; irq = bcmasp_get_and_request_irq(priv, 1); if (irq < 0) { dev_warn(dev, "Failed to init WoL irq: %d\n", irq); return; } priv->wol_irq = irq; priv->wol_irq_enabled_mask = 0; device_set_wakeup_capable(&pdev->dev, 1); } static void bcmasp_enable_wol_shared(struct bcmasp_intf *intf, bool en) { struct bcmasp_priv *priv = intf->parent; struct device *dev = &priv->pdev->dev; if (en) { if (priv->wol_irq_enabled_mask) { set_bit(intf->port, &priv->wol_irq_enabled_mask); return; } /* First enable */ set_bit(intf->port, &priv->wol_irq_enabled_mask); enable_irq_wake(priv->wol_irq); device_set_wakeup_enable(dev, 1); } else { if (!priv->wol_irq_enabled_mask) return; clear_bit(intf->port, &priv->wol_irq_enabled_mask); if (priv->wol_irq_enabled_mask) return; /* Last disable */ disable_irq_wake(priv->wol_irq); device_set_wakeup_enable(dev, 0); } } static void bcmasp_wol_irq_destroy_shared(struct bcmasp_priv *priv) { if (priv->wol_irq > 0) free_irq(priv->wol_irq, priv); } static void bcmasp_init_wol_per_intf(struct bcmasp_priv *priv) { struct platform_device *pdev = priv->pdev; struct device *dev = &pdev->dev; struct bcmasp_intf *intf; int irq; list_for_each_entry(intf, &priv->intfs, list) { irq = bcmasp_get_and_request_irq(priv, intf->port + 1); if (irq < 0) { dev_warn(dev, "Failed to init WoL irq(port %d): %d\n", intf->port, irq); continue; } intf->wol_irq = irq; intf->wol_irq_enabled = false; device_set_wakeup_capable(&pdev->dev, 1); } } static void bcmasp_enable_wol_per_intf(struct bcmasp_intf *intf, bool en) { struct device *dev = &intf->parent->pdev->dev; if (en ^ intf->wol_irq_enabled) irq_set_irq_wake(intf->wol_irq, en); intf->wol_irq_enabled = en; device_set_wakeup_enable(dev, en); } static void bcmasp_wol_irq_destroy_per_intf(struct bcmasp_priv *priv) { struct bcmasp_intf *intf; list_for_each_entry(intf, &priv->intfs, list) { if (intf->wol_irq > 0) free_irq(intf->wol_irq, priv); } } static void bcmasp_eee_fixup(struct bcmasp_intf *intf, bool en) { u32 reg, phy_lpi_overwrite; reg = rx_edpkt_core_rl(intf->parent, ASP_EDPKT_SPARE_REG); phy_lpi_overwrite = intf->internal_phy ? ASP_EDPKT_SPARE_REG_EPHY_LPI : ASP_EDPKT_SPARE_REG_GPHY_LPI; if (en) reg |= phy_lpi_overwrite; else reg &= ~phy_lpi_overwrite; rx_edpkt_core_wl(intf->parent, reg, ASP_EDPKT_SPARE_REG); usleep_range(50, 100); } static struct bcmasp_hw_info v20_hw_info = { .rx_ctrl_flush = ASP_RX_CTRL_FLUSH, .umac2fb = UMAC2FB_OFFSET, .rx_ctrl_fb_out_frame_count = ASP_RX_CTRL_FB_OUT_FRAME_COUNT, .rx_ctrl_fb_filt_out_frame_count = ASP_RX_CTRL_FB_FILT_OUT_FRAME_COUNT, .rx_ctrl_fb_rx_fifo_depth = ASP_RX_CTRL_FB_RX_FIFO_DEPTH, }; static const struct bcmasp_plat_data v20_plat_data = { .init_wol = bcmasp_init_wol_per_intf, .enable_wol = bcmasp_enable_wol_per_intf, .destroy_wol = bcmasp_wol_irq_destroy_per_intf, .core_clock_select = bcmasp_core_clock_select_one, .hw_info = &v20_hw_info, }; static struct bcmasp_hw_info v21_hw_info = { .rx_ctrl_flush = ASP_RX_CTRL_FLUSH_2_1, .umac2fb = UMAC2FB_OFFSET_2_1, .rx_ctrl_fb_out_frame_count = ASP_RX_CTRL_FB_OUT_FRAME_COUNT_2_1, .rx_ctrl_fb_filt_out_frame_count = ASP_RX_CTRL_FB_FILT_OUT_FRAME_COUNT_2_1, .rx_ctrl_fb_rx_fifo_depth = ASP_RX_CTRL_FB_RX_FIFO_DEPTH_2_1, }; static const struct bcmasp_plat_data v21_plat_data = { .init_wol = bcmasp_init_wol_shared, .enable_wol = bcmasp_enable_wol_shared, .destroy_wol = bcmasp_wol_irq_destroy_shared, .core_clock_select = bcmasp_core_clock_select_one, .hw_info = &v21_hw_info, }; static const struct bcmasp_plat_data v22_plat_data = { .init_wol = bcmasp_init_wol_shared, .enable_wol = bcmasp_enable_wol_shared, .destroy_wol = bcmasp_wol_irq_destroy_shared, .core_clock_select = bcmasp_core_clock_select_many, .hw_info = &v21_hw_info, .eee_fixup = bcmasp_eee_fixup, }; static void bcmasp_set_pdata(struct bcmasp_priv *priv, const struct bcmasp_plat_data *pdata) { priv->init_wol = pdata->init_wol; priv->enable_wol = pdata->enable_wol; priv->destroy_wol = pdata->destroy_wol; priv->core_clock_select = pdata->core_clock_select; priv->eee_fixup = pdata->eee_fixup; priv->hw_info = pdata->hw_info; } static const struct of_device_id bcmasp_of_match[] = { { .compatible = "brcm,asp-v2.0", .data = &v20_plat_data }, { .compatible = "brcm,asp-v2.1", .data = &v21_plat_data }, { .compatible = "brcm,asp-v2.2", .data = &v22_plat_data }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bcmasp_of_match); static const struct of_device_id bcmasp_mdio_of_match[] = { { .compatible = "brcm,asp-v2.2-mdio", }, { .compatible = "brcm,asp-v2.1-mdio", }, { .compatible = "brcm,asp-v2.0-mdio", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bcmasp_mdio_of_match); static void bcmasp_remove_intfs(struct bcmasp_priv *priv) { struct bcmasp_intf *intf, *n; list_for_each_entry_safe(intf, n, &priv->intfs, list) { list_del(&intf->list); bcmasp_interface_destroy(intf); } } static int bcmasp_probe(struct platform_device *pdev) { const struct bcmasp_plat_data *pdata; struct device *dev = &pdev->dev; struct device_node *ports_node; struct bcmasp_priv *priv; struct bcmasp_intf *intf; int ret = 0, count = 0; unsigned int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->irq = platform_get_irq(pdev, 0); if (priv->irq <= 0) return -EINVAL; priv->clk = devm_clk_get_optional_enabled(dev, "sw_asp"); if (IS_ERR(priv->clk)) return dev_err_probe(dev, PTR_ERR(priv->clk), "failed to request clock\n"); /* Base from parent node */ priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return dev_err_probe(dev, PTR_ERR(priv->base), "failed to iomap\n"); ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); if (ret) return dev_err_probe(dev, ret, "unable to set DMA mask: %d\n", ret); dev_set_drvdata(&pdev->dev, priv); priv->pdev = pdev; spin_lock_init(&priv->mda_lock); spin_lock_init(&priv->clk_lock); mutex_init(&priv->wol_lock); mutex_init(&priv->net_lock); INIT_LIST_HEAD(&priv->intfs); pdata = device_get_match_data(&pdev->dev); if (!pdata) return dev_err_probe(dev, -EINVAL, "unable to find platform data\n"); bcmasp_set_pdata(priv, pdata); /* Enable all clocks to ensure successful probing */ bcmasp_core_clock_set(priv, ASP_CTRL_CLOCK_CTRL_ASP_ALL_DISABLE, 0); /* Switch to the main clock */ priv->core_clock_select(priv, false); bcmasp_intr2_mask_set_all(priv); bcmasp_intr2_clear_all(priv); ret = devm_request_irq(&pdev->dev, priv->irq, bcmasp_isr, 0, pdev->name, priv); if (ret) return dev_err_probe(dev, ret, "failed to request ASP interrupt: %d", ret); /* Register mdio child nodes */ of_platform_populate(dev->of_node, bcmasp_mdio_of_match, NULL, dev); /* ASP specific initialization, Needs to be done regardless of * how many interfaces come up. */ bcmasp_core_init(priv); bcmasp_core_init_filters(priv); ports_node = of_find_node_by_name(dev->of_node, "ethernet-ports"); if (!ports_node) { dev_warn(dev, "No ports found\n"); return -EINVAL; } i = 0; for_each_available_child_of_node_scoped(ports_node, intf_node) { intf = bcmasp_interface_create(priv, intf_node, i); if (!intf) { dev_err(dev, "Cannot create eth interface %d\n", i); bcmasp_remove_intfs(priv); ret = -ENOMEM; goto of_put_exit; } list_add_tail(&intf->list, &priv->intfs); i++; } /* Check and enable WoL */ priv->init_wol(priv); /* Drop the clock reference count now and let ndo_open()/ndo_close() * manage it for us from now on. */ bcmasp_core_clock_set(priv, 0, ASP_CTRL_CLOCK_CTRL_ASP_ALL_DISABLE); clk_disable_unprepare(priv->clk); /* Now do the registration of the network ports which will take care * of managing the clock properly. */ list_for_each_entry(intf, &priv->intfs, list) { ret = register_netdev(intf->ndev); if (ret) { netdev_err(intf->ndev, "failed to register net_device: %d\n", ret); priv->destroy_wol(priv); bcmasp_remove_intfs(priv); goto of_put_exit; } count++; } dev_info(dev, "Initialized %d port(s)\n", count); of_put_exit: of_node_put(ports_node); return ret; } static void bcmasp_remove(struct platform_device *pdev) { struct bcmasp_priv *priv = dev_get_drvdata(&pdev->dev); if (!priv) return; priv->destroy_wol(priv); bcmasp_remove_intfs(priv); } static void bcmasp_shutdown(struct platform_device *pdev) { bcmasp_remove(pdev); } static int __maybe_unused bcmasp_suspend(struct device *d) { struct bcmasp_priv *priv = dev_get_drvdata(d); struct bcmasp_intf *intf; int ret; list_for_each_entry(intf, &priv->intfs, list) { ret = bcmasp_interface_suspend(intf); if (ret) break; } ret = clk_prepare_enable(priv->clk); if (ret) return ret; /* Whether Wake-on-LAN is enabled or not, we can always disable * the shared TX clock */ bcmasp_core_clock_set(priv, 0, ASP_CTRL_CLOCK_CTRL_ASP_TX_DISABLE); priv->core_clock_select(priv, true); clk_disable_unprepare(priv->clk); return ret; } static int __maybe_unused bcmasp_resume(struct device *d) { struct bcmasp_priv *priv = dev_get_drvdata(d); struct bcmasp_intf *intf; int ret; ret = clk_prepare_enable(priv->clk); if (ret) return ret; /* Switch to the main clock domain */ priv->core_clock_select(priv, false); /* Re-enable all clocks for re-initialization */ bcmasp_core_clock_set(priv, ASP_CTRL_CLOCK_CTRL_ASP_ALL_DISABLE, 0); bcmasp_core_init(priv); bcmasp_core_init_filters(priv); /* And disable them to let the network devices take care of them */ bcmasp_core_clock_set(priv, 0, ASP_CTRL_CLOCK_CTRL_ASP_ALL_DISABLE); clk_disable_unprepare(priv->clk); list_for_each_entry(intf, &priv->intfs, list) { ret = bcmasp_interface_resume(intf); if (ret) break; } return ret; } static SIMPLE_DEV_PM_OPS(bcmasp_pm_ops, bcmasp_suspend, bcmasp_resume); static struct platform_driver bcmasp_driver = { .probe = bcmasp_probe, .remove = bcmasp_remove, .shutdown = bcmasp_shutdown, .driver = { .name = "brcm,asp-v2", .of_match_table = bcmasp_of_match, .pm = &bcmasp_pm_ops, }, }; module_platform_driver(bcmasp_driver); MODULE_DESCRIPTION("Broadcom ASP 2.0 Ethernet controller driver"); MODULE_ALIAS("platform:brcm,asp-v2"); MODULE_LICENSE("GPL");