// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later /* * Copyright 2008 - 2015 Freescale Semiconductor Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include "fman.h" #include "fman_port.h" #include "fman_sp.h" #include "fman_keygen.h" /* Queue ID */ #define DFLT_FQ_ID 0x00FFFFFF /* General defines */ #define PORT_BMI_FIFO_UNITS 0x100 #define MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) \ min((u32)bmi_max_fifo_size, (u32)1024 * FMAN_BMI_FIFO_UNITS) #define PORT_CG_MAP_NUM 8 #define PORT_PRS_RESULT_WORDS_NUM 8 #define PORT_IC_OFFSET_UNITS 0x10 #define MIN_EXT_BUF_SIZE 64 #define BMI_PORT_REGS_OFFSET 0 #define QMI_PORT_REGS_OFFSET 0x400 #define HWP_PORT_REGS_OFFSET 0x800 /* Default values */ #define DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN \ DFLT_FM_SP_BUFFER_PREFIX_CONTEXT_DATA_ALIGN #define DFLT_PORT_CUT_BYTES_FROM_END 4 #define DFLT_PORT_ERRORS_TO_DISCARD FM_PORT_FRM_ERR_CLS_DISCARD #define DFLT_PORT_MAX_FRAME_LENGTH 9600 #define DFLT_PORT_RX_FIFO_PRI_ELEVATION_LEV(bmi_max_fifo_size) \ MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) #define DFLT_PORT_RX_FIFO_THRESHOLD(major, bmi_max_fifo_size) \ (major == 6 ? \ MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) : \ (MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) * 3 / 4)) \ #define DFLT_PORT_EXTRA_NUM_OF_FIFO_BUFS 0 /* QMI defines */ #define QMI_DEQ_CFG_SUBPORTAL_MASK 0x1f #define QMI_PORT_CFG_EN 0x80000000 #define QMI_PORT_STATUS_DEQ_FD_BSY 0x20000000 #define QMI_DEQ_CFG_PRI 0x80000000 #define QMI_DEQ_CFG_TYPE1 0x10000000 #define QMI_DEQ_CFG_TYPE2 0x20000000 #define QMI_DEQ_CFG_TYPE3 0x30000000 #define QMI_DEQ_CFG_PREFETCH_PARTIAL 0x01000000 #define QMI_DEQ_CFG_PREFETCH_FULL 0x03000000 #define QMI_DEQ_CFG_SP_MASK 0xf #define QMI_DEQ_CFG_SP_SHIFT 20 #define QMI_BYTE_COUNT_LEVEL_CONTROL(_type) \ (_type == FMAN_PORT_TYPE_TX ? 0x1400 : 0x400) /* BMI defins */ #define BMI_EBD_EN 0x80000000 #define BMI_PORT_CFG_EN 0x80000000 #define BMI_PORT_STATUS_BSY 0x80000000 #define BMI_DMA_ATTR_SWP_SHIFT FMAN_SP_DMA_ATTR_SWP_SHIFT #define BMI_DMA_ATTR_WRITE_OPTIMIZE FMAN_SP_DMA_ATTR_WRITE_OPTIMIZE #define BMI_RX_FIFO_PRI_ELEVATION_SHIFT 16 #define BMI_RX_FIFO_THRESHOLD_ETHE 0x80000000 #define BMI_FRAME_END_CS_IGNORE_SHIFT 24 #define BMI_FRAME_END_CS_IGNORE_MASK 0x0000001f #define BMI_RX_FRAME_END_CUT_SHIFT 16 #define BMI_RX_FRAME_END_CUT_MASK 0x0000001f #define BMI_IC_TO_EXT_SHIFT FMAN_SP_IC_TO_EXT_SHIFT #define BMI_IC_TO_EXT_MASK 0x0000001f #define BMI_IC_FROM_INT_SHIFT FMAN_SP_IC_FROM_INT_SHIFT #define BMI_IC_FROM_INT_MASK 0x0000000f #define BMI_IC_SIZE_MASK 0x0000001f #define BMI_INT_BUF_MARG_SHIFT 28 #define BMI_INT_BUF_MARG_MASK 0x0000000f #define BMI_EXT_BUF_MARG_START_SHIFT FMAN_SP_EXT_BUF_MARG_START_SHIFT #define BMI_EXT_BUF_MARG_START_MASK 0x000001ff #define BMI_EXT_BUF_MARG_END_MASK 0x000001ff #define BMI_CMD_MR_LEAC 0x00200000 #define BMI_CMD_MR_SLEAC 0x00100000 #define BMI_CMD_MR_MA 0x00080000 #define BMI_CMD_MR_DEAS 0x00040000 #define BMI_CMD_RX_MR_DEF (BMI_CMD_MR_LEAC | \ BMI_CMD_MR_SLEAC | \ BMI_CMD_MR_MA | \ BMI_CMD_MR_DEAS) #define BMI_CMD_TX_MR_DEF 0 #define BMI_CMD_ATTR_ORDER 0x80000000 #define BMI_CMD_ATTR_SYNC 0x02000000 #define BMI_CMD_ATTR_COLOR_SHIFT 26 #define BMI_FIFO_PIPELINE_DEPTH_SHIFT 12 #define BMI_FIFO_PIPELINE_DEPTH_MASK 0x0000000f #define BMI_NEXT_ENG_FD_BITS_SHIFT 24 #define BMI_EXT_BUF_POOL_VALID FMAN_SP_EXT_BUF_POOL_VALID #define BMI_EXT_BUF_POOL_EN_COUNTER FMAN_SP_EXT_BUF_POOL_EN_COUNTER #define BMI_EXT_BUF_POOL_BACKUP FMAN_SP_EXT_BUF_POOL_BACKUP #define BMI_EXT_BUF_POOL_ID_SHIFT 16 #define BMI_EXT_BUF_POOL_ID_MASK 0x003F0000 #define BMI_POOL_DEP_NUM_OF_POOLS_SHIFT 16 #define BMI_TX_FIFO_MIN_FILL_SHIFT 16 #define BMI_PRIORITY_ELEVATION_LEVEL ((0x3FF + 1) * PORT_BMI_FIFO_UNITS) #define BMI_FIFO_THRESHOLD ((0x3FF + 1) * PORT_BMI_FIFO_UNITS) #define BMI_DEQUEUE_PIPELINE_DEPTH(_type, _speed) \ ((_type == FMAN_PORT_TYPE_TX && _speed == 10000) ? 4 : 1) #define RX_ERRS_TO_ENQ \ (FM_PORT_FRM_ERR_DMA | \ FM_PORT_FRM_ERR_PHYSICAL | \ FM_PORT_FRM_ERR_SIZE | \ FM_PORT_FRM_ERR_EXTRACTION | \ FM_PORT_FRM_ERR_NO_SCHEME | \ FM_PORT_FRM_ERR_PRS_TIMEOUT | \ FM_PORT_FRM_ERR_PRS_ILL_INSTRUCT | \ FM_PORT_FRM_ERR_BLOCK_LIMIT_EXCEEDED | \ FM_PORT_FRM_ERR_PRS_HDR_ERR | \ FM_PORT_FRM_ERR_KEYSIZE_OVERFLOW | \ FM_PORT_FRM_ERR_IPRE) /* NIA defines */ #define NIA_ORDER_RESTOR 0x00800000 #define NIA_ENG_BMI 0x00500000 #define NIA_ENG_QMI_ENQ 0x00540000 #define NIA_ENG_QMI_DEQ 0x00580000 #define NIA_ENG_HWP 0x00440000 #define NIA_ENG_HWK 0x00480000 #define NIA_BMI_AC_ENQ_FRAME 0x00000002 #define NIA_BMI_AC_TX_RELEASE 0x000002C0 #define NIA_BMI_AC_RELEASE 0x000000C0 #define NIA_BMI_AC_TX 0x00000274 #define NIA_BMI_AC_FETCH_ALL_FRAME 0x0000020c /* Port IDs */ #define TX_10G_PORT_BASE 0x30 #define RX_10G_PORT_BASE 0x10 /* BMI Rx port register map */ struct fman_port_rx_bmi_regs { u32 fmbm_rcfg; /* Rx Configuration */ u32 fmbm_rst; /* Rx Status */ u32 fmbm_rda; /* Rx DMA attributes */ u32 fmbm_rfp; /* Rx FIFO Parameters */ u32 fmbm_rfed; /* Rx Frame End Data */ u32 fmbm_ricp; /* Rx Internal Context Parameters */ u32 fmbm_rim; /* Rx Internal Buffer Margins */ u32 fmbm_rebm; /* Rx External Buffer Margins */ u32 fmbm_rfne; /* Rx Frame Next Engine */ u32 fmbm_rfca; /* Rx Frame Command Attributes. */ u32 fmbm_rfpne; /* Rx Frame Parser Next Engine */ u32 fmbm_rpso; /* Rx Parse Start Offset */ u32 fmbm_rpp; /* Rx Policer Profile */ u32 fmbm_rccb; /* Rx Coarse Classification Base */ u32 fmbm_reth; /* Rx Excessive Threshold */ u32 reserved003c[1]; /* (0x03C 0x03F) */ u32 fmbm_rprai[PORT_PRS_RESULT_WORDS_NUM]; /* Rx Parse Results Array Init */ u32 fmbm_rfqid; /* Rx Frame Queue ID */ u32 fmbm_refqid; /* Rx Error Frame Queue ID */ u32 fmbm_rfsdm; /* Rx Frame Status Discard Mask */ u32 fmbm_rfsem; /* Rx Frame Status Error Mask */ u32 fmbm_rfene; /* Rx Frame Enqueue Next Engine */ u32 reserved0074[0x2]; /* (0x074-0x07C) */ u32 fmbm_rcmne; /* Rx Frame Continuous Mode Next Engine */ u32 reserved0080[0x20]; /* (0x080 0x0FF) */ u32 fmbm_ebmpi[FMAN_PORT_MAX_EXT_POOLS_NUM]; /* Buffer Manager pool Information- */ u32 fmbm_acnt[FMAN_PORT_MAX_EXT_POOLS_NUM]; /* Allocate Counter- */ u32 reserved0130[8]; /* 0x130/0x140 - 0x15F reserved - */ u32 fmbm_rcgm[PORT_CG_MAP_NUM]; /* Congestion Group Map */ u32 fmbm_mpd; /* BM Pool Depletion */ u32 reserved0184[0x1F]; /* (0x184 0x1FF) */ u32 fmbm_rstc; /* Rx Statistics Counters */ u32 fmbm_rfrc; /* Rx Frame Counter */ u32 fmbm_rfbc; /* Rx Bad Frames Counter */ u32 fmbm_rlfc; /* Rx Large Frames Counter */ u32 fmbm_rffc; /* Rx Filter Frames Counter */ u32 fmbm_rfdc; /* Rx Frame Discard Counter */ u32 fmbm_rfldec; /* Rx Frames List DMA Error Counter */ u32 fmbm_rodc; /* Rx Out of Buffers Discard nntr */ u32 fmbm_rbdc; /* Rx Buffers Deallocate Counter */ u32 fmbm_rpec; /* RX Prepare to enqueue Counte */ u32 reserved0224[0x16]; /* (0x224 0x27F) */ u32 fmbm_rpc; /* Rx Performance Counters */ u32 fmbm_rpcp; /* Rx Performance Count Parameters */ u32 fmbm_rccn; /* Rx Cycle Counter */ u32 fmbm_rtuc; /* Rx Tasks Utilization Counter */ u32 fmbm_rrquc; /* Rx Receive Queue Utilization cntr */ u32 fmbm_rduc; /* Rx DMA Utilization Counter */ u32 fmbm_rfuc; /* Rx FIFO Utilization Counter */ u32 fmbm_rpac; /* Rx Pause Activation Counter */ u32 reserved02a0[0x18]; /* (0x2A0 0x2FF) */ u32 fmbm_rdcfg[0x3]; /* Rx Debug Configuration */ u32 fmbm_rgpr; /* Rx General Purpose Register */ u32 reserved0310[0x3a]; }; /* BMI Tx port register map */ struct fman_port_tx_bmi_regs { u32 fmbm_tcfg; /* Tx Configuration */ u32 fmbm_tst; /* Tx Status */ u32 fmbm_tda; /* Tx DMA attributes */ u32 fmbm_tfp; /* Tx FIFO Parameters */ u32 fmbm_tfed; /* Tx Frame End Data */ u32 fmbm_ticp; /* Tx Internal Context Parameters */ u32 fmbm_tfdne; /* Tx Frame Dequeue Next Engine. */ u32 fmbm_tfca; /* Tx Frame Command attribute. */ u32 fmbm_tcfqid; /* Tx Confirmation Frame Queue ID. */ u32 fmbm_tefqid; /* Tx Frame Error Queue ID */ u32 fmbm_tfene; /* Tx Frame Enqueue Next Engine */ u32 fmbm_trlmts; /* Tx Rate Limiter Scale */ u32 fmbm_trlmt; /* Tx Rate Limiter */ u32 reserved0034[0x0e]; /* (0x034-0x6c) */ u32 fmbm_tccb; /* Tx Coarse Classification base */ u32 fmbm_tfne; /* Tx Frame Next Engine */ u32 fmbm_tpfcm[0x02]; /* Tx Priority based Flow Control (PFC) Mapping */ u32 fmbm_tcmne; /* Tx Frame Continuous Mode Next Engine */ u32 reserved0080[0x60]; /* (0x080-0x200) */ u32 fmbm_tstc; /* Tx Statistics Counters */ u32 fmbm_tfrc; /* Tx Frame Counter */ u32 fmbm_tfdc; /* Tx Frames Discard Counter */ u32 fmbm_tfledc; /* Tx Frame len error discard cntr */ u32 fmbm_tfufdc; /* Tx Frame unsprt frmt discard cntr */ u32 fmbm_tbdc; /* Tx Buffers Deallocate Counter */ u32 reserved0218[0x1A]; /* (0x218-0x280) */ u32 fmbm_tpc; /* Tx Performance Counters */ u32 fmbm_tpcp; /* Tx Performance Count Parameters */ u32 fmbm_tccn; /* Tx Cycle Counter */ u32 fmbm_ttuc; /* Tx Tasks Utilization Counter */ u32 fmbm_ttcquc; /* Tx Transmit conf Q util Counter */ u32 fmbm_tduc; /* Tx DMA Utilization Counter */ u32 fmbm_tfuc; /* Tx FIFO Utilization Counter */ u32 reserved029c[16]; /* (0x29C-0x2FF) */ u32 fmbm_tdcfg[0x3]; /* Tx Debug Configuration */ u32 fmbm_tgpr; /* Tx General Purpose Register */ u32 reserved0310[0x3a]; /* (0x310-0x3FF) */ }; /* BMI port register map */ union fman_port_bmi_regs { struct fman_port_rx_bmi_regs rx; struct fman_port_tx_bmi_regs tx; }; /* QMI port register map */ struct fman_port_qmi_regs { u32 fmqm_pnc; /* PortID n Configuration Register */ u32 fmqm_pns; /* PortID n Status Register */ u32 fmqm_pnts; /* PortID n Task Status Register */ u32 reserved00c[4]; /* 0xn00C - 0xn01B */ u32 fmqm_pnen; /* PortID n Enqueue NIA Register */ u32 fmqm_pnetfc; /* PortID n Enq Total Frame Counter */ u32 reserved024[2]; /* 0xn024 - 0x02B */ u32 fmqm_pndn; /* PortID n Dequeue NIA Register */ u32 fmqm_pndc; /* PortID n Dequeue Config Register */ u32 fmqm_pndtfc; /* PortID n Dequeue tot Frame cntr */ u32 fmqm_pndfdc; /* PortID n Dequeue FQID Dflt Cntr */ u32 fmqm_pndcc; /* PortID n Dequeue Confirm Counter */ }; #define HWP_HXS_COUNT 16 #define HWP_HXS_PHE_REPORT 0x00000800 #define HWP_HXS_PCAC_PSTAT 0x00000100 #define HWP_HXS_PCAC_PSTOP 0x00000001 #define HWP_HXS_TCP_OFFSET 0xA #define HWP_HXS_UDP_OFFSET 0xB #define HWP_HXS_SH_PAD_REM 0x80000000 struct fman_port_hwp_regs { struct { u32 ssa; /* Soft Sequence Attachment */ u32 lcv; /* Line-up Enable Confirmation Mask */ } pmda[HWP_HXS_COUNT]; /* Parse Memory Direct Access Registers */ u32 reserved080[(0x3f8 - 0x080) / 4]; /* (0x080-0x3f7) */ u32 fmpr_pcac; /* Configuration Access Control */ }; /* QMI dequeue prefetch modes */ enum fman_port_deq_prefetch { FMAN_PORT_DEQ_NO_PREFETCH, /* No prefetch mode */ FMAN_PORT_DEQ_PART_PREFETCH, /* Partial prefetch mode */ FMAN_PORT_DEQ_FULL_PREFETCH /* Full prefetch mode */ }; /* A structure for defining FM port resources */ struct fman_port_rsrc { u32 num; /* Committed required resource */ u32 extra; /* Extra (not committed) required resource */ }; enum fman_port_dma_swap { FMAN_PORT_DMA_NO_SWAP, /* No swap, transfer data as is */ FMAN_PORT_DMA_SWAP_LE, /* The transferred data should be swapped in PPC Little Endian mode */ FMAN_PORT_DMA_SWAP_BE /* The transferred data should be swapped in Big Endian mode */ }; /* Default port color */ enum fman_port_color { FMAN_PORT_COLOR_GREEN, /* Default port color is green */ FMAN_PORT_COLOR_YELLOW, /* Default port color is yellow */ FMAN_PORT_COLOR_RED, /* Default port color is red */ FMAN_PORT_COLOR_OVERRIDE /* Ignore color */ }; /* QMI dequeue from the SP channel - types */ enum fman_port_deq_type { FMAN_PORT_DEQ_BY_PRI, /* Priority precedence and Intra-Class scheduling */ FMAN_PORT_DEQ_ACTIVE_FQ, /* Active FQ precedence and Intra-Class scheduling */ FMAN_PORT_DEQ_ACTIVE_FQ_NO_ICS /* Active FQ precedence and override Intra-Class scheduling */ }; /* External buffer pools configuration */ struct fman_port_bpools { u8 count; /* Num of pools to set up */ bool counters_enable; /* Enable allocate counters */ u8 grp_bp_depleted_num; /* Number of depleted pools - if reached the BMI indicates * the MAC to send a pause frame */ struct { u8 bpid; /* BM pool ID */ u16 size; /* Pool's size - must be in ascending order */ bool is_backup; /* If this is a backup pool */ bool grp_bp_depleted; /* Consider this buffer in multiple pools depletion criteria */ bool single_bp_depleted; /* Consider this buffer in single pool depletion criteria */ } bpool[FMAN_PORT_MAX_EXT_POOLS_NUM]; }; struct fman_port_cfg { u32 dflt_fqid; u32 err_fqid; u32 pcd_base_fqid; u32 pcd_fqs_count; u8 deq_sp; bool deq_high_priority; enum fman_port_deq_type deq_type; enum fman_port_deq_prefetch deq_prefetch_option; u16 deq_byte_cnt; u8 cheksum_last_bytes_ignore; u8 rx_cut_end_bytes; struct fman_buf_pool_depletion buf_pool_depletion; struct fman_ext_pools ext_buf_pools; u32 tx_fifo_min_level; u32 tx_fifo_low_comf_level; u32 rx_pri_elevation; u32 rx_fifo_thr; struct fman_sp_buf_margins buf_margins; u32 int_buf_start_margin; struct fman_sp_int_context_data_copy int_context; u32 discard_mask; u32 err_mask; struct fman_buffer_prefix_content buffer_prefix_content; bool dont_release_buf; u8 rx_fd_bits; u32 tx_fifo_deq_pipeline_depth; bool errata_A006320; bool excessive_threshold_register; bool fmbm_tfne_has_features; enum fman_port_dma_swap dma_swap_data; enum fman_port_color color; }; struct fman_port_rx_pools_params { u8 num_of_pools; u16 largest_buf_size; }; struct fman_port_dts_params { void __iomem *base_addr; /* FMan port virtual memory */ enum fman_port_type type; /* Port type */ u16 speed; /* Port speed */ u8 id; /* HW Port Id */ u32 qman_channel_id; /* QMan channel id (non RX only) */ struct fman *fman; /* FMan Handle */ }; struct fman_port { void *fm; struct device *dev; struct fman_rev_info rev_info; u8 port_id; enum fman_port_type port_type; u16 port_speed; union fman_port_bmi_regs __iomem *bmi_regs; struct fman_port_qmi_regs __iomem *qmi_regs; struct fman_port_hwp_regs __iomem *hwp_regs; struct fman_sp_buffer_offsets buffer_offsets; u8 internal_buf_offset; struct fman_ext_pools ext_buf_pools; u16 max_frame_length; struct fman_port_rsrc open_dmas; struct fman_port_rsrc tasks; struct fman_port_rsrc fifo_bufs; struct fman_port_rx_pools_params rx_pools_params; struct fman_port_cfg *cfg; struct fman_port_dts_params dts_params; u8 ext_pools_num; u32 max_port_fifo_size; u32 max_num_of_ext_pools; u32 max_num_of_sub_portals; u32 bm_max_num_of_pools; }; static int init_bmi_rx(struct fman_port *port) { struct fman_port_rx_bmi_regs __iomem *regs = &port->bmi_regs->rx; struct fman_port_cfg *cfg = port->cfg; u32 tmp; /* DMA attributes */ tmp = (u32)cfg->dma_swap_data << BMI_DMA_ATTR_SWP_SHIFT; /* Enable write optimization */ tmp |= BMI_DMA_ATTR_WRITE_OPTIMIZE; iowrite32be(tmp, ®s->fmbm_rda); /* Rx FIFO parameters */ tmp = (cfg->rx_pri_elevation / PORT_BMI_FIFO_UNITS - 1) << BMI_RX_FIFO_PRI_ELEVATION_SHIFT; tmp |= cfg->rx_fifo_thr / PORT_BMI_FIFO_UNITS - 1; iowrite32be(tmp, ®s->fmbm_rfp); if (cfg->excessive_threshold_register) /* always allow access to the extra resources */ iowrite32be(BMI_RX_FIFO_THRESHOLD_ETHE, ®s->fmbm_reth); /* Frame end data */ tmp = (cfg->cheksum_last_bytes_ignore & BMI_FRAME_END_CS_IGNORE_MASK) << BMI_FRAME_END_CS_IGNORE_SHIFT; tmp |= (cfg->rx_cut_end_bytes & BMI_RX_FRAME_END_CUT_MASK) << BMI_RX_FRAME_END_CUT_SHIFT; if (cfg->errata_A006320) tmp &= 0xffe0ffff; iowrite32be(tmp, ®s->fmbm_rfed); /* Internal context parameters */ tmp = ((cfg->int_context.ext_buf_offset / PORT_IC_OFFSET_UNITS) & BMI_IC_TO_EXT_MASK) << BMI_IC_TO_EXT_SHIFT; tmp |= ((cfg->int_context.int_context_offset / PORT_IC_OFFSET_UNITS) & BMI_IC_FROM_INT_MASK) << BMI_IC_FROM_INT_SHIFT; tmp |= (cfg->int_context.size / PORT_IC_OFFSET_UNITS) & BMI_IC_SIZE_MASK; iowrite32be(tmp, ®s->fmbm_ricp); /* Internal buffer offset */ tmp = ((cfg->int_buf_start_margin / PORT_IC_OFFSET_UNITS) & BMI_INT_BUF_MARG_MASK) << BMI_INT_BUF_MARG_SHIFT; iowrite32be(tmp, ®s->fmbm_rim); /* External buffer margins */ tmp = (cfg->buf_margins.start_margins & BMI_EXT_BUF_MARG_START_MASK) << BMI_EXT_BUF_MARG_START_SHIFT; tmp |= cfg->buf_margins.end_margins & BMI_EXT_BUF_MARG_END_MASK; iowrite32be(tmp, ®s->fmbm_rebm); /* Frame attributes */ tmp = BMI_CMD_RX_MR_DEF; tmp |= BMI_CMD_ATTR_ORDER; tmp |= (u32)cfg->color << BMI_CMD_ATTR_COLOR_SHIFT; /* Synchronization request */ tmp |= BMI_CMD_ATTR_SYNC; iowrite32be(tmp, ®s->fmbm_rfca); /* NIA */ tmp = (u32)cfg->rx_fd_bits << BMI_NEXT_ENG_FD_BITS_SHIFT; tmp |= NIA_ENG_HWP; iowrite32be(tmp, ®s->fmbm_rfne); /* Parser Next Engine NIA */ iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_ENQ_FRAME, ®s->fmbm_rfpne); /* Enqueue NIA */ iowrite32be(NIA_ENG_QMI_ENQ | NIA_ORDER_RESTOR, ®s->fmbm_rfene); /* Default/error queues */ iowrite32be((cfg->dflt_fqid & DFLT_FQ_ID), ®s->fmbm_rfqid); iowrite32be((cfg->err_fqid & DFLT_FQ_ID), ®s->fmbm_refqid); /* Discard/error masks */ iowrite32be(cfg->discard_mask, ®s->fmbm_rfsdm); iowrite32be(cfg->err_mask, ®s->fmbm_rfsem); return 0; } static int init_bmi_tx(struct fman_port *port) { struct fman_port_tx_bmi_regs __iomem *regs = &port->bmi_regs->tx; struct fman_port_cfg *cfg = port->cfg; u32 tmp; /* Tx Configuration register */ tmp = 0; iowrite32be(tmp, ®s->fmbm_tcfg); /* DMA attributes */ tmp = (u32)cfg->dma_swap_data << BMI_DMA_ATTR_SWP_SHIFT; iowrite32be(tmp, ®s->fmbm_tda); /* Tx FIFO parameters */ tmp = (cfg->tx_fifo_min_level / PORT_BMI_FIFO_UNITS) << BMI_TX_FIFO_MIN_FILL_SHIFT; tmp |= ((cfg->tx_fifo_deq_pipeline_depth - 1) & BMI_FIFO_PIPELINE_DEPTH_MASK) << BMI_FIFO_PIPELINE_DEPTH_SHIFT; tmp |= (cfg->tx_fifo_low_comf_level / PORT_BMI_FIFO_UNITS) - 1; iowrite32be(tmp, ®s->fmbm_tfp); /* Frame end data */ tmp = (cfg->cheksum_last_bytes_ignore & BMI_FRAME_END_CS_IGNORE_MASK) << BMI_FRAME_END_CS_IGNORE_SHIFT; iowrite32be(tmp, ®s->fmbm_tfed); /* Internal context parameters */ tmp = ((cfg->int_context.ext_buf_offset / PORT_IC_OFFSET_UNITS) & BMI_IC_TO_EXT_MASK) << BMI_IC_TO_EXT_SHIFT; tmp |= ((cfg->int_context.int_context_offset / PORT_IC_OFFSET_UNITS) & BMI_IC_FROM_INT_MASK) << BMI_IC_FROM_INT_SHIFT; tmp |= (cfg->int_context.size / PORT_IC_OFFSET_UNITS) & BMI_IC_SIZE_MASK; iowrite32be(tmp, ®s->fmbm_ticp); /* Frame attributes */ tmp = BMI_CMD_TX_MR_DEF; tmp |= BMI_CMD_ATTR_ORDER; tmp |= (u32)cfg->color << BMI_CMD_ATTR_COLOR_SHIFT; iowrite32be(tmp, ®s->fmbm_tfca); /* Dequeue NIA + enqueue NIA */ iowrite32be(NIA_ENG_QMI_DEQ, ®s->fmbm_tfdne); iowrite32be(NIA_ENG_QMI_ENQ | NIA_ORDER_RESTOR, ®s->fmbm_tfene); if (cfg->fmbm_tfne_has_features) iowrite32be(!cfg->dflt_fqid ? BMI_EBD_EN | NIA_BMI_AC_FETCH_ALL_FRAME : NIA_BMI_AC_FETCH_ALL_FRAME, ®s->fmbm_tfne); if (!cfg->dflt_fqid && cfg->dont_release_buf) { iowrite32be(DFLT_FQ_ID, ®s->fmbm_tcfqid); iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE, ®s->fmbm_tfene); if (cfg->fmbm_tfne_has_features) iowrite32be(ioread32be(®s->fmbm_tfne) & ~BMI_EBD_EN, ®s->fmbm_tfne); } /* Confirmation/error queues */ if (cfg->dflt_fqid || !cfg->dont_release_buf) iowrite32be(cfg->dflt_fqid & DFLT_FQ_ID, ®s->fmbm_tcfqid); iowrite32be((cfg->err_fqid & DFLT_FQ_ID), ®s->fmbm_tefqid); return 0; } static int init_qmi(struct fman_port *port) { struct fman_port_qmi_regs __iomem *regs = port->qmi_regs; struct fman_port_cfg *cfg = port->cfg; u32 tmp; /* Rx port configuration */ if (port->port_type == FMAN_PORT_TYPE_RX) { /* Enqueue NIA */ iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_RELEASE, ®s->fmqm_pnen); return 0; } /* Continue with Tx port configuration */ if (port->port_type == FMAN_PORT_TYPE_TX) { /* Enqueue NIA */ iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE, ®s->fmqm_pnen); /* Dequeue NIA */ iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX, ®s->fmqm_pndn); } /* Dequeue Configuration register */ tmp = 0; if (cfg->deq_high_priority) tmp |= QMI_DEQ_CFG_PRI; switch (cfg->deq_type) { case FMAN_PORT_DEQ_BY_PRI: tmp |= QMI_DEQ_CFG_TYPE1; break; case FMAN_PORT_DEQ_ACTIVE_FQ: tmp |= QMI_DEQ_CFG_TYPE2; break; case FMAN_PORT_DEQ_ACTIVE_FQ_NO_ICS: tmp |= QMI_DEQ_CFG_TYPE3; break; default: return -EINVAL; } switch (cfg->deq_prefetch_option) { case FMAN_PORT_DEQ_NO_PREFETCH: break; case FMAN_PORT_DEQ_PART_PREFETCH: tmp |= QMI_DEQ_CFG_PREFETCH_PARTIAL; break; case FMAN_PORT_DEQ_FULL_PREFETCH: tmp |= QMI_DEQ_CFG_PREFETCH_FULL; break; default: return -EINVAL; } tmp |= (cfg->deq_sp & QMI_DEQ_CFG_SP_MASK) << QMI_DEQ_CFG_SP_SHIFT; tmp |= cfg->deq_byte_cnt; iowrite32be(tmp, ®s->fmqm_pndc); return 0; } static void stop_port_hwp(struct fman_port *port) { struct fman_port_hwp_regs __iomem *regs = port->hwp_regs; int cnt = 100; iowrite32be(HWP_HXS_PCAC_PSTOP, ®s->fmpr_pcac); while (cnt-- > 0 && (ioread32be(®s->fmpr_pcac) & HWP_HXS_PCAC_PSTAT)) udelay(10); if (!cnt) pr_err("Timeout stopping HW Parser\n"); } static void start_port_hwp(struct fman_port *port) { struct fman_port_hwp_regs __iomem *regs = port->hwp_regs; int cnt = 100; iowrite32be(0, ®s->fmpr_pcac); while (cnt-- > 0 && !(ioread32be(®s->fmpr_pcac) & HWP_HXS_PCAC_PSTAT)) udelay(10); if (!cnt) pr_err("Timeout starting HW Parser\n"); } static void init_hwp(struct fman_port *port) { struct fman_port_hwp_regs __iomem *regs = port->hwp_regs; int i; stop_port_hwp(port); for (i = 0; i < HWP_HXS_COUNT; i++) { /* enable HXS error reporting into FD[STATUS] PHE */ iowrite32be(0x00000000, ®s->pmda[i].ssa); iowrite32be(0xffffffff, ®s->pmda[i].lcv); } /* Short packet padding removal from checksum calculation */ iowrite32be(HWP_HXS_SH_PAD_REM, ®s->pmda[HWP_HXS_TCP_OFFSET].ssa); iowrite32be(HWP_HXS_SH_PAD_REM, ®s->pmda[HWP_HXS_UDP_OFFSET].ssa); start_port_hwp(port); } static int init(struct fman_port *port) { int err; /* Init BMI registers */ switch (port->port_type) { case FMAN_PORT_TYPE_RX: err = init_bmi_rx(port); if (!err) init_hwp(port); break; case FMAN_PORT_TYPE_TX: err = init_bmi_tx(port); break; default: return -EINVAL; } if (err) return err; /* Init QMI registers */ err = init_qmi(port); if (err) return err; return 0; } static int set_bpools(const struct fman_port *port, const struct fman_port_bpools *bp) { u32 __iomem *bp_reg, *bp_depl_reg; u32 tmp; u8 i, max_bp_num; bool grp_depl_used = false, rx_port; switch (port->port_type) { case FMAN_PORT_TYPE_RX: max_bp_num = port->ext_pools_num; rx_port = true; bp_reg = port->bmi_regs->rx.fmbm_ebmpi; bp_depl_reg = &port->bmi_regs->rx.fmbm_mpd; break; default: return -EINVAL; } if (rx_port) { /* Check buffers are provided in ascending order */ for (i = 0; (i < (bp->count - 1) && (i < FMAN_PORT_MAX_EXT_POOLS_NUM - 1)); i++) { if (bp->bpool[i].size > bp->bpool[i + 1].size) return -EINVAL; } } /* Set up external buffers pools */ for (i = 0; i < bp->count; i++) { tmp = BMI_EXT_BUF_POOL_VALID; tmp |= ((u32)bp->bpool[i].bpid << BMI_EXT_BUF_POOL_ID_SHIFT) & BMI_EXT_BUF_POOL_ID_MASK; if (rx_port) { if (bp->counters_enable) tmp |= BMI_EXT_BUF_POOL_EN_COUNTER; if (bp->bpool[i].is_backup) tmp |= BMI_EXT_BUF_POOL_BACKUP; tmp |= (u32)bp->bpool[i].size; } iowrite32be(tmp, &bp_reg[i]); } /* Clear unused pools */ for (i = bp->count; i < max_bp_num; i++) iowrite32be(0, &bp_reg[i]); /* Pools depletion */ tmp = 0; for (i = 0; i < FMAN_PORT_MAX_EXT_POOLS_NUM; i++) { if (bp->bpool[i].grp_bp_depleted) { grp_depl_used = true; tmp |= 0x80000000 >> i; } if (bp->bpool[i].single_bp_depleted) tmp |= 0x80 >> i; } if (grp_depl_used) tmp |= ((u32)bp->grp_bp_depleted_num - 1) << BMI_POOL_DEP_NUM_OF_POOLS_SHIFT; iowrite32be(tmp, bp_depl_reg); return 0; } static bool is_init_done(struct fman_port_cfg *cfg) { /* Checks if FMan port driver parameters were initialized */ if (!cfg) return true; return false; } static int verify_size_of_fifo(struct fman_port *port) { u32 min_fifo_size_required = 0, opt_fifo_size_for_b2b = 0; /* TX Ports */ if (port->port_type == FMAN_PORT_TYPE_TX) { min_fifo_size_required = (u32) (roundup(port->max_frame_length, FMAN_BMI_FIFO_UNITS) + (3 * FMAN_BMI_FIFO_UNITS)); min_fifo_size_required += port->cfg->tx_fifo_deq_pipeline_depth * FMAN_BMI_FIFO_UNITS; opt_fifo_size_for_b2b = min_fifo_size_required; /* Add some margin for back-to-back capability to improve * performance, allows the hardware to pipeline new frame dma * while the previous frame not yet transmitted. */ if (port->port_speed == 10000) opt_fifo_size_for_b2b += 3 * FMAN_BMI_FIFO_UNITS; else opt_fifo_size_for_b2b += 2 * FMAN_BMI_FIFO_UNITS; } /* RX Ports */ else if (port->port_type == FMAN_PORT_TYPE_RX) { if (port->rev_info.major >= 6) min_fifo_size_required = (u32) (roundup(port->max_frame_length, FMAN_BMI_FIFO_UNITS) + (5 * FMAN_BMI_FIFO_UNITS)); /* 4 according to spec + 1 for FOF>0 */ else min_fifo_size_required = (u32) (roundup(min(port->max_frame_length, port->rx_pools_params.largest_buf_size), FMAN_BMI_FIFO_UNITS) + (7 * FMAN_BMI_FIFO_UNITS)); opt_fifo_size_for_b2b = min_fifo_size_required; /* Add some margin for back-to-back capability to improve * performance,allows the hardware to pipeline new frame dma * while the previous frame not yet transmitted. */ if (port->port_speed == 10000) opt_fifo_size_for_b2b += 8 * FMAN_BMI_FIFO_UNITS; else opt_fifo_size_for_b2b += 3 * FMAN_BMI_FIFO_UNITS; } WARN_ON(min_fifo_size_required <= 0); WARN_ON(opt_fifo_size_for_b2b < min_fifo_size_required); /* Verify the size */ if (port->fifo_bufs.num < min_fifo_size_required) dev_dbg(port->dev, "%s: FIFO size should be enlarged to %d bytes\n", __func__, min_fifo_size_required); else if (port->fifo_bufs.num < opt_fifo_size_for_b2b) dev_dbg(port->dev, "%s: For b2b processing,FIFO may be enlarged to %d bytes\n", __func__, opt_fifo_size_for_b2b); return 0; } static int set_ext_buffer_pools(struct fman_port *port) { struct fman_ext_pools *ext_buf_pools = &port->cfg->ext_buf_pools; struct fman_buf_pool_depletion *buf_pool_depletion = &port->cfg->buf_pool_depletion; u8 ordered_array[FMAN_PORT_MAX_EXT_POOLS_NUM]; u16 sizes_array[BM_MAX_NUM_OF_POOLS]; int i = 0, j = 0, err; struct fman_port_bpools bpools; memset(&ordered_array, 0, sizeof(u8) * FMAN_PORT_MAX_EXT_POOLS_NUM); memset(&sizes_array, 0, sizeof(u16) * BM_MAX_NUM_OF_POOLS); memcpy(&port->ext_buf_pools, ext_buf_pools, sizeof(struct fman_ext_pools)); fman_sp_set_buf_pools_in_asc_order_of_buf_sizes(ext_buf_pools, ordered_array, sizes_array); memset(&bpools, 0, sizeof(struct fman_port_bpools)); bpools.count = ext_buf_pools->num_of_pools_used; bpools.counters_enable = true; for (i = 0; i < ext_buf_pools->num_of_pools_used; i++) { bpools.bpool[i].bpid = ordered_array[i]; bpools.bpool[i].size = sizes_array[ordered_array[i]]; } /* save pools parameters for later use */ port->rx_pools_params.num_of_pools = ext_buf_pools->num_of_pools_used; port->rx_pools_params.largest_buf_size = sizes_array[ordered_array[ext_buf_pools->num_of_pools_used - 1]]; /* FMBM_RMPD reg. - pool depletion */ if (buf_pool_depletion->pools_grp_mode_enable) { bpools.grp_bp_depleted_num = buf_pool_depletion->num_of_pools; for (i = 0; i < port->bm_max_num_of_pools; i++) { if (buf_pool_depletion->pools_to_consider[i]) { for (j = 0; j < ext_buf_pools-> num_of_pools_used; j++) { if (i == ordered_array[j]) { bpools.bpool[j]. grp_bp_depleted = true; break; } } } } } if (buf_pool_depletion->single_pool_mode_enable) { for (i = 0; i < port->bm_max_num_of_pools; i++) { if (buf_pool_depletion-> pools_to_consider_for_single_mode[i]) { for (j = 0; j < ext_buf_pools-> num_of_pools_used; j++) { if (i == ordered_array[j]) { bpools.bpool[j]. single_bp_depleted = true; break; } } } } } err = set_bpools(port, &bpools); if (err != 0) { dev_err(port->dev, "%s: set_bpools() failed\n", __func__); return -EINVAL; } return 0; } static int init_low_level_driver(struct fman_port *port) { struct fman_port_cfg *cfg = port->cfg; u32 tmp_val; switch (port->port_type) { case FMAN_PORT_TYPE_RX: cfg->err_mask = (RX_ERRS_TO_ENQ & ~cfg->discard_mask); break; default: break; } tmp_val = (u32)((port->internal_buf_offset % OFFSET_UNITS) ? (port->internal_buf_offset / OFFSET_UNITS + 1) : (port->internal_buf_offset / OFFSET_UNITS)); port->internal_buf_offset = (u8)(tmp_val * OFFSET_UNITS); port->cfg->int_buf_start_margin = port->internal_buf_offset; if (init(port) != 0) { dev_err(port->dev, "%s: fman port initialization failed\n", __func__); return -ENODEV; } /* The code below is a trick so the FM will not release the buffer * to BM nor will try to enqueue the frame to QM */ if (port->port_type == FMAN_PORT_TYPE_TX) { if (!cfg->dflt_fqid && cfg->dont_release_buf) { /* override fmbm_tcfqid 0 with a false non-0 value. * This will force FM to act according to tfene. * Otherwise, if fmbm_tcfqid is 0 the FM will release * buffers to BM regardless of fmbm_tfene */ iowrite32be(0xFFFFFF, &port->bmi_regs->tx.fmbm_tcfqid); iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE, &port->bmi_regs->tx.fmbm_tfene); } } return 0; } static int fill_soc_specific_params(struct fman_port *port) { u32 bmi_max_fifo_size; bmi_max_fifo_size = fman_get_bmi_max_fifo_size(port->fm); port->max_port_fifo_size = MAX_PORT_FIFO_SIZE(bmi_max_fifo_size); port->bm_max_num_of_pools = 64; /* P4080 - Major 2 * P2041/P3041/P5020/P5040 - Major 3 * Tx/Bx - Major 6 */ switch (port->rev_info.major) { case 2: case 3: port->max_num_of_ext_pools = 4; port->max_num_of_sub_portals = 12; break; case 6: port->max_num_of_ext_pools = 8; port->max_num_of_sub_portals = 16; break; default: dev_err(port->dev, "%s: Unsupported FMan version\n", __func__); return -EINVAL; } return 0; } static int get_dflt_fifo_deq_pipeline_depth(u8 major, enum fman_port_type type, u16 speed) { switch (type) { case FMAN_PORT_TYPE_RX: case FMAN_PORT_TYPE_TX: switch (speed) { case 10000: return 4; case 1000: if (major >= 6) return 2; else return 1; default: return 0; } default: return 0; } } static int get_dflt_num_of_tasks(u8 major, enum fman_port_type type, u16 speed) { switch (type) { case FMAN_PORT_TYPE_RX: case FMAN_PORT_TYPE_TX: switch (speed) { case 10000: return 16; case 1000: if (major >= 6) return 4; else return 3; default: return 0; } default: return 0; } } static int get_dflt_extra_num_of_tasks(u8 major, enum fman_port_type type, u16 speed) { switch (type) { case FMAN_PORT_TYPE_RX: /* FMan V3 */ if (major >= 6) return 0; /* FMan V2 */ if (speed == 10000) return 8; else return 2; case FMAN_PORT_TYPE_TX: default: return 0; } } static int get_dflt_num_of_open_dmas(u8 major, enum fman_port_type type, u16 speed) { int val; if (major >= 6) { switch (type) { case FMAN_PORT_TYPE_TX: if (speed == 10000) val = 12; else val = 3; break; case FMAN_PORT_TYPE_RX: if (speed == 10000) val = 8; else val = 2; break; default: return 0; } } else { switch (type) { case FMAN_PORT_TYPE_TX: case FMAN_PORT_TYPE_RX: if (speed == 10000) val = 8; else val = 1; break; default: val = 0; } } return val; } static int get_dflt_extra_num_of_open_dmas(u8 major, enum fman_port_type type, u16 speed) { /* FMan V3 */ if (major >= 6) return 0; /* FMan V2 */ switch (type) { case FMAN_PORT_TYPE_RX: case FMAN_PORT_TYPE_TX: if (speed == 10000) return 8; else return 1; default: return 0; } } static int get_dflt_num_of_fifo_bufs(u8 major, enum fman_port_type type, u16 speed) { int val; if (major >= 6) { switch (type) { case FMAN_PORT_TYPE_TX: if (speed == 10000) val = 64; else val = 50; break; case FMAN_PORT_TYPE_RX: if (speed == 10000) val = 96; else val = 50; break; default: val = 0; } } else { switch (type) { case FMAN_PORT_TYPE_TX: if (speed == 10000) val = 48; else val = 44; break; case FMAN_PORT_TYPE_RX: if (speed == 10000) val = 48; else val = 45; break; default: val = 0; } } return val; } static void set_dflt_cfg(struct fman_port *port, struct fman_port_params *port_params) { struct fman_port_cfg *cfg = port->cfg; cfg->dma_swap_data = FMAN_PORT_DMA_NO_SWAP; cfg->color = FMAN_PORT_COLOR_GREEN; cfg->rx_cut_end_bytes = DFLT_PORT_CUT_BYTES_FROM_END; cfg->rx_pri_elevation = BMI_PRIORITY_ELEVATION_LEVEL; cfg->rx_fifo_thr = BMI_FIFO_THRESHOLD; cfg->tx_fifo_low_comf_level = (5 * 1024); cfg->deq_type = FMAN_PORT_DEQ_BY_PRI; cfg->deq_prefetch_option = FMAN_PORT_DEQ_FULL_PREFETCH; cfg->tx_fifo_deq_pipeline_depth = BMI_DEQUEUE_PIPELINE_DEPTH(port->port_type, port->port_speed); cfg->deq_byte_cnt = QMI_BYTE_COUNT_LEVEL_CONTROL(port->port_type); cfg->rx_pri_elevation = DFLT_PORT_RX_FIFO_PRI_ELEVATION_LEV(port->max_port_fifo_size); port->cfg->rx_fifo_thr = DFLT_PORT_RX_FIFO_THRESHOLD(port->rev_info.major, port->max_port_fifo_size); if ((port->rev_info.major == 6) && ((port->rev_info.minor == 0) || (port->rev_info.minor == 3))) cfg->errata_A006320 = true; /* Excessive Threshold register - exists for pre-FMv3 chips only */ if (port->rev_info.major < 6) cfg->excessive_threshold_register = true; else cfg->fmbm_tfne_has_features = true; cfg->buffer_prefix_content.data_align = DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN; } static void set_rx_dflt_cfg(struct fman_port *port, struct fman_port_params *port_params) { port->cfg->discard_mask = DFLT_PORT_ERRORS_TO_DISCARD; memcpy(&port->cfg->ext_buf_pools, &port_params->specific_params.rx_params.ext_buf_pools, sizeof(struct fman_ext_pools)); port->cfg->err_fqid = port_params->specific_params.rx_params.err_fqid; port->cfg->dflt_fqid = port_params->specific_params.rx_params.dflt_fqid; port->cfg->pcd_base_fqid = port_params->specific_params.rx_params.pcd_base_fqid; port->cfg->pcd_fqs_count = port_params->specific_params.rx_params.pcd_fqs_count; } static void set_tx_dflt_cfg(struct fman_port *port, struct fman_port_params *port_params, struct fman_port_dts_params *dts_params) { port->cfg->tx_fifo_deq_pipeline_depth = get_dflt_fifo_deq_pipeline_depth(port->rev_info.major, port->port_type, port->port_speed); port->cfg->err_fqid = port_params->specific_params.non_rx_params.err_fqid; port->cfg->deq_sp = (u8)(dts_params->qman_channel_id & QMI_DEQ_CFG_SUBPORTAL_MASK); port->cfg->dflt_fqid = port_params->specific_params.non_rx_params.dflt_fqid; port->cfg->deq_high_priority = true; } /** * fman_port_config * @port: Pointer to the port structure * @params: Pointer to data structure of parameters * * Creates a descriptor for the FM PORT module. * The routine returns a pointer to the FM PORT object. * This descriptor must be passed as first parameter to all other FM PORT * function calls. * No actual initialization or configuration of FM hardware is done by this * routine. * * Return: 0 on success; Error code otherwise. */ int fman_port_config(struct fman_port *port, struct fman_port_params *params) { void __iomem *base_addr = port->dts_params.base_addr; int err; /* Allocate the FM driver's parameters structure */ port->cfg = kzalloc(sizeof(*port->cfg), GFP_KERNEL); if (!port->cfg) return -EINVAL; /* Initialize FM port parameters which will be kept by the driver */ port->port_type = port->dts_params.type; port->port_speed = port->dts_params.speed; port->port_id = port->dts_params.id; port->fm = port->dts_params.fman; port->ext_pools_num = (u8)8; /* get FM revision */ fman_get_revision(port->fm, &port->rev_info); err = fill_soc_specific_params(port); if (err) goto err_port_cfg; switch (port->port_type) { case FMAN_PORT_TYPE_RX: set_rx_dflt_cfg(port, params); fallthrough; case FMAN_PORT_TYPE_TX: set_tx_dflt_cfg(port, params, &port->dts_params); fallthrough; default: set_dflt_cfg(port, params); } /* Continue with other parameters */ /* set memory map pointers */ port->bmi_regs = base_addr + BMI_PORT_REGS_OFFSET; port->qmi_regs = base_addr + QMI_PORT_REGS_OFFSET; port->hwp_regs = base_addr + HWP_PORT_REGS_OFFSET; port->max_frame_length = DFLT_PORT_MAX_FRAME_LENGTH; /* resource distribution. */ port->fifo_bufs.num = get_dflt_num_of_fifo_bufs(port->rev_info.major, port->port_type, port->port_speed) * FMAN_BMI_FIFO_UNITS; port->fifo_bufs.extra = DFLT_PORT_EXTRA_NUM_OF_FIFO_BUFS * FMAN_BMI_FIFO_UNITS; port->open_dmas.num = get_dflt_num_of_open_dmas(port->rev_info.major, port->port_type, port->port_speed); port->open_dmas.extra = get_dflt_extra_num_of_open_dmas(port->rev_info.major, port->port_type, port->port_speed); port->tasks.num = get_dflt_num_of_tasks(port->rev_info.major, port->port_type, port->port_speed); port->tasks.extra = get_dflt_extra_num_of_tasks(port->rev_info.major, port->port_type, port->port_speed); /* FM_HEAVY_TRAFFIC_SEQUENCER_HANG_ERRATA_FMAN_A006981 errata * workaround */ if ((port->rev_info.major == 6) && (port->rev_info.minor == 0) && (((port->port_type == FMAN_PORT_TYPE_TX) && (port->port_speed == 1000)))) { port->open_dmas.num = 16; port->open_dmas.extra = 0; } if (port->rev_info.major >= 6 && port->port_type == FMAN_PORT_TYPE_TX && port->port_speed == 1000) { /* FM_WRONG_RESET_VALUES_ERRATA_FMAN_A005127 Errata * workaround */ u32 reg; reg = 0x00001013; iowrite32be(reg, &port->bmi_regs->tx.fmbm_tfp); } return 0; err_port_cfg: kfree(port->cfg); return -EINVAL; } EXPORT_SYMBOL(fman_port_config); /* * fman_port_use_kg_hash * @port: A pointer to a FM Port module. * @enable: enable or disable * * Sets the HW KeyGen or the BMI as HW Parser next engine, enabling * or bypassing the KeyGen hashing of Rx traffic */ void fman_port_use_kg_hash(struct fman_port *port, bool enable) { if (enable) /* After the Parser frames go to KeyGen */ iowrite32be(NIA_ENG_HWK, &port->bmi_regs->rx.fmbm_rfpne); else /* After the Parser frames go to BMI */ iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_ENQ_FRAME, &port->bmi_regs->rx.fmbm_rfpne); } EXPORT_SYMBOL(fman_port_use_kg_hash); /** * fman_port_init * @port: A pointer to a FM Port module. * * Initializes the FM PORT module by defining the software structure and * configuring the hardware registers. * * Return: 0 on success; Error code otherwise. */ int fman_port_init(struct fman_port *port) { struct fman_port_init_params params; struct fman_keygen *keygen; struct fman_port_cfg *cfg; int err; if (is_init_done(port->cfg)) return -EINVAL; err = fman_sp_build_buffer_struct(&port->cfg->int_context, &port->cfg->buffer_prefix_content, &port->cfg->buf_margins, &port->buffer_offsets, &port->internal_buf_offset); if (err) return err; cfg = port->cfg; if (port->port_type == FMAN_PORT_TYPE_RX) { /* Call the external Buffer routine which also checks fifo * size and updates it if necessary */ /* define external buffer pools and pool depletion */ err = set_ext_buffer_pools(port); if (err) return err; /* check if the largest external buffer pool is large enough */ if (cfg->buf_margins.start_margins + MIN_EXT_BUF_SIZE + cfg->buf_margins.end_margins > port->rx_pools_params.largest_buf_size) { dev_err(port->dev, "%s: buf_margins.start_margins (%d) + minimum buf size (64) + buf_margins.end_margins (%d) is larger than maximum external buffer size (%d)\n", __func__, cfg->buf_margins.start_margins, cfg->buf_margins.end_margins, port->rx_pools_params.largest_buf_size); return -EINVAL; } } /* Call FM module routine for communicating parameters */ memset(¶ms, 0, sizeof(params)); params.port_id = port->port_id; params.port_type = port->port_type; params.port_speed = port->port_speed; params.num_of_tasks = (u8)port->tasks.num; params.num_of_extra_tasks = (u8)port->tasks.extra; params.num_of_open_dmas = (u8)port->open_dmas.num; params.num_of_extra_open_dmas = (u8)port->open_dmas.extra; if (port->fifo_bufs.num) { err = verify_size_of_fifo(port); if (err) return err; } params.size_of_fifo = port->fifo_bufs.num; params.extra_size_of_fifo = port->fifo_bufs.extra; params.deq_pipeline_depth = port->cfg->tx_fifo_deq_pipeline_depth; params.max_frame_length = port->max_frame_length; err = fman_set_port_params(port->fm, ¶ms); if (err) return err; err = init_low_level_driver(port); if (err) return err; if (port->cfg->pcd_fqs_count) { keygen = port->dts_params.fman->keygen; err = keygen_port_hashing_init(keygen, port->port_id, port->cfg->pcd_base_fqid, port->cfg->pcd_fqs_count); if (err) return err; fman_port_use_kg_hash(port, true); } kfree(port->cfg); port->cfg = NULL; return 0; } EXPORT_SYMBOL(fman_port_init); /** * fman_port_cfg_buf_prefix_content * @port: A pointer to a FM Port module. * @buffer_prefix_content: A structure of parameters describing * the structure of the buffer. * Out parameter: * Start margin - offset of data from * start of external buffer. * Defines the structure, size and content of the application buffer. * The prefix, in Tx ports, if 'pass_prs_result', the application should set * a value to their offsets in the prefix of the FM will save the first * 'priv_data_size', than, depending on 'pass_prs_result' and * 'pass_time_stamp', copy parse result and timeStamp, and the packet itself * (in this order), to the application buffer, and to offset. * Calling this routine changes the buffer margins definitions in the internal * driver data base from its default configuration: * Data size: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PRIV_DATA_SIZE] * Pass Parser result: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PASS_PRS_RESULT]. * Pass timestamp: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PASS_TIME_STAMP]. * May be used for all ports * * Allowed only following fman_port_config() and before fman_port_init(). * * Return: 0 on success; Error code otherwise. */ int fman_port_cfg_buf_prefix_content(struct fman_port *port, struct fman_buffer_prefix_content * buffer_prefix_content) { if (is_init_done(port->cfg)) return -EINVAL; memcpy(&port->cfg->buffer_prefix_content, buffer_prefix_content, sizeof(struct fman_buffer_prefix_content)); /* if data_align was not initialized by user, * we return to driver's default */ if (!port->cfg->buffer_prefix_content.data_align) port->cfg->buffer_prefix_content.data_align = DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN; return 0; } EXPORT_SYMBOL(fman_port_cfg_buf_prefix_content); /** * fman_port_disable * @port: A pointer to a FM Port module. * * Gracefully disable an FM port. The port will not start new tasks after all * tasks associated with the port are terminated. * * This is a blocking routine, it returns after port is gracefully stopped, * i.e. the port will not except new frames, but it will finish all frames * or tasks which were already began. * Allowed only following fman_port_init(). * * Return: 0 on success; Error code otherwise. */ int fman_port_disable(struct fman_port *port) { u32 __iomem *bmi_cfg_reg, *bmi_status_reg; u32 tmp; bool rx_port, failure = false; int count; if (!is_init_done(port->cfg)) return -EINVAL; switch (port->port_type) { case FMAN_PORT_TYPE_RX: bmi_cfg_reg = &port->bmi_regs->rx.fmbm_rcfg; bmi_status_reg = &port->bmi_regs->rx.fmbm_rst; rx_port = true; break; case FMAN_PORT_TYPE_TX: bmi_cfg_reg = &port->bmi_regs->tx.fmbm_tcfg; bmi_status_reg = &port->bmi_regs->tx.fmbm_tst; rx_port = false; break; default: return -EINVAL; } /* Disable QMI */ if (!rx_port) { tmp = ioread32be(&port->qmi_regs->fmqm_pnc) & ~QMI_PORT_CFG_EN; iowrite32be(tmp, &port->qmi_regs->fmqm_pnc); /* Wait for QMI to finish FD handling */ count = 100; do { udelay(10); tmp = ioread32be(&port->qmi_regs->fmqm_pns); } while ((tmp & QMI_PORT_STATUS_DEQ_FD_BSY) && --count); if (count == 0) { /* Timeout */ failure = true; } } /* Disable BMI */ tmp = ioread32be(bmi_cfg_reg) & ~BMI_PORT_CFG_EN; iowrite32be(tmp, bmi_cfg_reg); /* Wait for graceful stop end */ count = 500; do { udelay(10); tmp = ioread32be(bmi_status_reg); } while ((tmp & BMI_PORT_STATUS_BSY) && --count); if (count == 0) { /* Timeout */ failure = true; } if (failure) dev_dbg(port->dev, "%s: FMan Port[%d]: BMI or QMI is Busy. Port forced down\n", __func__, port->port_id); return 0; } EXPORT_SYMBOL(fman_port_disable); /** * fman_port_enable * @port: A pointer to a FM Port module. * * A runtime routine provided to allow disable/enable of port. * * Allowed only following fman_port_init(). * * Return: 0 on success; Error code otherwise. */ int fman_port_enable(struct fman_port *port) { u32 __iomem *bmi_cfg_reg; u32 tmp; bool rx_port; if (!is_init_done(port->cfg)) return -EINVAL; switch (port->port_type) { case FMAN_PORT_TYPE_RX: bmi_cfg_reg = &port->bmi_regs->rx.fmbm_rcfg; rx_port = true; break; case FMAN_PORT_TYPE_TX: bmi_cfg_reg = &port->bmi_regs->tx.fmbm_tcfg; rx_port = false; break; default: return -EINVAL; } /* Enable QMI */ if (!rx_port) { tmp = ioread32be(&port->qmi_regs->fmqm_pnc) | QMI_PORT_CFG_EN; iowrite32be(tmp, &port->qmi_regs->fmqm_pnc); } /* Enable BMI */ tmp = ioread32be(bmi_cfg_reg) | BMI_PORT_CFG_EN; iowrite32be(tmp, bmi_cfg_reg); return 0; } EXPORT_SYMBOL(fman_port_enable); /** * fman_port_bind * @dev: FMan Port OF device pointer * * Bind to a specific FMan Port. * * Allowed only after the port was created. * * Return: A pointer to the FMan port device. */ struct fman_port *fman_port_bind(struct device *dev) { return (struct fman_port *)(dev_get_drvdata(get_device(dev))); } EXPORT_SYMBOL(fman_port_bind); /** * fman_port_get_qman_channel_id * @port: Pointer to the FMan port devuce * * Get the QMan channel ID for the specific port * * Return: QMan channel ID */ u32 fman_port_get_qman_channel_id(struct fman_port *port) { return port->dts_params.qman_channel_id; } EXPORT_SYMBOL(fman_port_get_qman_channel_id); /** * fman_port_get_device * @port: Pointer to the FMan port device * * Get the 'struct device' associated to the specified FMan port device * * Return: pointer to associated 'struct device' */ struct device *fman_port_get_device(struct fman_port *port) { return port->dev; } EXPORT_SYMBOL(fman_port_get_device); int fman_port_get_hash_result_offset(struct fman_port *port, u32 *offset) { if (port->buffer_offsets.hash_result_offset == ILLEGAL_BASE) return -EINVAL; *offset = port->buffer_offsets.hash_result_offset; return 0; } EXPORT_SYMBOL(fman_port_get_hash_result_offset); int fman_port_get_tstamp(struct fman_port *port, const void *data, u64 *tstamp) { if (port->buffer_offsets.time_stamp_offset == ILLEGAL_BASE) return -EINVAL; *tstamp = be64_to_cpu(*(__be64 *)(data + port->buffer_offsets.time_stamp_offset)); return 0; } EXPORT_SYMBOL(fman_port_get_tstamp); static int fman_port_probe(struct platform_device *of_dev) { struct fman_port *port; struct fman *fman; struct device_node *fm_node, *port_node; struct platform_device *fm_pdev; struct resource res; struct resource *dev_res; u32 val; int err = 0; enum fman_port_type port_type; u16 port_speed; u8 port_id; port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; port->dev = &of_dev->dev; port_node = of_node_get(of_dev->dev.of_node); /* Get the FM node */ fm_node = of_get_parent(port_node); if (!fm_node) { dev_err(port->dev, "%s: of_get_parent() failed\n", __func__); err = -ENODEV; goto return_err; } fm_pdev = of_find_device_by_node(fm_node); of_node_put(fm_node); if (!fm_pdev) { err = -EINVAL; goto return_err; } fman = dev_get_drvdata(&fm_pdev->dev); if (!fman) { err = -EINVAL; goto put_device; } err = of_property_read_u32(port_node, "cell-index", &val); if (err) { dev_err(port->dev, "%s: reading cell-index for %pOF failed\n", __func__, port_node); err = -EINVAL; goto put_device; } port_id = (u8)val; port->dts_params.id = port_id; if (of_device_is_compatible(port_node, "fsl,fman-v3-port-tx")) { port_type = FMAN_PORT_TYPE_TX; port_speed = 1000; if (of_property_read_bool(port_node, "fsl,fman-10g-port")) port_speed = 10000; } else if (of_device_is_compatible(port_node, "fsl,fman-v2-port-tx")) { if (port_id >= TX_10G_PORT_BASE) port_speed = 10000; else port_speed = 1000; port_type = FMAN_PORT_TYPE_TX; } else if (of_device_is_compatible(port_node, "fsl,fman-v3-port-rx")) { port_type = FMAN_PORT_TYPE_RX; port_speed = 1000; if (of_property_read_bool(port_node, "fsl,fman-10g-port")) port_speed = 10000; } else if (of_device_is_compatible(port_node, "fsl,fman-v2-port-rx")) { if (port_id >= RX_10G_PORT_BASE) port_speed = 10000; else port_speed = 1000; port_type = FMAN_PORT_TYPE_RX; } else { dev_err(port->dev, "%s: Illegal port type\n", __func__); err = -EINVAL; goto put_device; } port->dts_params.type = port_type; port->dts_params.speed = port_speed; if (port_type == FMAN_PORT_TYPE_TX) { u32 qman_channel_id; qman_channel_id = fman_get_qman_channel_id(fman, port_id); if (qman_channel_id == 0) { dev_err(port->dev, "%s: incorrect qman-channel-id\n", __func__); err = -EINVAL; goto put_device; } port->dts_params.qman_channel_id = qman_channel_id; } err = of_address_to_resource(port_node, 0, &res); if (err < 0) { dev_err(port->dev, "%s: of_address_to_resource() failed\n", __func__); err = -ENOMEM; goto put_device; } port->dts_params.fman = fman; of_node_put(port_node); dev_res = __devm_request_region(port->dev, &res, res.start, resource_size(&res), "fman-port"); if (!dev_res) { dev_err(port->dev, "%s: __devm_request_region() failed\n", __func__); err = -EINVAL; goto free_port; } port->dts_params.base_addr = devm_ioremap(port->dev, res.start, resource_size(&res)); if (!port->dts_params.base_addr) dev_err(port->dev, "%s: devm_ioremap() failed\n", __func__); dev_set_drvdata(&of_dev->dev, port); return 0; put_device: put_device(&fm_pdev->dev); return_err: of_node_put(port_node); free_port: kfree(port); return err; } static const struct of_device_id fman_port_match[] = { {.compatible = "fsl,fman-v3-port-rx"}, {.compatible = "fsl,fman-v2-port-rx"}, {.compatible = "fsl,fman-v3-port-tx"}, {.compatible = "fsl,fman-v2-port-tx"}, {} }; MODULE_DEVICE_TABLE(of, fman_port_match); static struct platform_driver fman_port_driver = { .driver = { .name = "fsl-fman-port", .of_match_table = fman_port_match, }, .probe = fman_port_probe, }; static int __init fman_port_load(void) { int err; pr_debug("FSL DPAA FMan driver\n"); err = platform_driver_register(&fman_port_driver); if (err < 0) pr_err("Error, platform_driver_register() = %d\n", err); return err; } module_init(fman_port_load); static void __exit fman_port_unload(void) { platform_driver_unregister(&fman_port_driver); } module_exit(fman_port_unload); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Freescale DPAA Frame Manager Port driver");