// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include "ice.h" #include "ice_lib.h" #include "ice_trace.h" #include "ice_cgu_regs.h" static const char ice_pin_names[][64] = { "SDP0", "SDP1", "SDP2", "SDP3", "TIME_SYNC", "1PPS" }; static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = { /* name, gpio */ { TIME_SYNC, { 4, -1 }}, { ONE_PPS, { -1, 5 }}, }; static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = { /* name, gpio */ { SDP0, { 0, 0 }}, { SDP1, { 1, 1 }}, { SDP2, { 2, 2 }}, { SDP3, { 3, 3 }}, { TIME_SYNC, { 4, -1 }}, { ONE_PPS, { -1, 5 }}, }; static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = { /* name, gpio */ { SDP0, { 0, 0 }}, { SDP1, { 1, 1 }}, { SDP2, { 2, 2 }}, { SDP3, { 3, 3 }}, { ONE_PPS, { -1, 5 }}, }; static const char ice_pin_names_nvm[][64] = { "GNSS", "SMA1", "U.FL1", "SMA2", "U.FL2", }; static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = { /* name, gpio */ { GNSS, { 1, -1 }}, { SMA1, { 1, 0 }}, { UFL1, { -1, 0 }}, { SMA2, { 3, 2 }}, { UFL2, { 3, -1 }}, }; static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf) { return !pf->adapter ? NULL : pf->adapter->ctrl_pf; } static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf) { struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf); return !ctrl_pf ? NULL : &ctrl_pf->ptp; } /** * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc * @pf: Board private structure * @func: Pin function * @chan: GPIO channel * * Return: positive pin number when pin is present, -1 otherwise */ static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func, unsigned int chan) { const struct ptp_clock_info *info = &pf->ptp.info; int i; for (i = 0; i < info->n_pins; i++) { if (info->pin_config[i].func == func && info->pin_config[i].chan == chan) return i; } return -1; } /** * ice_ptp_update_sma_data - update SMA pins data according to pins setup * @pf: Board private structure * @sma_pins: parsed SMA pins status * @data: SMA data to update */ static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[], u8 *data) { const char *state1, *state2; /* Set the right state based on the desired configuration. * When bit is set, functionality is disabled. */ *data &= ~ICE_ALL_SMA_MASK; if (!sma_pins[UFL1 - 1]) { if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) { state1 = "SMA1 Rx, U.FL1 disabled"; *data |= ICE_SMA1_TX_EN; } else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) { state1 = "SMA1 Tx U.FL1 disabled"; *data |= ICE_SMA1_DIR_EN; } else { state1 = "SMA1 disabled, U.FL1 disabled"; *data |= ICE_SMA1_MASK; } } else { /* U.FL1 Tx will always enable SMA1 Rx */ state1 = "SMA1 Rx, U.FL1 Tx"; } if (!sma_pins[UFL2 - 1]) { if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) { state2 = "SMA2 Rx, U.FL2 disabled"; *data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS; } else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) { state2 = "SMA2 Tx, U.FL2 disabled"; *data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS; } else { state2 = "SMA2 disabled, U.FL2 disabled"; *data |= ICE_SMA2_MASK; } } else { if (!sma_pins[SMA2 - 1]) { state2 = "SMA2 disabled, U.FL2 Rx"; *data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN; } else { state2 = "SMA2 Tx, U.FL2 Rx"; *data |= ICE_SMA2_DIR_EN; } } dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2); } /** * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic * @pf: Board private structure * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_set_sma_cfg(struct ice_pf *pf) { const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc; struct ptp_pin_desc *pins = pf->ptp.pin_desc; unsigned int sma_pins[ICE_SMA_PINS_NUM] = {}; int err; u8 data; /* Read initial pin state value */ err = ice_read_sma_ctrl(&pf->hw, &data); if (err) return err; /* Get SMA/U.FL pins states */ for (int i = 0; i < pf->ptp.info.n_pins; i++) if (pins[i].func) { int name_idx = ice_pins[i].name_idx; switch (name_idx) { case SMA1: case UFL1: case SMA2: case UFL2: sma_pins[name_idx - 1] = pins[i].func; break; default: continue; } } ice_ptp_update_sma_data(pf, sma_pins, &data); return ice_write_sma_ctrl(&pf->hw, data); } /** * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device * @pf: Board private structure * * Program the device to respond appropriately to the Tx timestamp interrupt * cause. */ static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable; u32 val; switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_ALL: /* React to interrupts across all quads. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f); enable = true; break; case ICE_PTP_TX_INTERRUPT_NONE: /* Do not react to interrupts on any quad. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0); enable = false; break; case ICE_PTP_TX_INTERRUPT_SELF: default: enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON; break; } /* Configure the Tx timestamp interrupt */ val = rd32(hw, PFINT_OICR_ENA); if (enable) val |= PFINT_OICR_TSYN_TX_M; else val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); } /** * ice_set_rx_tstamp - Enable or disable Rx timestamping * @pf: The PF pointer to search in * @on: bool value for whether timestamps are enabled or disabled */ static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) { struct ice_vsi *vsi; u16 i; vsi = ice_get_main_vsi(pf); if (!vsi || !vsi->rx_rings) return; /* Set the timestamp flag for all the Rx rings */ ice_for_each_rxq(vsi, i) { if (!vsi->rx_rings[i]) continue; vsi->rx_rings[i]->ptp_rx = on; } } /** * ice_ptp_disable_timestamp_mode - Disable current timestamp mode * @pf: Board private structure * * Called during preparation for reset to temporarily disable timestamping on * the device. Called during remove to disable timestamping while cleaning up * driver resources. */ static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; val = rd32(hw, PFINT_OICR_ENA); val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); ice_set_rx_tstamp(pf, false); } /** * ice_ptp_restore_timestamp_mode - Restore timestamp configuration * @pf: Board private structure * * Called at the end of rebuild to restore timestamp configuration after * a device reset. */ void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable_rx; ice_ptp_cfg_tx_interrupt(pf); enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL; ice_set_rx_tstamp(pf, enable_rx); /* Trigger an immediate software interrupt to ensure that timestamps * which occurred during reset are handled now. */ wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } /** * ice_ptp_read_src_clk_reg - Read the source clock register * @pf: Board private structure * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. */ static u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) { struct ice_hw *hw = &pf->hw; u32 hi, lo, lo2; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock); /* Read the system timestamp pre PHC read */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); /* Read the system timestamp post PHC read */ ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); if (lo2 < lo) { /* if TIME_L rolled over read TIME_L again and update * system timestamps */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); } return ((u64)hi << 32) | lo; } /** * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b * @cached_phc_time: recently cached copy of PHC time * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value * * Hardware captures timestamps which contain only 32 bits of nominal * nanoseconds, as opposed to the 64bit timestamps that the stack expects. * Note that the captured timestamp values may be 40 bits, but the lower * 8 bits are sub-nanoseconds and generally discarded. * * Extend the 32bit nanosecond timestamp using the following algorithm and * assumptions: * * 1) have a recently cached copy of the PHC time * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 * seconds) before or after the PHC time was captured. * 3) calculate the delta between the cached time and the timestamp * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was * captured after the PHC time. In this case, the full timestamp is just * the cached PHC time plus the delta. * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the * timestamp was captured *before* the PHC time, i.e. because the PHC * cache was updated after the timestamp was captured by hardware. In this * case, the full timestamp is the cached time minus the inverse delta. * * This algorithm works even if the PHC time was updated after a Tx timestamp * was requested, but before the Tx timestamp event was reported from * hardware. * * This calculation primarily relies on keeping the cached PHC time up to * date. If the timestamp was captured more than 2^31 nanoseconds after the * PHC time, it is possible that the lower 32bits of PHC time have * overflowed more than once, and we might generate an incorrect timestamp. * * This is prevented by (a) periodically updating the cached PHC time once * a second, and (b) discarding any Tx timestamp packet if it has waited for * a timestamp for more than one second. */ static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) { u32 delta, phc_time_lo; u64 ns; /* Extract the lower 32 bits of the PHC time */ phc_time_lo = (u32)cached_phc_time; /* Calculate the delta between the lower 32bits of the cached PHC * time and the in_tstamp value */ delta = (in_tstamp - phc_time_lo); /* Do not assume that the in_tstamp is always more recent than the * cached PHC time. If the delta is large, it indicates that the * in_tstamp was taken in the past, and should be converted * forward. */ if (delta > (U32_MAX / 2)) { /* reverse the delta calculation here */ delta = (phc_time_lo - in_tstamp); ns = cached_phc_time - delta; } else { ns = cached_phc_time + delta; } return ns; } /** * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds * @pf: Board private structure * @in_tstamp: Ingress/egress 40b timestamp value * * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. * * *--------------------------------------------------------------* * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | * *--------------------------------------------------------------* * * The low bit is an indicator of whether the timestamp is valid. The next * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, * and the remaining 32 bits are the lower 32 bits of the PHC timer. * * It is assumed that the caller verifies the timestamp is valid prior to * calling this function. * * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC * time stored in the device private PTP structure as the basis for timestamp * extension. * * See ice_ptp_extend_32b_ts for a detailed explanation of the extension * algorithm. */ static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) { const u64 mask = GENMASK_ULL(31, 0); unsigned long discard_time; /* Discard the hardware timestamp if the cached PHC time is too old */ discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (time_is_before_jiffies(discard_time)) { pf->ptp.tx_hwtstamp_discarded++; return 0; } return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, (in_tstamp >> 8) & mask); } /** * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps * @tx: the PTP Tx timestamp tracker to check * * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready * to accept new timestamp requests. * * Assumes the tx->lock spinlock is already held. */ static bool ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) { lockdep_assert_held(&tx->lock); return tx->init && !tx->calibrating; } /** * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW * @tx: the PTP Tx timestamp tracker * @idx: index of the timestamp to request */ void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) { struct ice_ptp_port *ptp_port; struct sk_buff *skb; struct ice_pf *pf; if (!tx->init) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); dev_kfree_skb_any(skb); return; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); /* Write TS index to read to the PF register so the FW can read it */ wr32(&pf->hw, PF_SB_ATQBAL, TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS); tx->last_ll_ts_idx_read = idx; } /** * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port * @tx: the PTP Tx timestamp tracker */ void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 idx = tx->last_ll_ts_idx_read; struct ice_ptp_port *ptp_port; u64 raw_tstamp, tstamp; bool drop_ts = false; struct sk_buff *skb; struct ice_pf *pf; u32 val; if (!tx->init || tx->last_ll_ts_idx_read < 0) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); val = rd32(&pf->hw, PF_SB_ATQBAL); /* When the bit is cleared, the TS is ready in the register */ if (val & TS_LL_READ_TS) { dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready"); return; } /* High 8 bit value of the TS is on the bits 16:23 */ raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val); raw_tstamp <<= 32; /* Read the low 32 bit value */ raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH); /* Devices using this interface always verify the timestamp differs * relative to the last cached timestamp value. */ if (raw_tstamp == tx->tstamps[idx].cached_tstamp) return; tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; if (!skb) return; if (drop_ts) { dev_kfree_skb_any(skb); return; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port * @tx: the PTP Tx timestamp tracker * * Process timestamps captured by the PHY associated with this port. To do * this, loop over each index with a waiting skb. * * If a given index has a valid timestamp, perform the following steps: * * 1) check that the timestamp request is not stale * 2) check that a timestamp is ready and available in the PHY memory bank * 3) read and copy the timestamp out of the PHY register * 4) unlock the index by clearing the associated in_use bit * 5) check if the timestamp is stale, and discard if so * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value * 7) send this 64 bit timestamp to the stack * * Note that we do not hold the tracking lock while reading the Tx timestamp. * This is because reading the timestamp requires taking a mutex that might * sleep. * * The only place where we set in_use is when a new timestamp is initiated * with a slot index. This is only called in the hard xmit routine where an * SKB has a request flag set. The only places where we clear this bit is this * function, or during teardown when the Tx timestamp tracker is being * removed. A timestamp index will never be re-used until the in_use bit for * that index is cleared. * * If a Tx thread starts a new timestamp, we might not begin processing it * right away but we will notice it at the end when we re-queue the task. * * If a Tx thread starts a new timestamp just after this function exits, the * interrupt for that timestamp should re-trigger this function once * a timestamp is ready. * * In cases where the PTP hardware clock was directly adjusted, some * timestamps may not be able to safely use the timestamp extension math. In * this case, software will set the stale bit for any outstanding Tx * timestamps when the clock is adjusted. Then this function will discard * those captured timestamps instead of sending them to the stack. * * If a Tx packet has been waiting for more than 2 seconds, it is not possible * to correctly extend the timestamp using the cached PHC time. It is * extremely unlikely that a packet will ever take this long to timestamp. If * we detect a Tx timestamp request that has waited for this long we assume * the packet will never be sent by hardware and discard it without reading * the timestamp register. */ static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx) { struct ice_ptp_port *ptp_port; unsigned long flags; struct ice_pf *pf; struct ice_hw *hw; u64 tstamp_ready; bool link_up; int err; u8 idx; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); hw = &pf->hw; /* Read the Tx ready status first */ if (tx->has_ready_bitmap) { err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) return; } /* Drop packets if the link went down */ link_up = ptp_port->link_up; for_each_set_bit(idx, tx->in_use, tx->len) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 phy_idx = idx + tx->offset; u64 raw_tstamp = 0, tstamp; bool drop_ts = !link_up; struct sk_buff *skb; /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { drop_ts = true; /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; } /* Only read a timestamp from the PHY if its marked as ready * by the tstamp_ready register. This avoids unnecessary * reading of timestamps which are not yet valid. This is * important as we must read all timestamps which are valid * and only timestamps which are valid during each interrupt. * If we do not, the hardware logic for generating a new * interrupt can get stuck on some devices. */ if (tx->has_ready_bitmap && !(tstamp_ready & BIT_ULL(phy_idx))) { if (drop_ts) goto skip_ts_read; continue; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); if (err && !drop_ts) continue; ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); /* For PHYs which don't implement a proper timestamp ready * bitmap, verify that the timestamp value is different * from the last cached timestamp. If it is not, skip this for * now assuming it hasn't yet been captured by hardware. */ if (!drop_ts && !tx->has_ready_bitmap && raw_tstamp == tx->tstamps[idx].cached_tstamp) continue; /* Discard any timestamp value without the valid bit set */ if (!(raw_tstamp & ICE_PTP_TS_VALID)) drop_ts = true; skip_ts_read: spin_lock_irqsave(&tx->lock, flags); if (!tx->has_ready_bitmap && raw_tstamp) tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; spin_unlock_irqrestore(&tx->lock, flags); /* It is unlikely but possible that the SKB will have been * flushed at this point due to link change or teardown. */ if (!skb) continue; if (drop_ts) { dev_kfree_skb_any(skb); continue; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } } /** * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device * @pf: Board private structure */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf) { struct ice_ptp_port *port; unsigned int i; mutex_lock(&pf->adapter->ports.lock); list_for_each_entry(port, &pf->adapter->ports.ports, list_node) { struct ice_ptp_tx *tx = &port->tx; if (!tx || !tx->init) continue; ice_ptp_process_tx_tstamp(tx); } mutex_unlock(&pf->adapter->ports.lock); for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) { u64 tstamp_ready; int err; /* Read the Tx ready status first */ err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (err) break; else if (tstamp_ready) return ICE_TX_TSTAMP_WORK_PENDING; } return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_tx_tstamp - Process Tx timestamps for this function. * @tx: Tx tracking structure to initialize * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise. */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) { bool more_timestamps; unsigned long flags; if (!tx->init) return ICE_TX_TSTAMP_WORK_DONE; /* Process the Tx timestamp tracker */ ice_ptp_process_tx_tstamp(tx); /* Check if there are outstanding Tx timestamps */ spin_lock_irqsave(&tx->lock, flags); more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); if (more_timestamps) return ICE_TX_TSTAMP_WORK_PENDING; return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps * @tx: Tx tracking structure to initialize * * Assumes that the length has already been initialized. Do not call directly, * use the ice_ptp_init_tx_* instead. */ static int ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) { unsigned long *in_use, *stale; struct ice_tx_tstamp *tstamps; tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); in_use = bitmap_zalloc(tx->len, GFP_KERNEL); stale = bitmap_zalloc(tx->len, GFP_KERNEL); if (!tstamps || !in_use || !stale) { kfree(tstamps); bitmap_free(in_use); bitmap_free(stale); return -ENOMEM; } tx->tstamps = tstamps; tx->in_use = in_use; tx->stale = stale; tx->init = 1; tx->last_ll_ts_idx_read = -1; spin_lock_init(&tx->lock); return 0; } /** * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker * @pf: Board private structure * @tx: the tracker to flush * * Called during teardown when a Tx tracker is being removed. */ static void ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { struct ice_hw *hw = &pf->hw; unsigned long flags; u64 tstamp_ready; int err; u8 idx; err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) { dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", tx->block, err); /* If we fail to read the Tx timestamp ready bitmap just * skip clearing the PHY timestamps. */ tstamp_ready = 0; } for_each_set_bit(idx, tx->in_use, tx->len) { u8 phy_idx = idx + tx->offset; struct sk_buff *skb; /* In case this timestamp is ready, we need to clear it. */ if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) ice_clear_phy_tstamp(hw, tx->block, phy_idx); spin_lock_irqsave(&tx->lock, flags); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); clear_bit(idx, tx->stale); spin_unlock_irqrestore(&tx->lock, flags); /* Count the number of Tx timestamps flushed */ pf->ptp.tx_hwtstamp_flushed++; /* Free the SKB after we've cleared the bit */ dev_kfree_skb_any(skb); } } /** * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale * @tx: the tracker to mark * * Mark currently outstanding Tx timestamps as stale. This prevents sending * their timestamp value to the stack. This is required to prevent extending * the 40bit hardware timestamp incorrectly. * * This should be called when the PTP clock is modified such as after a set * time request. */ static void ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); } /** * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock * @pf: Board private structure * * Called by the clock owner to flush all the Tx timestamp trackers associated * with the clock. */ static void ice_ptp_flush_all_tx_tracker(struct ice_pf *pf) { struct ice_ptp_port *port; list_for_each_entry(port, &pf->adapter->ports.ports, list_node) ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx); } /** * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker * @pf: Board private structure * @tx: Tx tracking structure to release * * Free memory associated with the Tx timestamp tracker. */ static void ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); tx->init = 0; spin_unlock_irqrestore(&tx->lock, flags); /* wait for potentially outstanding interrupt to complete */ synchronize_irq(pf->oicr_irq.virq); ice_ptp_flush_tx_tracker(pf, tx); kfree(tx->tstamps); tx->tstamps = NULL; bitmap_free(tx->in_use); tx->in_use = NULL; bitmap_free(tx->stale); tx->stale = NULL; tx->len = 0; } /** * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * @port: the port this structure tracks * * Initialize the Tx timestamp tracker for this port. ETH56G PHYs * have independent memory blocks for all ports. * * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker */ static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) { tx->block = port; tx->offset = 0; tx->len = INDEX_PER_PORT_ETH56G; tx->has_ready_bitmap = 1; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * @port: the port this structure tracks * * Initialize the Tx timestamp tracker for this port. For generic MAC devices, * the timestamp block is shared for all ports in the same quad. To avoid * ports using the same timestamp index, logically break the block of * registers into chunks based on the port number. */ static int ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) { tx->block = ICE_GET_QUAD_NUM(port); tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X; tx->len = INDEX_PER_PORT_E82X; tx->has_ready_bitmap = 1; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * * Initialize the Tx timestamp tracker for this PF. For E810 devices, each * port has its own block of timestamps, independent of the other ports. */ static int ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) { tx->block = pf->hw.port_info->lport; tx->offset = 0; tx->len = INDEX_PER_PORT_E810; /* The E810 PHY does not provide a timestamp ready bitmap. Instead, * verify new timestamps against cached copy of the last read * timestamp. */ tx->has_ready_bitmap = 0; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_update_cached_phctime - Update the cached PHC time values * @pf: Board specific private structure * * This function updates the system time values which are cached in the PF * structure and the Rx rings. * * This function must be called periodically to ensure that the cached value * is never more than 2 seconds old. * * Note that the cached copy in the PF PTP structure is always updated, even * if we can't update the copy in the Rx rings. * * Return: * * 0 - OK, successfully updated * * -EAGAIN - PF was busy, need to reschedule the update */ static int ice_ptp_update_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); unsigned long update_before; u64 systime; int i; update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (pf->ptp.cached_phc_time && time_is_before_jiffies(update_before)) { unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; dev_warn(dev, "%u msecs passed between update to cached PHC time\n", jiffies_to_msecs(time_taken)); pf->ptp.late_cached_phc_updates++; } /* Read the current PHC time */ systime = ice_ptp_read_src_clk_reg(pf, NULL); /* Update the cached PHC time stored in the PF structure */ WRITE_ONCE(pf->ptp.cached_phc_time, systime); WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) return -EAGAIN; ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; int j; if (!vsi) continue; if (vsi->type != ICE_VSI_PF) continue; ice_for_each_rxq(vsi, j) { if (!vsi->rx_rings[j]) continue; WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); } } clear_bit(ICE_CFG_BUSY, pf->state); return 0; } /** * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update * @pf: Board specific private structure * * This function must be called when the cached PHC time is no longer valid, * such as after a time adjustment. It marks any currently outstanding Tx * timestamps as stale and updates the cached PHC time for both the PF and Rx * rings. * * If updating the PHC time cannot be done immediately, a warning message is * logged and the work item is scheduled immediately to minimize the window * with a wrong cached timestamp. */ static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); int err; /* Update the cached PHC time immediately if possible, otherwise * schedule the work item to execute soon. */ err = ice_ptp_update_cached_phctime(pf); if (err) { /* If another thread is updating the Rx rings, we won't * properly reset them here. This could lead to reporting of * invalid timestamps, but there isn't much we can do. */ dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", __func__); /* Queue the work item to update the Rx rings when possible */ kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, msecs_to_jiffies(10)); } /* Mark any outstanding timestamps as stale, since they might have * been captured in hardware before the time update. This could lead * to us extending them with the wrong cached value resulting in * incorrect timestamp values. */ ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); } /** * ice_ptp_write_init - Set PHC time to provided value * @pf: Board private structure * @ts: timespec structure that holds the new time value * * Set the PHC time to the specified time provided in the timespec. */ static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) { u64 ns = timespec64_to_ns(ts); struct ice_hw *hw = &pf->hw; return ice_ptp_init_time(hw, ns); } /** * ice_ptp_write_adj - Adjust PHC clock time atomically * @pf: Board private structure * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. */ static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) { struct ice_hw *hw = &pf->hw; return ice_ptp_adj_clock(hw, adj); } /** * ice_base_incval - Get base timer increment value * @pf: Board private structure * * Look up the base timer increment value for this device. The base increment * value is used to define the nominal clock tick rate. This increment value * is programmed during device initialization. It is also used as the basis * for calculating adjustments using scaled_ppm. */ static u64 ice_base_incval(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u64 incval; incval = ice_get_base_incval(hw); dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", incval); return incval; } /** * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state * @port: PTP port for which Tx FIFO is checked */ static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) { int offs = port->port_num % ICE_PORTS_PER_QUAD; int quad = ICE_GET_QUAD_NUM(port->port_num); struct ice_pf *pf; struct ice_hw *hw; u32 val, phy_sts; int err; pf = ptp_port_to_pf(port); hw = &pf->hw; if (port->tx_fifo_busy_cnt == FIFO_OK) return 0; /* need to read FIFO state */ if (offs == 0 || offs == 1) err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS, &val); else err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS, &val); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", port->port_num, err); return err; } if (offs & 0x1) phy_sts = FIELD_GET(Q_REG_FIFO13_M, val); else phy_sts = FIELD_GET(Q_REG_FIFO02_M, val); if (phy_sts & FIFO_EMPTY) { port->tx_fifo_busy_cnt = FIFO_OK; return 0; } port->tx_fifo_busy_cnt++; dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", port->tx_fifo_busy_cnt, port->port_num); if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { dev_dbg(ice_pf_to_dev(pf), "Port %d Tx FIFO still not empty; resetting quad %d\n", port->port_num, quad); ice_ptp_reset_ts_memory_quad_e82x(hw, quad); port->tx_fifo_busy_cnt = FIFO_OK; return 0; } return -EAGAIN; } /** * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets * @work: Pointer to the kthread_work structure for this task * * Check whether hardware has completed measuring the Tx and Rx offset values * used to configure and enable vernier timestamp calibration. * * Once the offset in either direction is measured, configure the associated * registers with the calibrated offset values and enable timestamping. The Tx * and Rx directions are configured independently as soon as their associated * offsets are known. * * This function reschedules itself until both Tx and Rx calibration have * completed. */ static void ice_ptp_wait_for_offsets(struct kthread_work *work) { struct ice_ptp_port *port; struct ice_pf *pf; struct ice_hw *hw; int tx_err; int rx_err; port = container_of(work, struct ice_ptp_port, ov_work.work); pf = ptp_port_to_pf(port); hw = &pf->hw; if (ice_is_reset_in_progress(pf->state)) { /* wait for device driver to complete reset */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } tx_err = ice_ptp_check_tx_fifo(port); if (!tx_err) tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num); rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num); if (tx_err || rx_err) { /* Tx and/or Rx offset not yet configured, try again later */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } } /** * ice_ptp_port_phy_stop - Stop timestamping for a PHY port * @ptp_port: PTP port to stop */ static int ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; int err; if (ice_is_e810(hw)) return 0; mutex_lock(&ptp_port->ps_lock); switch (ice_get_phy_model(hw)) { case ICE_PHY_ETH56G: err = ice_stop_phy_timer_eth56g(hw, port, true); break; case ICE_PHY_E82X: kthread_cancel_delayed_work_sync(&ptp_port->ov_work); err = ice_stop_phy_timer_e82x(hw, port, true); break; default: err = -ENODEV; } if (err && err != -EBUSY) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping * @ptp_port: PTP port for which the PHY start is set * * Start the PHY timestamping block, and initiate Vernier timestamping * calibration. If timestamping cannot be calibrated (such as if link is down) * then disable the timestamping block instead. */ static int ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; unsigned long flags; int err; if (ice_is_e810(hw)) return 0; if (!ptp_port->link_up) return ice_ptp_port_phy_stop(ptp_port); mutex_lock(&ptp_port->ps_lock); switch (ice_get_phy_model(hw)) { case ICE_PHY_ETH56G: err = ice_start_phy_timer_eth56g(hw, port); break; case ICE_PHY_E82X: /* Start the PHY timer in Vernier mode */ kthread_cancel_delayed_work_sync(&ptp_port->ov_work); /* temporarily disable Tx timestamps while calibrating * PHY offset */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = true; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); ptp_port->tx_fifo_busy_cnt = 0; /* Start the PHY timer in Vernier mode */ err = ice_start_phy_timer_e82x(hw, port); if (err) break; /* Enable Tx timestamps right away */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = false; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); break; default: err = -ENODEV; } if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_link_change - Reconfigure PTP after link status change * @pf: Board private structure * @port: Port for which the PHY start is set * @linkup: Link is up or down */ void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) { struct ice_ptp_port *ptp_port; struct ice_hw *hw = &pf->hw; if (pf->ptp.state != ICE_PTP_READY) return; if (WARN_ON_ONCE(port >= hw->ptp.num_lports)) return; ptp_port = &pf->ptp.port; if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo) port *= 2; if (WARN_ON_ONCE(ptp_port->port_num != port)) return; /* Update cached link status for this port immediately */ ptp_port->link_up = linkup; /* Skip HW writes if reset is in progress */ if (pf->hw.reset_ongoing) return; switch (ice_get_phy_model(hw)) { case ICE_PHY_E810: /* Do not reconfigure E810 PHY */ return; case ICE_PHY_ETH56G: case ICE_PHY_E82X: ice_ptp_port_phy_restart(ptp_port); return; default: dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__); } } /** * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings * @pf: PF private structure * @ena: bool value to enable or disable interrupt * @threshold: Minimum number of packets at which intr is triggered * * Utility function to configure all the PHY interrupt settings, including * whether the PHY interrupt is enabled, and what threshold to use. Also * configures The E82X timestamp owner to react to interrupts from all PHYs. * * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes * when failed to configure PHY interrupt for E82X */ static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; ice_ptp_reset_ts_memory(hw); switch (ice_get_phy_model(hw)) { case ICE_PHY_ETH56G: { int port; for (port = 0; port < hw->ptp.num_lports; port++) { int err; err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold); if (err) { dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n", port, err); return err; } } return 0; } case ICE_PHY_E82X: { int quad; for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++) { int err; err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold); if (err) { dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n", quad, err); return err; } } return 0; } case ICE_PHY_E810: return 0; case ICE_PHY_UNSUP: default: dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__, ice_get_phy_model(hw)); return -EOPNOTSUPP; } } /** * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block * @pf: Board private structure */ static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) { ice_ptp_port_phy_restart(&pf->ptp.port); } /** * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping * @pf: Board private structure */ static void ice_ptp_restart_all_phy(struct ice_pf *pf) { struct list_head *entry; list_for_each(entry, &pf->adapter->ports.ports) { struct ice_ptp_port *port = list_entry(entry, struct ice_ptp_port, list_node); if (port->link_up) ice_ptp_port_phy_restart(port); } } /** * ice_ptp_adjfine - Adjust clock increment rate * @info: the driver's PTP info structure * @scaled_ppm: Parts per million with 16-bit fractional field * * Adjust the frequency of the clock by the indicated scaled ppm from the * base frequency. */ static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; u64 incval; int err; incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); err = ice_ptp_write_incval_locked(hw, incval); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", err); return -EIO; } return 0; } /** * ice_ptp_extts_event - Process PTP external clock event * @pf: Board private structure */ void ice_ptp_extts_event(struct ice_pf *pf) { struct ptp_clock_event event; struct ice_hw *hw = &pf->hw; u8 chan, tmr_idx; u32 hi, lo; /* Don't process timestamp events if PTP is not ready */ if (pf->ptp.state != ICE_PTP_READY) return; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Event time is captured by one of the two matched registers * GLTSYN_EVNT_L: 32 LSB of sampled time event * GLTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in GLTSYN_EVNT_0 register */ for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { /* Check if channel is enabled */ if (pf->ptp.ext_ts_irq & (1 << chan)) { lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = chan; /* Fire event */ ptp_clock_event(pf->ptp.clock, &event); pf->ptp.ext_ts_irq &= ~(1 << chan); } } } /** * ice_ptp_cfg_extts - Configure EXTTS pin and channel * @pf: Board private structure * @rq: External timestamp request * @on: Enable/disable flag * * Configure an external timestamp event on the requested channel. * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq, int on) { u32 aux_reg, gpio_reg, irq_reg; struct ice_hw *hw = &pf->hw; unsigned int chan, gpio_pin; int pin_desc_idx; u8 tmr_idx; /* Reject requests with unsupported flags */ if (rq->flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; chan = rq->index; pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan); if (pin_desc_idx < 0) return -EIO; gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0]; irq_reg = rd32(hw, PFINT_OICR_ENA); if (on) { /* Enable the interrupt */ irq_reg |= PFINT_OICR_TSYN_EVNT_M; aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) /* set event level to requested edge */ if (rq->flags & PTP_FALLING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; if (rq->flags & PTP_RISING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; /* Write GPIO CTL reg. * 0x1 is input sampled by EVENT register(channel) * + num_in_channels * tmr_idx */ gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, 1 + chan + (tmr_idx * 3)); } else { bool last_enabled = true; /* clear the values we set to reset defaults */ aux_reg = 0; gpio_reg = 0; for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++) if ((pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE) && i != chan) { last_enabled = false; } if (last_enabled) irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; } wr32(hw, PFINT_OICR_ENA, irq_reg); wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); return 0; } /** * ice_ptp_disable_all_extts - Disable all EXTTS channels * @pf: Board private structure */ static void ice_ptp_disable_all_extts(struct ice_pf *pf) { for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++) if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE) ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i], false); synchronize_irq(pf->oicr_irq.virq); } /** * ice_ptp_enable_all_extts - Enable all EXTTS channels * @pf: Board private structure * * Called during reset to restore user configuration. */ static void ice_ptp_enable_all_extts(struct ice_pf *pf) { for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++) if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE) ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i], true); } /** * ice_ptp_write_perout - Write periodic wave parameters to HW * @hw: pointer to the HW struct * @chan: target channel * @gpio_pin: target GPIO pin * @start: target time to start periodic output * @period: target period * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan, unsigned int gpio_pin, u64 start, u64 period) { u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; u32 val = 0; /* 0. Reset mode & out_en in AUX_OUT */ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); if (ice_is_e825c(hw)) { int err; /* Enable/disable CGU 1PPS output for E825C */ err = ice_cgu_cfg_pps_out(hw, !!period); if (err) return err; } /* 1. Write perout with half of required period value. * HW toggles output when source clock hits the TGT and then adds * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle. */ period >>= 1; /* For proper operation, GLTSYN_CLKO must be larger than clock tick and * period has to fit in 32 bit register. */ #define MIN_PULSE 3 if (!!period && (period <= MIN_PULSE || period > U32_MAX)) { dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32", MIN_PULSE); return -EIO; } wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); /* 2. Write TARGET time */ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start)); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start)); /* 3. Write AUX_OUT register */ if (!!period) val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); /* 4. write GPIO CTL reg */ val = GLGEN_GPIO_CTL_PIN_DIR_M; if (!!period) val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, 8 + chan + (tmr_idx * 4)); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); return 0; } /** * ice_ptp_cfg_perout - Configure clock to generate periodic wave * @pf: Board private structure * @rq: Periodic output request * @on: Enable/disable flag * * Configure the internal clock generator modules to generate the clock wave of * specified period. * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq, int on) { u64 clk, period, start, phase; struct ice_hw *hw = &pf->hw; unsigned int gpio_pin; int pin_desc_idx; if (rq->flags & ~PTP_PEROUT_PHASE) return -EOPNOTSUPP; pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index); if (pin_desc_idx < 0) return -EIO; gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1]; period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec; /* If we're disabling the output or period is 0, clear out CLKO and TGT * and keep output level low. */ if (!on || !period) return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0); if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 && period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) { dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n"); return -EOPNOTSUPP; } if (period & 0x1) { dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); return -EIO; } start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec; /* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */ if (rq->flags & PTP_PEROUT_PHASE) phase = start; else div64_u64_rem(start, period, &phase); /* If we have only phase or start time is in the past, start the timer * at the next multiple of period, maintaining phase. */ clk = ice_ptp_read_src_clk_reg(pf, NULL); if (rq->flags & PTP_PEROUT_PHASE || start <= clk - ice_prop_delay(hw)) start = div64_u64(clk + period - 1, period) * period + phase; /* Compensate for propagation delay from the generator to the pin. */ start -= ice_prop_delay(hw); return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period); } /** * ice_ptp_disable_all_perout - Disable all currently configured outputs * @pf: Board private structure * * Disable all currently configured clock outputs. This is necessary before * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to * re-enable the clocks again. */ static void ice_ptp_disable_all_perout(struct ice_pf *pf) { for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_rqs[i].period.sec || pf->ptp.perout_rqs[i].period.nsec) ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i], false); } /** * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs * @pf: Board private structure * * Enable all currently configured clock outputs. Use this after * ice_ptp_disable_all_perout to reconfigure the output signals according to * their configuration. */ static void ice_ptp_enable_all_perout(struct ice_pf *pf) { for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_rqs[i].period.sec || pf->ptp.perout_rqs[i].period.nsec) ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i], true); } /** * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO * @pf: Board private structure * @pin: Pin index * @func: Assigned function * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin, enum ptp_pin_function func) { unsigned int gpio_pin; switch (func) { case PTP_PF_PEROUT: gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1]; break; case PTP_PF_EXTTS: gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0]; break; default: return -EOPNOTSUPP; } for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) { struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i]; unsigned int chan = pin_desc->chan; /* Skip pin idx from the request */ if (i == pin) continue; if (pin_desc->func == PTP_PF_PEROUT && pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) { pf->ptp.perout_rqs[chan].period.sec = 0; pf->ptp.perout_rqs[chan].period.nsec = 0; pin_desc->func = PTP_PF_NONE; pin_desc->chan = 0; dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n", i, gpio_pin); return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan], false); } else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS && pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) { pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE; pin_desc->func = PTP_PF_NONE; pin_desc->chan = 0; dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n", i, gpio_pin); return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan], false); } } return 0; } /** * ice_verify_pin - verify if pin supports requested pin function * @info: the driver's PTP info structure * @pin: Pin index * @func: Assigned function * @chan: Assigned channel * * Return: 0 on success, -EOPNOTSUPP when function is not supported. */ static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { struct ice_pf *pf = ptp_info_to_pf(info); const struct ice_ptp_pin_desc *pin_desc; pin_desc = &pf->ptp.ice_pin_desc[pin]; /* Is assigned function allowed? */ switch (func) { case PTP_PF_EXTTS: if (pin_desc->gpio[0] < 0) return -EOPNOTSUPP; break; case PTP_PF_PEROUT: if (pin_desc->gpio[1] < 0) return -EOPNOTSUPP; break; case PTP_PF_NONE: break; case PTP_PF_PHYSYNC: default: return -EOPNOTSUPP; } /* On adapters with SMA_CTRL disable other pins that share same GPIO */ if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { ice_ptp_disable_shared_pin(pf, pin, func); pf->ptp.pin_desc[pin].func = func; pf->ptp.pin_desc[pin].chan = chan; return ice_ptp_set_sma_cfg(pf); } return 0; } /** * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC * @info: The driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag * * Return: 0 on success, negative error code otherwise */ static int ice_ptp_gpio_enable(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); int err; switch (rq->type) { case PTP_CLK_REQ_PEROUT: { struct ptp_perout_request *cached = &pf->ptp.perout_rqs[rq->perout.index]; err = ice_ptp_cfg_perout(pf, &rq->perout, on); if (!err) { *cached = rq->perout; } else { cached->period.sec = 0; cached->period.nsec = 0; } return err; } case PTP_CLK_REQ_EXTTS: { struct ptp_extts_request *cached = &pf->ptp.extts_rqs[rq->extts.index]; err = ice_ptp_cfg_extts(pf, &rq->extts, on); if (!err) *cached = rq->extts; else cached->flags &= ~PTP_ENABLE_FEATURE; return err; } default: return -EOPNOTSUPP; } } /** * ice_ptp_gettimex64 - Get the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. */ static int ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ice_pf *pf = ptp_info_to_pf(info); u64 time_ns; time_ns = ice_ptp_read_src_clk_reg(pf, sts); *ts = ns_to_timespec64(time_ns); return 0; } /** * ice_ptp_settime64 - Set the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. */ static int ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) { struct ice_pf *pf = ptp_info_to_pf(info); struct timespec64 ts64 = *ts; struct ice_hw *hw = &pf->hw; int err; /* For Vernier mode on E82X, we need to recalibrate after new settime. * Start with marking timestamps as invalid. */ if (ice_get_phy_model(hw) == ICE_PHY_E82X) { err = ice_ptp_clear_phy_offset_ready_e82x(hw); if (err) dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n"); } if (!ice_ptp_lock(hw)) { err = -EBUSY; goto exit; } /* Disable periodic outputs */ ice_ptp_disable_all_perout(pf); err = ice_ptp_write_init(pf, &ts64); ice_ptp_unlock(hw); if (!err) ice_ptp_reset_cached_phctime(pf); /* Reenable periodic outputs */ ice_ptp_enable_all_perout(pf); /* Recalibrate and re-enable timestamp blocks for E822/E823 */ if (ice_get_phy_model(hw) == ICE_PHY_E82X) ice_ptp_restart_all_phy(pf); exit: if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); return err; } return 0; } /** * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) { struct timespec64 now, then; int ret; then = ns_to_timespec64(delta); ret = ice_ptp_gettimex64(info, &now, NULL); if (ret) return ret; now = timespec64_add(now, then); return ice_ptp_settime64(info, (const struct timespec64 *)&now); } /** * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; struct device *dev; int err; dev = ice_pf_to_dev(pf); /* Hardware only supports atomic adjustments using signed 32-bit * integers. For any adjustment outside this range, perform * a non-atomic get->adjust->set flow. */ if (delta > S32_MAX || delta < S32_MIN) { dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); return ice_ptp_adjtime_nonatomic(info, delta); } if (!ice_ptp_lock(hw)) { dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); return -EBUSY; } /* Disable periodic outputs */ ice_ptp_disable_all_perout(pf); err = ice_ptp_write_adj(pf, delta); /* Reenable periodic outputs */ ice_ptp_enable_all_perout(pf); ice_ptp_unlock(hw); if (err) { dev_err(dev, "PTP failed to adjust time, err %d\n", err); return err; } ice_ptp_reset_cached_phctime(pf); return 0; } #ifdef CONFIG_ICE_HWTS /** * ice_ptp_get_syncdevicetime - Get the cross time stamp info * @device: Current device time * @system: System counter value read synchronously with device time * @ctx: Context provided by timekeeping code * * Read device and system (ART) clock simultaneously and return the corrected * clock values in ns. */ static int ice_ptp_get_syncdevicetime(ktime_t *device, struct system_counterval_t *system, void *ctx) { struct ice_pf *pf = (struct ice_pf *)ctx; struct ice_hw *hw = &pf->hw; u32 hh_lock, hh_art_ctl; int i; #define MAX_HH_HW_LOCK_TRIES 5 #define MAX_HH_CTL_LOCK_TRIES 100 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) { /* Get the HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); if (hh_lock & PFHH_SEM_BUSY_M) { usleep_range(10000, 15000); continue; } break; } if (hh_lock & PFHH_SEM_BUSY_M) { dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); return -EBUSY; } /* Program cmd to master timer */ ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); /* Start the ART and device clock sync sequence */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; wr32(hw, GLHH_ART_CTL, hh_art_ctl); for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) { /* Wait for sync to complete */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { udelay(1); continue; } else { u32 hh_ts_lo, hh_ts_hi, tmr_idx; u64 hh_ts; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; /* Read ART time */ hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; system->cycles = hh_ts; system->cs_id = CSID_X86_ART; /* Read Device source clock time */ hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *device = ns_to_ktime(hh_ts); break; } } /* Clear the master timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); /* Release HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); if (i == MAX_HH_CTL_LOCK_TRIES) return -ETIMEDOUT; return 0; } /** * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp * @info: the driver's PTP info structure * @cts: The memory to fill the cross timestamp info * * Capture a cross timestamp between the ART and the device PTP hardware * clock. Fill the cross timestamp information and report it back to the * caller. * * This is only valid for E822 and E823 devices which have support for * generating the cross timestamp via PCIe PTM. * * In order to correctly correlate the ART timestamp back to the TSC time, the * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. */ static int ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info, struct system_device_crosststamp *cts) { struct ice_pf *pf = ptp_info_to_pf(info); return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, pf, NULL, cts); } #endif /* CONFIG_ICE_HWTS */ /** * ice_ptp_get_ts_config - ioctl interface to read the timestamping config * @pf: Board private structure * @ifr: ioctl data * * Copy the timestamping config to user buffer */ int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config; if (pf->ptp.state != ICE_PTP_READY) return -EIO; config = &pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved */ static int ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) { switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; break; case HWTSTAMP_TX_ON: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } /* Immediately update the device timestamping mode */ ice_ptp_restore_timestamp_mode(pf); return 0; } /** * ice_ptp_set_ts_config - ioctl interface to control the timestamping * @pf: Board private structure * @ifr: ioctl data * * Get the user config and store it */ int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (pf->ptp.state != ICE_PTP_READY) return -EAGAIN; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = ice_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* Return the actual configuration set */ config = pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns * @rx_desc: Receive descriptor * @pkt_ctx: Packet context to get the cached time * * The driver receives a notification in the receive descriptor with timestamp. */ u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, const struct ice_pkt_ctx *pkt_ctx) { u64 ts_ns, cached_time; u32 ts_high; if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) return 0; cached_time = READ_ONCE(pkt_ctx->cached_phctime); /* Do not report a timestamp if we don't have a cached PHC time */ if (!cached_time) return 0; /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached * PHC value, rather than accessing the PF. This also allows us to * simply pass the upper 32bits of nanoseconds directly. Calling * ice_ptp_extend_40b_ts is unnecessary as it would just discard these * bits itself. */ ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); return ts_ns; } /** * ice_ptp_setup_pin_cfg - setup PTP pin_config structure * @pf: Board private structure */ static void ice_ptp_setup_pin_cfg(struct ice_pf *pf) { for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) { const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i]; struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i]; const char *name = NULL; if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) name = ice_pin_names[desc->name_idx]; else if (desc->name_idx != GPIO_NA) name = ice_pin_names_nvm[desc->name_idx]; if (name) strscpy(pin->name, name, sizeof(pin->name)); pin->index = i; } pf->ptp.info.pin_config = pf->ptp.pin_desc; } /** * ice_ptp_disable_pins - Disable PTP pins * @pf: pointer to the PF structure * * Disable the OS access to the SMA pins. Called to clear out the OS * indications of pin support when we fail to setup the SMA control register. */ static void ice_ptp_disable_pins(struct ice_pf *pf) { struct ptp_clock_info *info = &pf->ptp.info; dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n"); info->enable = NULL; info->verify = NULL; info->n_pins = 0; info->n_ext_ts = 0; info->n_per_out = 0; } /** * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM * @pf: pointer to the PF structure * @entries: SDP connection section from NVM * @num_entries: number of valid entries in sdp_entries * @pins: PTP pins array to update * * Return: 0 on success, negative error code otherwise. */ static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries, unsigned int num_entries, struct ice_ptp_pin_desc *pins) { unsigned int n_pins = 0; unsigned int i; /* Setup ice_pin_desc array */ for (i = 0; i < ICE_N_PINS_MAX; i++) { pins[i].name_idx = -1; pins[i].gpio[0] = -1; pins[i].gpio[1] = -1; } for (i = 0; i < num_entries; i++) { u16 entry = le16_to_cpu(entries[i]); DECLARE_BITMAP(bitmap, GPIO_NA); unsigned int bitmap_idx; bool dir; u16 gpio; *bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry); dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry); gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry); for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) { unsigned int idx; /* Check if entry's pin bit is valid */ if (bitmap_idx >= NUM_PTP_PINS_NVM && bitmap_idx != GPIO_NA) continue; /* Check if pin already exists */ for (idx = 0; idx < ICE_N_PINS_MAX; idx++) if (pins[idx].name_idx == bitmap_idx) break; if (idx == ICE_N_PINS_MAX) { /* Pin not found, setup its entry and name */ idx = n_pins++; pins[idx].name_idx = bitmap_idx; if (bitmap_idx == GPIO_NA) strscpy(pf->ptp.pin_desc[idx].name, ice_pin_names[gpio], sizeof(pf->ptp.pin_desc[idx] .name)); } /* Setup in/out GPIO number */ pins[idx].gpio[dir] = gpio; } } for (i = 0; i < n_pins; i++) { dev_dbg(ice_pf_to_dev(pf), "NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n", i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]); } pf->ptp.info.n_pins = n_pins; return 0; } /** * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support * @pf: Board private structure * * Assign functions to the PTP capabilities structure for E82X devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for E82X * devices. */ static void ice_ptp_set_funcs_e82x(struct ice_pf *pf) { #ifdef CONFIG_ICE_HWTS if (boot_cpu_has(X86_FEATURE_ART) && boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x; #endif /* CONFIG_ICE_HWTS */ if (ice_is_e825c(&pf->hw)) { pf->ptp.ice_pin_desc = ice_pin_desc_e825c; pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c); } else { pf->ptp.ice_pin_desc = ice_pin_desc_e82x; pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x); } ice_ptp_setup_pin_cfg(pf); } /** * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support * @pf: Board private structure * * Assign functions to the PTP capabiltiies structure for E810 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for E810 * devices. */ static void ice_ptp_set_funcs_e810(struct ice_pf *pf) { __le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE]; struct ice_ptp_pin_desc *desc = NULL; struct ice_ptp *ptp = &pf->ptp; unsigned int num_entries; int err; err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries); if (err) { /* SDP section does not exist in NVM or is corrupted */ if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { ptp->ice_pin_desc = ice_pin_desc_e810_sma; ptp->info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma); } else { pf->ptp.ice_pin_desc = ice_pin_desc_e810; pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810); err = 0; } } else { desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX, sizeof(struct ice_ptp_pin_desc), GFP_KERNEL); if (!desc) goto err; err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc); if (err) goto err; ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc; } ptp->info.pin_config = ptp->pin_desc; ice_ptp_setup_pin_cfg(pf); if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) err = ice_ptp_set_sma_cfg(pf); err: if (err) { devm_kfree(ice_pf_to_dev(pf), desc); ice_ptp_disable_pins(pf); } } /** * ice_ptp_set_caps - Set PTP capabilities * @pf: Board private structure */ static void ice_ptp_set_caps(struct ice_pf *pf) { struct ptp_clock_info *info = &pf->ptp.info; struct device *dev = ice_pf_to_dev(pf); snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", dev_driver_string(dev), dev_name(dev)); info->owner = THIS_MODULE; info->max_adj = 100000000; info->adjtime = ice_ptp_adjtime; info->adjfine = ice_ptp_adjfine; info->gettimex64 = ice_ptp_gettimex64; info->settime64 = ice_ptp_settime64; info->n_per_out = GLTSYN_TGT_H_IDX_MAX; info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX; info->enable = ice_ptp_gpio_enable; info->verify = ice_verify_pin; if (ice_is_e810(&pf->hw)) ice_ptp_set_funcs_e810(pf); else ice_ptp_set_funcs_e82x(pf); } /** * ice_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one. Will return error if it can't create one, but success * if we already have a device. Should be used by ice_ptp_init to create clock * initially, and prevent global resets from creating new clock devices. */ static long ice_ptp_create_clock(struct ice_pf *pf) { struct ptp_clock_info *info; struct device *dev; /* No need to create a clock device if we already have one */ if (pf->ptp.clock) return 0; ice_ptp_set_caps(pf); info = &pf->ptp.info; dev = ice_pf_to_dev(pf); /* Attempt to register the clock before enabling the hardware. */ pf->ptp.clock = ptp_clock_register(info, dev); if (IS_ERR(pf->ptp.clock)) { dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device"); return PTR_ERR(pf->ptp.clock); } return 0; } /** * ice_ptp_request_ts - Request an available Tx timestamp index * @tx: the PTP Tx timestamp tracker to request from * @skb: the SKB to associate with this timestamp request */ s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) { unsigned long flags; u8 idx; spin_lock_irqsave(&tx->lock, flags); /* Check that this tracker is accepting new timestamp requests */ if (!ice_ptp_is_tx_tracker_up(tx)) { spin_unlock_irqrestore(&tx->lock, flags); return -1; } /* Find and set the first available index */ idx = find_next_zero_bit(tx->in_use, tx->len, tx->last_ll_ts_idx_read + 1); if (idx == tx->len) idx = find_first_zero_bit(tx->in_use, tx->len); if (idx < tx->len) { /* We got a valid index that no other thread could have set. Store * a reference to the skb and the start time to allow discarding old * requests. */ set_bit(idx, tx->in_use); clear_bit(idx, tx->stale); tx->tstamps[idx].start = jiffies; tx->tstamps[idx].skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ice_trace(tx_tstamp_request, skb, idx); } spin_unlock_irqrestore(&tx->lock, flags); /* return the appropriate PHY timestamp register index, -1 if no * indexes were available. */ if (idx >= tx->len) return -1; else return idx + tx->offset; } /** * ice_ptp_process_ts - Process the PTP Tx timestamps * @pf: Board private structure * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise. */ enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf) { switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_NONE: /* This device has the clock owner handle timestamps for it */ return ICE_TX_TSTAMP_WORK_DONE; case ICE_PTP_TX_INTERRUPT_SELF: /* This device handles its own timestamps */ return ice_ptp_tx_tstamp(&pf->ptp.port.tx); case ICE_PTP_TX_INTERRUPT_ALL: /* This device handles timestamps for all ports */ return ice_ptp_tx_tstamp_owner(pf); default: WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n", pf->ptp.tx_interrupt_mode); return ICE_TX_TSTAMP_WORK_DONE; } } /** * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt * @pf: Board private structure * * The device PHY issues Tx timestamp interrupts to the driver for processing * timestamp data from the PHY. It will not interrupt again until all * current timestamp data is read. In rare circumstances, it is possible that * the driver fails to read all outstanding data. * * To avoid getting permanently stuck, periodically check if the PHY has * outstanding timestamp data. If so, trigger an interrupt from software to * process this data. */ static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; bool trigger_oicr = false; unsigned int i; if (ice_is_e810(hw)) return; if (!ice_pf_src_tmr_owned(pf)) return; for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) { u64 tstamp_ready; int err; err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (!err && tstamp_ready) { trigger_oicr = true; break; } } if (trigger_oicr) { /* Trigger a software interrupt, to ensure this data * gets processed. */ dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n"); wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } } static void ice_ptp_periodic_work(struct kthread_work *work) { struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); int err; if (pf->ptp.state != ICE_PTP_READY) return; err = ice_ptp_update_cached_phctime(pf); ice_ptp_maybe_trigger_tx_interrupt(pf); /* Run twice a second or reschedule if phc update failed */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, msecs_to_jiffies(err ? 10 : 500)); } /** * ice_ptp_prepare_for_reset - Prepare PTP for reset * @pf: Board private structure * @reset_type: the reset type being performed */ void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_ptp *ptp = &pf->ptp; u8 src_tmr; if (ptp->state != ICE_PTP_READY) return; ptp->state = ICE_PTP_RESETTING; /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); kthread_cancel_delayed_work_sync(&ptp->work); if (reset_type == ICE_RESET_PFR) return; ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); /* Disable periodic outputs */ ice_ptp_disable_all_perout(pf); src_tmr = ice_get_ptp_src_clock_index(&pf->hw); /* Disable source clock */ wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); /* Acquire PHC and system timer to restore after reset */ ptp->reset_time = ktime_get_real_ns(); } /** * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset * @pf: Board private structure * * Companion function for ice_ptp_rebuild() which handles tasks that only the * PTP clock owner instance should perform. */ static int ice_ptp_rebuild_owner(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; struct timespec64 ts; u64 time_diff; int err; err = ice_ptp_init_phc(hw); if (err) return err; /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; return err; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) goto err_unlock; /* Write the initial Time value to PHY and LAN using the cached PHC * time before the reset and time difference between stopping and * starting the clock. */ if (ptp->cached_phc_time) { time_diff = ktime_get_real_ns() - ptp->reset_time; ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); } else { ts = ktime_to_timespec64(ktime_get_real()); } err = ice_ptp_write_init(pf, &ts); if (err) goto err_unlock; /* Release the global hardware lock */ ice_ptp_unlock(hw); /* Flush software tracking of any outstanding timestamps since we're * about to flush the PHY timestamp block. */ ice_ptp_flush_all_tx_tracker(pf); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_cfg_phy_interrupt(pf, true, 1); if (err) return err; ice_ptp_restart_all_phy(pf); } /* Re-enable all periodic outputs and external timestamp events */ ice_ptp_enable_all_perout(pf); ice_ptp_enable_all_extts(pf); return 0; err_unlock: ice_ptp_unlock(hw); return err; } /** * ice_ptp_rebuild - Initialize PTP hardware clock support after reset * @pf: Board private structure * @reset_type: the reset type being performed */ void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_ptp *ptp = &pf->ptp; int err; if (ptp->state == ICE_PTP_READY) { ice_ptp_prepare_for_reset(pf, reset_type); } else if (ptp->state != ICE_PTP_RESETTING) { err = -EINVAL; dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n"); goto err; } if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) { err = ice_ptp_rebuild_owner(pf); if (err) goto err; } ptp->state = ICE_PTP_READY; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); return; err: ptp->state = ICE_PTP_ERROR; dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); } static bool ice_is_primary(struct ice_hw *hw) { return ice_is_e825c(hw) && ice_is_dual(hw) ? !!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true; } static int ice_ptp_setup_adapter(struct ice_pf *pf) { if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw)) return -EPERM; pf->adapter->ctrl_pf = pf; return 0; } static int ice_ptp_setup_pf(struct ice_pf *pf) { struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf); struct ice_ptp *ptp = &pf->ptp; if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP) return -ENODEV; INIT_LIST_HEAD(&ptp->port.list_node); mutex_lock(&pf->adapter->ports.lock); list_add(&ptp->port.list_node, &pf->adapter->ports.ports); mutex_unlock(&pf->adapter->ports.lock); return 0; } static void ice_ptp_cleanup_pf(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) { mutex_lock(&pf->adapter->ports.lock); list_del(&ptp->port.list_node); mutex_unlock(&pf->adapter->ports.lock); } } /** * ice_ptp_clock_index - Get the PTP clock index for this device * @pf: Board private structure * * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock * is associated. */ int ice_ptp_clock_index(struct ice_pf *pf) { struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf); struct ptp_clock *clock; if (!ctrl_ptp) return -1; clock = ctrl_ptp->clock; return clock ? ptp_clock_index(clock) : -1; } /** * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device * @pf: Board private structure * * Setup and initialize a PTP clock device that represents the device hardware * clock. Save the clock index for other functions connected to the same * hardware resource. */ static int ice_ptp_init_owner(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err; err = ice_ptp_init_phc(hw); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", err); return err; } /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err_exit; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) goto err_unlock; ts = ktime_to_timespec64(ktime_get_real()); /* Write the initial Time value to PHY and LAN */ err = ice_ptp_write_init(pf, &ts); if (err) goto err_unlock; /* Release the global hardware lock */ ice_ptp_unlock(hw); /* Configure PHY interrupt settings */ err = ice_ptp_cfg_phy_interrupt(pf, true, 1); if (err) goto err_exit; /* Ensure we have a clock device */ err = ice_ptp_create_clock(pf); if (err) goto err_clk; return 0; err_clk: pf->ptp.clock = NULL; err_exit: return err; err_unlock: ice_ptp_unlock(hw); return err; } /** * ice_ptp_init_work - Initialize PTP work threads * @pf: Board private structure * @ptp: PF PTP structure */ static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) { struct kthread_worker *kworker; /* Initialize work functions */ kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); /* Allocate a kworker for handling work required for the ports * connected to the PTP hardware clock. */ kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(ice_pf_to_dev(pf))); if (IS_ERR(kworker)) return PTR_ERR(kworker); ptp->kworker = kworker; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); return 0; } /** * ice_ptp_init_port - Initialize PTP port structure * @pf: Board private structure * @ptp_port: PTP port structure */ static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) { struct ice_hw *hw = &pf->hw; mutex_init(&ptp_port->ps_lock); switch (ice_get_phy_model(hw)) { case ICE_PHY_ETH56G: return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx, ptp_port->port_num); case ICE_PHY_E810: return ice_ptp_init_tx_e810(pf, &ptp_port->tx); case ICE_PHY_E82X: kthread_init_delayed_work(&ptp_port->ov_work, ice_ptp_wait_for_offsets); return ice_ptp_init_tx_e82x(pf, &ptp_port->tx, ptp_port->port_num); default: return -ENODEV; } } /** * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode * @pf: Board private structure * * Initialize the Tx timestamp interrupt mode for this device. For most device * types, each PF processes the interrupt and manages its own timestamps. For * E822-based devices, only the clock owner processes the timestamps. Other * PFs disable the interrupt and do not process their own timestamps. */ static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf) { switch (ice_get_phy_model(&pf->hw)) { case ICE_PHY_E82X: /* E822 based PHY has the clock owner process the interrupt * for all ports. */ if (ice_pf_src_tmr_owned(pf)) pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL; else pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE; break; default: /* other PHY types handle their own Tx interrupt */ pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF; } } /** * ice_ptp_init - Initialize PTP hardware clock support * @pf: Board private structure * * Set up the device for interacting with the PTP hardware clock for all * functions, both the function that owns the clock hardware, and the * functions connected to the clock hardware. * * The clock owner will allocate and register a ptp_clock with the * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work * items used for asynchronous work such as Tx timestamps and periodic work. */ void ice_ptp_init(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; int err; ptp->state = ICE_PTP_INITIALIZING; ice_ptp_init_hw(hw); ice_ptp_init_tx_interrupt_mode(pf); /* If this function owns the clock hardware, it must allocate and * configure the PTP clock device to represent it. */ if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) { err = ice_ptp_setup_adapter(pf); if (err) goto err_exit; err = ice_ptp_init_owner(pf); if (err) goto err_exit; } err = ice_ptp_setup_pf(pf); if (err) goto err_exit; ptp->port.port_num = hw->pf_id; if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo) ptp->port.port_num = hw->pf_id * 2; err = ice_ptp_init_port(pf, &ptp->port); if (err) goto err_exit; /* Start the PHY timestamping block */ ice_ptp_reset_phy_timestamping(pf); /* Configure initial Tx interrupt settings */ ice_ptp_cfg_tx_interrupt(pf); ptp->state = ICE_PTP_READY; err = ice_ptp_init_work(pf, ptp); if (err) goto err_exit; dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); return; err_exit: /* If we registered a PTP clock, release it */ if (pf->ptp.clock) { ptp_clock_unregister(ptp->clock); pf->ptp.clock = NULL; } ptp->state = ICE_PTP_ERROR; dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); } /** * ice_ptp_release - Disable the driver/HW support and unregister the clock * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the clock */ void ice_ptp_release(struct ice_pf *pf) { if (pf->ptp.state != ICE_PTP_READY) return; pf->ptp.state = ICE_PTP_UNINIT; /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); ice_ptp_cleanup_pf(pf); ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); ice_ptp_disable_all_extts(pf); kthread_cancel_delayed_work_sync(&pf->ptp.work); ice_ptp_port_phy_stop(&pf->ptp.port); mutex_destroy(&pf->ptp.port.ps_lock); if (pf->ptp.kworker) { kthread_destroy_worker(pf->ptp.kworker); pf->ptp.kworker = NULL; } if (!pf->ptp.clock) return; /* Disable periodic outputs */ ice_ptp_disable_all_perout(pf); ptp_clock_unregister(pf->ptp.clock); pf->ptp.clock = NULL; dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); }