/* SPDX-License-Identifier: GPL-2.0 */ /****************************************************************************/ /* * fec.h -- Fast Ethernet Controller for Motorola ColdFire SoC * processors. * * (C) Copyright 2000-2005, Greg Ungerer (gerg@snapgear.com) * (C) Copyright 2000-2001, Lineo (www.lineo.com) */ /****************************************************************************/ #ifndef FEC_H #define FEC_H /****************************************************************************/ #include #include #include #include #include #include #include #include #include #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) /* * Just figures, Motorola would have to change the offsets for * registers in the same peripheral device on different models * of the ColdFire! */ #define FEC_IEVENT 0x004 /* Interrupt event reg */ #define FEC_IMASK 0x008 /* Interrupt mask reg */ #define FEC_R_DES_ACTIVE_0 0x010 /* Receive descriptor reg */ #define FEC_X_DES_ACTIVE_0 0x014 /* Transmit descriptor reg */ #define FEC_ECNTRL 0x024 /* Ethernet control reg */ #define FEC_MII_DATA 0x040 /* MII manage frame reg */ #define FEC_MII_SPEED 0x044 /* MII speed control reg */ #define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */ #define FEC_R_CNTRL 0x084 /* Receive control reg */ #define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */ #define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */ #define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */ #define FEC_OPD 0x0ec /* Opcode + Pause duration */ #define FEC_TXIC0 0x0f0 /* Tx Interrupt Coalescing for ring 0 */ #define FEC_TXIC1 0x0f4 /* Tx Interrupt Coalescing for ring 1 */ #define FEC_TXIC2 0x0f8 /* Tx Interrupt Coalescing for ring 2 */ #define FEC_RXIC0 0x100 /* Rx Interrupt Coalescing for ring 0 */ #define FEC_RXIC1 0x104 /* Rx Interrupt Coalescing for ring 1 */ #define FEC_RXIC2 0x108 /* Rx Interrupt Coalescing for ring 2 */ #define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */ #define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */ #define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */ #define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */ #define FEC_X_WMRK 0x144 /* FIFO transmit water mark */ #define FEC_R_BOUND 0x14c /* FIFO receive bound reg */ #define FEC_R_FSTART 0x150 /* FIFO receive start reg */ #define FEC_R_DES_START_1 0x160 /* Receive descriptor ring 1 */ #define FEC_X_DES_START_1 0x164 /* Transmit descriptor ring 1 */ #define FEC_R_BUFF_SIZE_1 0x168 /* Maximum receive buff ring1 size */ #define FEC_R_DES_START_2 0x16c /* Receive descriptor ring 2 */ #define FEC_X_DES_START_2 0x170 /* Transmit descriptor ring 2 */ #define FEC_R_BUFF_SIZE_2 0x174 /* Maximum receive buff ring2 size */ #define FEC_R_DES_START_0 0x180 /* Receive descriptor ring */ #define FEC_X_DES_START_0 0x184 /* Transmit descriptor ring */ #define FEC_R_BUFF_SIZE_0 0x188 /* Maximum receive buff size */ #define FEC_R_FIFO_RSFL 0x190 /* Receive FIFO section full threshold */ #define FEC_R_FIFO_RSEM 0x194 /* Receive FIFO section empty threshold */ #define FEC_R_FIFO_RAEM 0x198 /* Receive FIFO almost empty threshold */ #define FEC_R_FIFO_RAFL 0x19c /* Receive FIFO almost full threshold */ #define FEC_FTRL 0x1b0 /* Frame truncation receive length*/ #define FEC_RACC 0x1c4 /* Receive Accelerator function */ #define FEC_RCMR_1 0x1c8 /* Receive classification match ring 1 */ #define FEC_RCMR_2 0x1cc /* Receive classification match ring 2 */ #define FEC_DMA_CFG_1 0x1d8 /* DMA class configuration for ring 1 */ #define FEC_DMA_CFG_2 0x1dc /* DMA class Configuration for ring 2 */ #define FEC_R_DES_ACTIVE_1 0x1e0 /* Rx descriptor active for ring 1 */ #define FEC_X_DES_ACTIVE_1 0x1e4 /* Tx descriptor active for ring 1 */ #define FEC_R_DES_ACTIVE_2 0x1e8 /* Rx descriptor active for ring 2 */ #define FEC_X_DES_ACTIVE_2 0x1ec /* Tx descriptor active for ring 2 */ #define FEC_QOS_SCHEME 0x1f0 /* Set multi queues Qos scheme */ #define FEC_LPI_SLEEP 0x1f4 /* Set IEEE802.3az LPI Sleep Ts time */ #define FEC_LPI_WAKE 0x1f8 /* Set IEEE802.3az LPI Wake Tw time */ #define FEC_MIIGSK_CFGR 0x300 /* MIIGSK Configuration reg */ #define FEC_MIIGSK_ENR 0x308 /* MIIGSK Enable reg */ #define BM_MIIGSK_CFGR_MII 0x00 #define BM_MIIGSK_CFGR_RMII 0x01 #define BM_MIIGSK_CFGR_FRCONT_10M 0x40 #define RMON_T_DROP 0x200 /* Count of frames not cntd correctly */ #define RMON_T_PACKETS 0x204 /* RMON TX packet count */ #define RMON_T_BC_PKT 0x208 /* RMON TX broadcast pkts */ #define RMON_T_MC_PKT 0x20c /* RMON TX multicast pkts */ #define RMON_T_CRC_ALIGN 0x210 /* RMON TX pkts with CRC align err */ #define RMON_T_UNDERSIZE 0x214 /* RMON TX pkts < 64 bytes, good CRC */ #define RMON_T_OVERSIZE 0x218 /* RMON TX pkts > MAX_FL bytes good CRC */ #define RMON_T_FRAG 0x21c /* RMON TX pkts < 64 bytes, bad CRC */ #define RMON_T_JAB 0x220 /* RMON TX pkts > MAX_FL bytes, bad CRC */ #define RMON_T_COL 0x224 /* RMON TX collision count */ #define RMON_T_P64 0x228 /* RMON TX 64 byte pkts */ #define RMON_T_P65TO127 0x22c /* RMON TX 65 to 127 byte pkts */ #define RMON_T_P128TO255 0x230 /* RMON TX 128 to 255 byte pkts */ #define RMON_T_P256TO511 0x234 /* RMON TX 256 to 511 byte pkts */ #define RMON_T_P512TO1023 0x238 /* RMON TX 512 to 1023 byte pkts */ #define RMON_T_P1024TO2047 0x23c /* RMON TX 1024 to 2047 byte pkts */ #define RMON_T_P_GTE2048 0x240 /* RMON TX pkts > 2048 bytes */ #define RMON_T_OCTETS 0x244 /* RMON TX octets */ #define IEEE_T_DROP 0x248 /* Count of frames not counted crtly */ #define IEEE_T_FRAME_OK 0x24c /* Frames tx'd OK */ #define IEEE_T_1COL 0x250 /* Frames tx'd with single collision */ #define IEEE_T_MCOL 0x254 /* Frames tx'd with multiple collision */ #define IEEE_T_DEF 0x258 /* Frames tx'd after deferral delay */ #define IEEE_T_LCOL 0x25c /* Frames tx'd with late collision */ #define IEEE_T_EXCOL 0x260 /* Frames tx'd with excesv collisions */ #define IEEE_T_MACERR 0x264 /* Frames tx'd with TX FIFO underrun */ #define IEEE_T_CSERR 0x268 /* Frames tx'd with carrier sense err */ #define IEEE_T_SQE 0x26c /* Frames tx'd with SQE err */ #define IEEE_T_FDXFC 0x270 /* Flow control pause frames tx'd */ #define IEEE_T_OCTETS_OK 0x274 /* Octet count for frames tx'd w/o err */ #define RMON_R_PACKETS 0x284 /* RMON RX packet count */ #define RMON_R_BC_PKT 0x288 /* RMON RX broadcast pkts */ #define RMON_R_MC_PKT 0x28c /* RMON RX multicast pkts */ #define RMON_R_CRC_ALIGN 0x290 /* RMON RX pkts with CRC alignment err */ #define RMON_R_UNDERSIZE 0x294 /* RMON RX pkts < 64 bytes, good CRC */ #define RMON_R_OVERSIZE 0x298 /* RMON RX pkts > MAX_FL bytes good CRC */ #define RMON_R_FRAG 0x29c /* RMON RX pkts < 64 bytes, bad CRC */ #define RMON_R_JAB 0x2a0 /* RMON RX pkts > MAX_FL bytes, bad CRC */ #define RMON_R_RESVD_O 0x2a4 /* Reserved */ #define RMON_R_P64 0x2a8 /* RMON RX 64 byte pkts */ #define RMON_R_P65TO127 0x2ac /* RMON RX 65 to 127 byte pkts */ #define RMON_R_P128TO255 0x2b0 /* RMON RX 128 to 255 byte pkts */ #define RMON_R_P256TO511 0x2b4 /* RMON RX 256 to 511 byte pkts */ #define RMON_R_P512TO1023 0x2b8 /* RMON RX 512 to 1023 byte pkts */ #define RMON_R_P1024TO2047 0x2bc /* RMON RX 1024 to 2047 byte pkts */ #define RMON_R_P_GTE2048 0x2c0 /* RMON RX pkts > 2048 bytes */ #define RMON_R_OCTETS 0x2c4 /* RMON RX octets */ #define IEEE_R_DROP 0x2c8 /* Count frames not counted correctly */ #define IEEE_R_FRAME_OK 0x2cc /* Frames rx'd OK */ #define IEEE_R_CRC 0x2d0 /* Frames rx'd with CRC err */ #define IEEE_R_ALIGN 0x2d4 /* Frames rx'd with alignment err */ #define IEEE_R_MACERR 0x2d8 /* Receive FIFO overflow count */ #define IEEE_R_FDXFC 0x2dc /* Flow control pause frames rx'd */ #define IEEE_R_OCTETS_OK 0x2e0 /* Octet cnt for frames rx'd w/o err */ #else #define FEC_ECNTRL 0x000 /* Ethernet control reg */ #define FEC_IEVENT 0x004 /* Interrupt even reg */ #define FEC_IMASK 0x008 /* Interrupt mask reg */ #define FEC_IVEC 0x00c /* Interrupt vec status reg */ #define FEC_R_DES_ACTIVE_0 0x010 /* Receive descriptor reg */ #define FEC_R_DES_ACTIVE_1 FEC_R_DES_ACTIVE_0 #define FEC_R_DES_ACTIVE_2 FEC_R_DES_ACTIVE_0 #define FEC_X_DES_ACTIVE_0 0x014 /* Transmit descriptor reg */ #define FEC_X_DES_ACTIVE_1 FEC_X_DES_ACTIVE_0 #define FEC_X_DES_ACTIVE_2 FEC_X_DES_ACTIVE_0 #define FEC_MII_DATA 0x040 /* MII manage frame reg */ #define FEC_MII_SPEED 0x044 /* MII speed control reg */ #define FEC_R_BOUND 0x08c /* FIFO receive bound reg */ #define FEC_R_FSTART 0x090 /* FIFO receive start reg */ #define FEC_X_WMRK 0x0a4 /* FIFO transmit water mark */ #define FEC_X_FSTART 0x0ac /* FIFO transmit start reg */ #define FEC_R_CNTRL 0x104 /* Receive control reg */ #define FEC_MAX_FRM_LEN 0x108 /* Maximum frame length reg */ #define FEC_X_CNTRL 0x144 /* Transmit Control reg */ #define FEC_ADDR_LOW 0x3c0 /* Low 32bits MAC address */ #define FEC_ADDR_HIGH 0x3c4 /* High 16bits MAC address */ #define FEC_GRP_HASH_TABLE_HIGH 0x3c8 /* High 32bits hash table */ #define FEC_GRP_HASH_TABLE_LOW 0x3cc /* Low 32bits hash table */ #define FEC_R_DES_START_0 0x3d0 /* Receive descriptor ring */ #define FEC_R_DES_START_1 FEC_R_DES_START_0 #define FEC_R_DES_START_2 FEC_R_DES_START_0 #define FEC_X_DES_START_0 0x3d4 /* Transmit descriptor ring */ #define FEC_X_DES_START_1 FEC_X_DES_START_0 #define FEC_X_DES_START_2 FEC_X_DES_START_0 #define FEC_R_BUFF_SIZE_0 0x3d8 /* Maximum receive buff size */ #define FEC_R_BUFF_SIZE_1 FEC_R_BUFF_SIZE_0 #define FEC_R_BUFF_SIZE_2 FEC_R_BUFF_SIZE_0 #define FEC_FIFO_RAM 0x400 /* FIFO RAM buffer */ /* Not existed in real chip * Just for pass build. */ #define FEC_RCMR_1 0xfff #define FEC_RCMR_2 0xfff #define FEC_DMA_CFG_1 0xfff #define FEC_DMA_CFG_2 0xfff #define FEC_TXIC0 0xfff #define FEC_TXIC1 0xfff #define FEC_TXIC2 0xfff #define FEC_RXIC0 0xfff #define FEC_RXIC1 0xfff #define FEC_RXIC2 0xfff #define FEC_LPI_SLEEP 0xfff #define FEC_LPI_WAKE 0xfff #endif /* CONFIG_M5272 */ /* * Define the buffer descriptor structure. * * Evidently, ARM SoCs have the FEC block generated in a * little endian mode so adjust endianness accordingly. */ #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) #define fec32_to_cpu le32_to_cpu #define fec16_to_cpu le16_to_cpu #define cpu_to_fec32 cpu_to_le32 #define cpu_to_fec16 cpu_to_le16 #define __fec32 __le32 #define __fec16 __le16 struct bufdesc { __fec16 cbd_datlen; /* Data length */ __fec16 cbd_sc; /* Control and status info */ __fec32 cbd_bufaddr; /* Buffer address */ }; #else #define fec32_to_cpu be32_to_cpu #define fec16_to_cpu be16_to_cpu #define cpu_to_fec32 cpu_to_be32 #define cpu_to_fec16 cpu_to_be16 #define __fec32 __be32 #define __fec16 __be16 struct bufdesc { __fec16 cbd_sc; /* Control and status info */ __fec16 cbd_datlen; /* Data length */ __fec32 cbd_bufaddr; /* Buffer address */ }; #endif struct bufdesc_ex { struct bufdesc desc; __fec32 cbd_esc; __fec32 cbd_prot; __fec32 cbd_bdu; __fec32 ts; __fec16 res0[4]; }; /* * The following definitions courtesy of commproc.h, which where * Copyright (c) 1997 Dan Malek (dmalek@jlc.net). */ #define BD_SC_EMPTY ((ushort)0x8000) /* Receive is empty */ #define BD_SC_READY ((ushort)0x8000) /* Transmit is ready */ #define BD_SC_WRAP ((ushort)0x2000) /* Last buffer descriptor */ #define BD_SC_INTRPT ((ushort)0x1000) /* Interrupt on change */ #define BD_SC_CM ((ushort)0x0200) /* Continuous mode */ #define BD_SC_ID ((ushort)0x0100) /* Rec'd too many idles */ #define BD_SC_P ((ushort)0x0100) /* xmt preamble */ #define BD_SC_BR ((ushort)0x0020) /* Break received */ #define BD_SC_FR ((ushort)0x0010) /* Framing error */ #define BD_SC_PR ((ushort)0x0008) /* Parity error */ #define BD_SC_OV ((ushort)0x0002) /* Overrun */ #define BD_SC_CD ((ushort)0x0001) /* ?? */ /* Buffer descriptor control/status used by Ethernet receive. */ #define BD_ENET_RX_EMPTY ((ushort)0x8000) #define BD_ENET_RX_WRAP ((ushort)0x2000) #define BD_ENET_RX_INTR ((ushort)0x1000) #define BD_ENET_RX_LAST ((ushort)0x0800) #define BD_ENET_RX_FIRST ((ushort)0x0400) #define BD_ENET_RX_MISS ((ushort)0x0100) #define BD_ENET_RX_LG ((ushort)0x0020) #define BD_ENET_RX_NO ((ushort)0x0010) #define BD_ENET_RX_SH ((ushort)0x0008) #define BD_ENET_RX_CR ((ushort)0x0004) #define BD_ENET_RX_OV ((ushort)0x0002) #define BD_ENET_RX_CL ((ushort)0x0001) #define BD_ENET_RX_STATS ((ushort)0x013f) /* All status bits */ /* Enhanced buffer descriptor control/status used by Ethernet receive */ #define BD_ENET_RX_VLAN 0x00000004 /* Buffer descriptor control/status used by Ethernet transmit. */ #define BD_ENET_TX_READY ((ushort)0x8000) #define BD_ENET_TX_PAD ((ushort)0x4000) #define BD_ENET_TX_WRAP ((ushort)0x2000) #define BD_ENET_TX_INTR ((ushort)0x1000) #define BD_ENET_TX_LAST ((ushort)0x0800) #define BD_ENET_TX_TC ((ushort)0x0400) #define BD_ENET_TX_DEF ((ushort)0x0200) #define BD_ENET_TX_HB ((ushort)0x0100) #define BD_ENET_TX_LC ((ushort)0x0080) #define BD_ENET_TX_RL ((ushort)0x0040) #define BD_ENET_TX_RCMASK ((ushort)0x003c) #define BD_ENET_TX_UN ((ushort)0x0002) #define BD_ENET_TX_CSL ((ushort)0x0001) #define BD_ENET_TX_STATS ((ushort)0x0fff) /* All status bits */ /* enhanced buffer descriptor control/status used by Ethernet transmit */ #define BD_ENET_TX_INT 0x40000000 #define BD_ENET_TX_TS 0x20000000 #define BD_ENET_TX_PINS 0x10000000 #define BD_ENET_TX_IINS 0x08000000 /* This device has up to three irqs on some platforms */ #define FEC_IRQ_NUM 3 /* Maximum number of queues supported * ENET with AVB IP can support up to 3 independent tx queues and rx queues. * User can point the queue number that is less than or equal to 3. */ #define FEC_ENET_MAX_TX_QS 3 #define FEC_ENET_MAX_RX_QS 3 #define FEC_R_DES_START(X) (((X) == 1) ? FEC_R_DES_START_1 : \ (((X) == 2) ? \ FEC_R_DES_START_2 : FEC_R_DES_START_0)) #define FEC_X_DES_START(X) (((X) == 1) ? FEC_X_DES_START_1 : \ (((X) == 2) ? \ FEC_X_DES_START_2 : FEC_X_DES_START_0)) #define FEC_R_BUFF_SIZE(X) (((X) == 1) ? FEC_R_BUFF_SIZE_1 : \ (((X) == 2) ? \ FEC_R_BUFF_SIZE_2 : FEC_R_BUFF_SIZE_0)) #define FEC_DMA_CFG(X) (((X) == 2) ? FEC_DMA_CFG_2 : FEC_DMA_CFG_1) #define DMA_CLASS_EN (1 << 16) #define FEC_RCMR(X) (((X) == 2) ? FEC_RCMR_2 : FEC_RCMR_1) #define IDLE_SLOPE_MASK 0xffff #define IDLE_SLOPE_1 0x200 /* BW fraction: 0.5 */ #define IDLE_SLOPE_2 0x200 /* BW fraction: 0.5 */ #define IDLE_SLOPE(X) (((X) == 1) ? \ (IDLE_SLOPE_1 & IDLE_SLOPE_MASK) : \ (IDLE_SLOPE_2 & IDLE_SLOPE_MASK)) #define RCMR_MATCHEN (0x1 << 16) #define RCMR_CMP_CFG(v, n) (((v) & 0x7) << (n << 2)) #define RCMR_CMP_1 (RCMR_CMP_CFG(0, 0) | RCMR_CMP_CFG(1, 1) | \ RCMR_CMP_CFG(2, 2) | RCMR_CMP_CFG(3, 3)) #define RCMR_CMP_2 (RCMR_CMP_CFG(4, 0) | RCMR_CMP_CFG(5, 1) | \ RCMR_CMP_CFG(6, 2) | RCMR_CMP_CFG(7, 3)) #define RCMR_CMP(X) (((X) == 1) ? RCMR_CMP_1 : RCMR_CMP_2) #define FEC_TX_BD_FTYPE(X) (((X) & 0xf) << 20) /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it it best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define FEC_ENET_XDP_HEADROOM (XDP_PACKET_HEADROOM) #define FEC_ENET_RX_PAGES 256 #define FEC_ENET_RX_FRSIZE (PAGE_SIZE - FEC_ENET_XDP_HEADROOM \ - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) #define FEC_ENET_TX_FRSIZE 2048 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) #define TX_RING_SIZE 1024 /* Must be power of two */ #define TX_RING_MOD_MASK 511 /* for this to work */ #define BD_ENET_RX_INT 0x00800000 #define BD_ENET_RX_PTP ((ushort)0x0400) #define BD_ENET_RX_ICE 0x00000020 #define BD_ENET_RX_PCR 0x00000010 #define FLAG_RX_CSUM_ENABLED (BD_ENET_RX_ICE | BD_ENET_RX_PCR) #define FLAG_RX_CSUM_ERROR (BD_ENET_RX_ICE | BD_ENET_RX_PCR) /* Interrupt events/masks. */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ #define FEC_ENET_TXF_0 ((uint)0x08000000) /* Full frame transmitted */ #define FEC_ENET_TXF_1 ((uint)0x00000008) /* Full frame transmitted */ #define FEC_ENET_TXF_2 ((uint)0x00000080) /* Full frame transmitted */ #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ #define FEC_ENET_RXF_0 ((uint)0x02000000) /* Full frame received */ #define FEC_ENET_RXF_1 ((uint)0x00000002) /* Full frame received */ #define FEC_ENET_RXF_2 ((uint)0x00000020) /* Full frame received */ #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ #define FEC_ENET_WAKEUP ((uint)0x00020000) /* Wakeup request */ #define FEC_ENET_TXF (FEC_ENET_TXF_0 | FEC_ENET_TXF_1 | FEC_ENET_TXF_2) #define FEC_ENET_RXF (FEC_ENET_RXF_0 | FEC_ENET_RXF_1 | FEC_ENET_RXF_2) #define FEC_ENET_RXF_GET(X) (((X) == 0) ? FEC_ENET_RXF_0 : \ (((X) == 1) ? FEC_ENET_RXF_1 : \ FEC_ENET_RXF_2)) #define FEC_ENET_TS_AVAIL ((uint)0x00010000) #define FEC_ENET_TS_TIMER ((uint)0x00008000) #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF) #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF)) #define FEC_ENET_TXC_DLY ((uint)0x00010000) #define FEC_ENET_RXC_DLY ((uint)0x00020000) /* ENET interrupt coalescing macro define */ #define FEC_ITR_CLK_SEL (0x1 << 30) #define FEC_ITR_EN (0x1 << 31) #define FEC_ITR_ICFT(X) (((X) & 0xff) << 20) #define FEC_ITR_ICTT(X) ((X) & 0xffff) #define FEC_ITR_ICFT_DEFAULT 200 /* Set 200 frame count threshold */ #define FEC_ITR_ICTT_DEFAULT 1000 /* Set 1000us timer threshold */ #define FEC_VLAN_TAG_LEN 0x04 #define FEC_ETHTYPE_LEN 0x02 /* Controller is ENET-MAC */ #define FEC_QUIRK_ENET_MAC (1 << 0) /* Controller needs driver to swap frame */ #define FEC_QUIRK_SWAP_FRAME (1 << 1) /* Controller uses gasket */ #define FEC_QUIRK_USE_GASKET (1 << 2) /* Controller has GBIT support */ #define FEC_QUIRK_HAS_GBIT (1 << 3) /* Controller has extend desc buffer */ #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4) /* Controller has hardware checksum support */ #define FEC_QUIRK_HAS_CSUM (1 << 5) /* Controller has hardware vlan support */ #define FEC_QUIRK_HAS_VLAN (1 << 6) /* ENET IP errata ERR006358 * * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously * detected as not set during a prior frame transmission, then the * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in * frames not being transmitted until there is a 0-to-1 transition on * ENET_TDAR[TDAR]. */ #define FEC_QUIRK_ERR006358 (1 << 7) /* ENET IP hw AVB * * i.MX6SX ENET IP add Audio Video Bridging (AVB) feature support. * - Two class indicators on receive with configurable priority * - Two class indicators and line speed timer on transmit allowing * implementation class credit based shapers externally * - Additional DMA registers provisioned to allow managing up to 3 * independent rings */ #define FEC_QUIRK_HAS_AVB (1 << 8) /* There is a TDAR race condition for mutliQ when the software sets TDAR * and the UDMA clears TDAR simultaneously or in a small window (2-4 cycles). * This will cause the udma_tx and udma_tx_arbiter state machines to hang. * The issue exist at i.MX6SX enet IP. */ #define FEC_QUIRK_ERR007885 (1 << 9) /* ENET Block Guide/ Chapter for the iMX6SX (PELE) address one issue: * After set ENET_ATCR[Capture], there need some time cycles before the counter * value is capture in the register clock domain. * The wait-time-cycles is at least 6 clock cycles of the slower clock between * the register clock and the 1588 clock. The 1588 ts_clk is fixed to 25Mhz, * register clock is 66Mhz, so the wait-time-cycles must be greater than 240ns * (40ns * 6). */ #define FEC_QUIRK_BUG_CAPTURE (1 << 10) /* Controller has only one MDIO bus */ #define FEC_QUIRK_SINGLE_MDIO (1 << 11) /* Controller supports RACC register */ #define FEC_QUIRK_HAS_RACC (1 << 12) /* Controller supports interrupt coalesc */ #define FEC_QUIRK_HAS_COALESCE (1 << 13) /* Interrupt doesn't wake CPU from deep idle */ #define FEC_QUIRK_ERR006687 (1 << 14) /* The MIB counters should be cleared and enabled during * initialisation. */ #define FEC_QUIRK_MIB_CLEAR (1 << 15) /* Only i.MX25/i.MX27/i.MX28 controller supports FRBR,FRSR registers, * those FIFO receive registers are resolved in other platforms. */ #define FEC_QUIRK_HAS_FRREG (1 << 16) /* Some FEC hardware blocks need the MMFR cleared at setup time to avoid * the generation of an MII event. This must be avoided in the older * FEC blocks where it will stop MII events being generated. */ #define FEC_QUIRK_CLEAR_SETUP_MII (1 << 17) /* Some link partners do not tolerate the momentary reset of the REF_CLK * frequency when the RNCTL register is cleared by hardware reset. */ #define FEC_QUIRK_NO_HARD_RESET (1 << 18) /* i.MX6SX ENET IP supports multiple queues (3 queues), use this quirk to * represents this ENET IP. */ #define FEC_QUIRK_HAS_MULTI_QUEUES (1 << 19) /* i.MX8MQ ENET IP version add new feature to support IEEE 802.3az EEE * standard. For the transmission, MAC supply two user registers to set * Sleep (TS) and Wake (TW) time. */ #define FEC_QUIRK_HAS_EEE (1 << 20) /* i.MX8QM ENET IP version add new feture to generate delayed TXC/RXC * as an alternative option to make sure it works well with various PHYs. * For the implementation of delayed clock, ENET takes synchronized 250MHz * clocks to generate 2ns delay. */ #define FEC_QUIRK_DELAYED_CLKS_SUPPORT (1 << 21) /* i.MX8MQ SoC integration mix wakeup interrupt signal into "int2" interrupt line. */ #define FEC_QUIRK_WAKEUP_FROM_INT2 (1 << 22) /* i.MX6Q adds pm_qos support */ #define FEC_QUIRK_HAS_PMQOS BIT(23) /* Not all FEC hardware block MDIOs support accesses in C45 mode. * Older blocks in the ColdFire parts do not support it. */ #define FEC_QUIRK_HAS_MDIO_C45 BIT(24) struct bufdesc_prop { int qid; /* Address of Rx and Tx buffers */ struct bufdesc *base; struct bufdesc *last; struct bufdesc *cur; void __iomem *reg_desc_active; dma_addr_t dma; unsigned short ring_size; unsigned char dsize; unsigned char dsize_log2; }; struct fec_enet_priv_txrx_info { int offset; struct page *page; struct sk_buff *skb; }; enum { RX_XDP_REDIRECT = 0, RX_XDP_PASS, RX_XDP_DROP, RX_XDP_TX, RX_XDP_TX_ERRORS, TX_XDP_XMIT, TX_XDP_XMIT_ERRORS, /* The following must be the last one */ XDP_STATS_TOTAL, }; enum fec_txbuf_type { FEC_TXBUF_T_SKB, FEC_TXBUF_T_XDP_NDO, FEC_TXBUF_T_XDP_TX, }; struct fec_tx_buffer { void *buf_p; enum fec_txbuf_type type; }; struct fec_enet_priv_tx_q { struct bufdesc_prop bd; unsigned char *tx_bounce[TX_RING_SIZE]; struct fec_tx_buffer tx_buf[TX_RING_SIZE]; unsigned short tx_stop_threshold; unsigned short tx_wake_threshold; struct bufdesc *dirty_tx; char *tso_hdrs; dma_addr_t tso_hdrs_dma; }; struct fec_enet_priv_rx_q { struct bufdesc_prop bd; struct fec_enet_priv_txrx_info rx_skb_info[RX_RING_SIZE]; /* page_pool */ struct page_pool *page_pool; struct xdp_rxq_info xdp_rxq; u32 stats[XDP_STATS_TOTAL]; /* rx queue number, in the range 0-7 */ u8 id; }; struct fec_stop_mode_gpr { struct regmap *gpr; u8 reg; u8 bit; }; /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fec_enet_private { /* Hardware registers of the FEC device */ void __iomem *hwp; struct net_device *netdev; struct clk *clk_ipg; struct clk *clk_ahb; struct clk *clk_ref; struct clk *clk_enet_out; struct clk *clk_ptp; struct clk *clk_2x_txclk; bool ptp_clk_on; struct mutex ptp_clk_mutex; unsigned int num_tx_queues; unsigned int num_rx_queues; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct fec_enet_priv_tx_q *tx_queue[FEC_ENET_MAX_TX_QS]; struct fec_enet_priv_rx_q *rx_queue[FEC_ENET_MAX_RX_QS]; unsigned int total_tx_ring_size; unsigned int total_rx_ring_size; struct platform_device *pdev; int dev_id; /* Phylib and MDIO interface */ struct mii_bus *mii_bus; uint phy_speed; phy_interface_t phy_interface; struct device_node *phy_node; bool rgmii_txc_dly; bool rgmii_rxc_dly; bool rpm_active; int link; int full_duplex; int speed; int irq[FEC_IRQ_NUM]; bool bufdesc_ex; int pause_flag; int wol_flag; int wake_irq; u32 quirks; struct napi_struct napi; int csum_flags; struct work_struct tx_timeout_work; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_caps; spinlock_t tmreg_lock; struct cyclecounter cc; struct timecounter tc; u32 cycle_speed; int hwts_rx_en; int hwts_tx_en; struct delayed_work time_keep; struct regulator *reg_phy; struct fec_stop_mode_gpr stop_gpr; struct pm_qos_request pm_qos_req; unsigned int tx_align; unsigned int rx_align; /* hw interrupt coalesce */ unsigned int rx_pkts_itr; unsigned int rx_time_itr; unsigned int tx_pkts_itr; unsigned int tx_time_itr; unsigned int itr_clk_rate; unsigned int clk_ref_rate; /* ptp clock period in ns*/ unsigned int ptp_inc; /* pps */ int pps_channel; unsigned int reload_period; int pps_enable; unsigned int next_counter; struct hrtimer perout_timer; u64 perout_stime; struct imx_sc_ipc *ipc_handle; /* XDP BPF Program */ struct bpf_prog *xdp_prog; struct { int pps_enable; u64 ns_sys, ns_phc; u32 at_corr; u8 at_inc_corr; } ptp_saved_state; u64 ethtool_stats[]; }; void fec_ptp_init(struct platform_device *pdev, int irq_idx); void fec_ptp_restore_state(struct fec_enet_private *fep); void fec_ptp_save_state(struct fec_enet_private *fep); void fec_ptp_stop(struct platform_device *pdev); void fec_ptp_start_cyclecounter(struct net_device *ndev); int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack); void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config); /****************************************************************************/ #endif /* FEC_H */