// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Admin Function driver * * Copyright (C) 2020 Marvell. */ #include #include "rvu_struct.h" #include "rvu_reg.h" #include "rvu.h" #include "npc.h" #include "rvu_npc_fs.h" #include "rvu_npc_hash.h" static const char * const npc_flow_names[] = { [NPC_DMAC] = "dmac", [NPC_SMAC] = "smac", [NPC_ETYPE] = "ether type", [NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag", [NPC_VLAN_ETYPE_STAG] = "vlan ether type stag", [NPC_OUTER_VID] = "outer vlan id", [NPC_INNER_VID] = "inner vlan id", [NPC_TOS] = "tos", [NPC_IPFRAG_IPV4] = "fragmented IPv4 header ", [NPC_SIP_IPV4] = "ipv4 source ip", [NPC_DIP_IPV4] = "ipv4 destination ip", [NPC_IPFRAG_IPV6] = "fragmented IPv6 header ", [NPC_SIP_IPV6] = "ipv6 source ip", [NPC_DIP_IPV6] = "ipv6 destination ip", [NPC_IPPROTO_TCP] = "ip proto tcp", [NPC_IPPROTO_UDP] = "ip proto udp", [NPC_IPPROTO_SCTP] = "ip proto sctp", [NPC_IPPROTO_ICMP] = "ip proto icmp", [NPC_IPPROTO_ICMP6] = "ip proto icmp6", [NPC_IPPROTO_AH] = "ip proto AH", [NPC_IPPROTO_ESP] = "ip proto ESP", [NPC_SPORT_TCP] = "tcp source port", [NPC_DPORT_TCP] = "tcp destination port", [NPC_SPORT_UDP] = "udp source port", [NPC_DPORT_UDP] = "udp destination port", [NPC_SPORT_SCTP] = "sctp source port", [NPC_DPORT_SCTP] = "sctp destination port", [NPC_LXMB] = "Mcast/Bcast header ", [NPC_IPSEC_SPI] = "SPI ", [NPC_MPLS1_LBTCBOS] = "lse depth 1 label tc bos", [NPC_MPLS1_TTL] = "lse depth 1 ttl", [NPC_MPLS2_LBTCBOS] = "lse depth 2 label tc bos", [NPC_MPLS2_TTL] = "lse depth 2 ttl", [NPC_MPLS3_LBTCBOS] = "lse depth 3 label tc bos", [NPC_MPLS3_TTL] = "lse depth 3 ttl", [NPC_MPLS4_LBTCBOS] = "lse depth 4 label tc bos", [NPC_MPLS4_TTL] = "lse depth 4", [NPC_TYPE_ICMP] = "icmp type", [NPC_CODE_ICMP] = "icmp code", [NPC_TCP_FLAGS] = "tcp flags", [NPC_UNKNOWN] = "unknown", }; bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; u64 mcam_features; u64 unsupported; mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features; unsupported = (mcam_features ^ features) & ~mcam_features; /* Return false if at least one of the input flows is not extracted */ return !unsupported; } const char *npc_get_field_name(u8 hdr) { if (hdr >= ARRAY_SIZE(npc_flow_names)) return npc_flow_names[NPC_UNKNOWN]; return npc_flow_names[hdr]; } /* Compute keyword masks and figure out the number of keywords a field * spans in the key. */ static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type, u8 nr_bits, int start_kwi, int offset, u8 intf) { struct npc_key_field *field = &mcam->rx_key_fields[type]; u8 bits_in_kw; int max_kwi; if (mcam->banks_per_entry == 1) max_kwi = 1; /* NPC_MCAM_KEY_X1 */ else if (mcam->banks_per_entry == 2) max_kwi = 3; /* NPC_MCAM_KEY_X2 */ else max_kwi = 6; /* NPC_MCAM_KEY_X4 */ if (is_npc_intf_tx(intf)) field = &mcam->tx_key_fields[type]; if (offset + nr_bits <= 64) { /* one KW only */ if (start_kwi > max_kwi) return; field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0) << offset; field->nr_kws = 1; } else if (offset + nr_bits > 64 && offset + nr_bits <= 128) { /* two KWs */ if (start_kwi + 1 > max_kwi) return; /* first KW mask */ bits_in_kw = 64 - offset; field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) << offset; /* second KW mask i.e. mask for rest of bits */ bits_in_kw = nr_bits + offset - 64; field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0); field->nr_kws = 2; } else { /* three KWs */ if (start_kwi + 2 > max_kwi) return; /* first KW mask */ bits_in_kw = 64 - offset; field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) << offset; /* second KW mask */ field->kw_mask[start_kwi + 1] = ~0ULL; /* third KW mask i.e. mask for rest of bits */ bits_in_kw = nr_bits + offset - 128; field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0); field->nr_kws = 3; } } /* Helper function to figure out whether field exists in the key */ static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; struct npc_key_field *input; input = &mcam->rx_key_fields[type]; if (is_npc_intf_tx(intf)) input = &mcam->tx_key_fields[type]; return input->nr_kws > 0; } static bool npc_is_same(struct npc_key_field *input, struct npc_key_field *field) { return memcmp(&input->layer_mdata, &field->layer_mdata, sizeof(struct npc_layer_mdata)) == 0; } static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type, u64 cfg, u8 lid, u8 lt, u8 intf) { struct npc_key_field *input = &mcam->rx_key_fields[type]; if (is_npc_intf_tx(intf)) input = &mcam->tx_key_fields[type]; input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg); input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1; input->layer_mdata.ltype = lt; input->layer_mdata.lid = lid; } static bool npc_check_overlap_fields(struct npc_key_field *input1, struct npc_key_field *input2) { int kwi; /* Fields with same layer id and different ltypes are mutually * exclusive hence they can be overlapped */ if (input1->layer_mdata.lid == input2->layer_mdata.lid && input1->layer_mdata.ltype != input2->layer_mdata.ltype) return false; for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) { if (input1->kw_mask[kwi] & input2->kw_mask[kwi]) return true; } return false; } /* Helper function to check whether given field overlaps with any other fields * in the key. Due to limitations on key size and the key extraction profile in * use higher layers can overwrite lower layer's header fields. Hence overlap * needs to be checked. */ static bool npc_check_overlap(struct rvu *rvu, int blkaddr, enum key_fields type, u8 start_lid, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; struct npc_key_field *dummy, *input; int start_kwi, offset; u8 nr_bits, lid, lt, ld; u64 cfg; dummy = &mcam->rx_key_fields[NPC_UNKNOWN]; input = &mcam->rx_key_fields[type]; if (is_npc_intf_tx(intf)) { dummy = &mcam->tx_key_fields[NPC_UNKNOWN]; input = &mcam->tx_key_fields[type]; } for (lid = start_lid; lid < NPC_MAX_LID; lid++) { for (lt = 0; lt < NPC_MAX_LT; lt++) { for (ld = 0; ld < NPC_MAX_LD; ld++) { cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_LIDX_LTX_LDX_CFG (intf, lid, lt, ld)); if (!FIELD_GET(NPC_LDATA_EN, cfg)) continue; memset(dummy, 0, sizeof(struct npc_key_field)); npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg, lid, lt, intf); /* exclude input */ if (npc_is_same(input, dummy)) continue; start_kwi = dummy->layer_mdata.key / 8; offset = (dummy->layer_mdata.key * 8) % 64; nr_bits = dummy->layer_mdata.len * 8; /* form KW masks */ npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits, start_kwi, offset, intf); /* check any input field bits falls in any * other field bits. */ if (npc_check_overlap_fields(dummy, input)) return true; } } } return false; } static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type, u8 intf) { if (!npc_is_field_present(rvu, type, intf) || npc_check_overlap(rvu, blkaddr, type, 0, intf)) return false; return true; } static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number, u8 key_nibble, u8 intf) { u8 offset = (key_nibble * 4) % 64; /* offset within key word */ u8 kwi = (key_nibble * 4) / 64; /* which word in key */ u8 nr_bits = 4; /* bits in a nibble */ u8 type; switch (bit_number) { case 40 ... 43: type = NPC_EXACT_RESULT; break; default: return; } npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); } static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number, u8 key_nibble, u8 intf) { u8 offset = (key_nibble * 4) % 64; /* offset within key word */ u8 kwi = (key_nibble * 4) / 64; /* which word in key */ u8 nr_bits = 4; /* bits in a nibble */ u8 type; switch (bit_number) { case 0 ... 2: type = NPC_CHAN; break; case 3: type = NPC_ERRLEV; break; case 4 ... 5: type = NPC_ERRCODE; break; case 6: type = NPC_LXMB; break; /* check for LTYPE only as of now */ case 9: type = NPC_LA; break; case 12: type = NPC_LB; break; case 15: type = NPC_LC; break; case 18: type = NPC_LD; break; case 21: type = NPC_LE; break; case 24: type = NPC_LF; break; case 27: type = NPC_LG; break; case 30: type = NPC_LH; break; default: return; } npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); } static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; struct npc_key_field *key_fields; /* Ether type can come from three layers * (ethernet, single tagged, double tagged) */ struct npc_key_field *etype_ether; struct npc_key_field *etype_tag1; struct npc_key_field *etype_tag2; /* Outer VLAN TCI can come from two layers * (single tagged, double tagged) */ struct npc_key_field *vlan_tag1; struct npc_key_field *vlan_tag2; /* Inner VLAN TCI for double tagged frames */ struct npc_key_field *vlan_tag3; u64 *features; u8 start_lid; int i; key_fields = mcam->rx_key_fields; features = &mcam->rx_features; if (is_npc_intf_tx(intf)) { key_fields = mcam->tx_key_fields; features = &mcam->tx_features; } /* Handle header fields which can come from multiple layers like * etype, outer vlan tci. These fields should have same position in * the key otherwise to install a mcam rule more than one entry is * needed which complicates mcam space management. */ etype_ether = &key_fields[NPC_ETYPE_ETHER]; etype_tag1 = &key_fields[NPC_ETYPE_TAG1]; etype_tag2 = &key_fields[NPC_ETYPE_TAG2]; vlan_tag1 = &key_fields[NPC_VLAN_TAG1]; vlan_tag2 = &key_fields[NPC_VLAN_TAG2]; vlan_tag3 = &key_fields[NPC_VLAN_TAG3]; /* if key profile programmed does not extract Ethertype at all */ if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) { dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n"); goto vlan_tci; } /* if key profile programmed extracts Ethertype from one layer */ if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) key_fields[NPC_ETYPE] = *etype_ether; if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws) key_fields[NPC_ETYPE] = *etype_tag1; if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws) key_fields[NPC_ETYPE] = *etype_tag2; /* if key profile programmed extracts Ethertype from multiple layers */ if (etype_ether->nr_kws && etype_tag1->nr_kws) { for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) { dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n"); goto vlan_tci; } } key_fields[NPC_ETYPE] = *etype_tag1; } if (etype_ether->nr_kws && etype_tag2->nr_kws) { for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) { dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n"); goto vlan_tci; } } key_fields[NPC_ETYPE] = *etype_tag2; } if (etype_tag1->nr_kws && etype_tag2->nr_kws) { for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) { dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n"); goto vlan_tci; } } key_fields[NPC_ETYPE] = *etype_tag2; } /* check none of higher layers overwrite Ethertype */ start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1; if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) { dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n"); goto vlan_tci; } *features |= BIT_ULL(NPC_ETYPE); vlan_tci: /* if key profile does not extract outer vlan tci at all */ if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) { dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n"); goto done; } /* if key profile extracts outer vlan tci from one layer */ if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws) key_fields[NPC_OUTER_VID] = *vlan_tag1; if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws) key_fields[NPC_OUTER_VID] = *vlan_tag2; /* if key profile extracts outer vlan tci from multiple layers */ if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) { for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) { dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n"); goto done; } } key_fields[NPC_OUTER_VID] = *vlan_tag2; } /* check none of higher layers overwrite outer vlan tci */ start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1; if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) { dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n"); goto done; } *features |= BIT_ULL(NPC_OUTER_VID); /* If key profile extracts inner vlan tci */ if (vlan_tag3->nr_kws) { key_fields[NPC_INNER_VID] = *vlan_tag3; *features |= BIT_ULL(NPC_INNER_VID); } done: return; } static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid, u8 lt, u64 cfg, u8 intf) { struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; struct npc_mcam *mcam = &rvu->hw->mcam; u8 hdr, key, nr_bytes, bit_offset; u8 la_ltype, la_start; /* starting KW index and starting bit position */ int start_kwi, offset; nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1; hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); key = FIELD_GET(NPC_KEY_OFFSET, cfg); /* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding * ethernet header. */ if (is_npc_intf_tx(intf)) { la_ltype = NPC_LT_LA_IH_NIX_ETHER; la_start = 8; } else { la_ltype = NPC_LT_LA_ETHER; la_start = 0; } #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen) \ do { \ start_kwi = key / 8; \ offset = (key * 8) % 64; \ if (lid == (hlid) && lt == (hlt)) { \ if ((hstart) >= hdr && \ ((hstart) + (hlen)) <= (hdr + nr_bytes)) { \ bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \ npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \ offset += bit_offset; \ start_kwi += offset / 64; \ offset %= 64; \ npc_set_kw_masks(mcam, (name), (hlen) * 8, \ start_kwi, offset, intf); \ } \ } \ } while (0) /* List LID, LTYPE, start offset from layer and length(in bytes) of * packet header fields below. * Example: Source IP is 4 bytes and starts at 12th byte of IP header */ NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1); NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1); NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4); NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4); NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1); if (rvu->hw->cap.npc_hash_extract) { if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0]) NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4); else NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16); if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1]) NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4); else NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16); } else { NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16); NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16); } NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2); NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2); NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2); NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2); NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2); NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2); NPC_SCAN_HDR(NPC_TYPE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 0, 1); NPC_SCAN_HDR(NPC_CODE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 1, 1); NPC_SCAN_HDR(NPC_TCP_FLAGS, NPC_LID_LD, NPC_LT_LD_TCP, 12, 2); NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2); NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2); NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2); NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2); NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2); NPC_SCAN_HDR(NPC_VLAN_TAG3, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6, 2); NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6); NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LD, NPC_LT_LD_AH, 4, 4); NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LE, NPC_LT_LE_ESP, 0, 4); NPC_SCAN_HDR(NPC_MPLS1_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 0, 3); NPC_SCAN_HDR(NPC_MPLS1_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 3, 1); NPC_SCAN_HDR(NPC_MPLS2_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 4, 3); NPC_SCAN_HDR(NPC_MPLS2_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 7, 1); NPC_SCAN_HDR(NPC_MPLS3_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 8, 3); NPC_SCAN_HDR(NPC_MPLS3_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 11, 1); NPC_SCAN_HDR(NPC_MPLS4_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 12, 3); NPC_SCAN_HDR(NPC_MPLS4_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 15, 1); /* SMAC follows the DMAC(which is 6 bytes) */ NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6); /* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */ NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2); } static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; u64 *features = &mcam->rx_features; u64 proto_flags; int hdr; if (is_npc_intf_tx(intf)) features = &mcam->tx_features; for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) { if (npc_check_field(rvu, blkaddr, hdr, intf)) *features |= BIT_ULL(hdr); } proto_flags = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) | BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) | BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) | BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) | BIT_ULL(NPC_TYPE_ICMP) | BIT_ULL(NPC_CODE_ICMP) | BIT_ULL(NPC_TCP_FLAGS); /* for tcp/udp/sctp corresponding layer type should be in the key */ if (*features & proto_flags) { if (!npc_check_field(rvu, blkaddr, NPC_LD, intf)) *features &= ~proto_flags; else *features |= BIT_ULL(NPC_IPPROTO_TCP) | BIT_ULL(NPC_IPPROTO_UDP) | BIT_ULL(NPC_IPPROTO_SCTP) | BIT_ULL(NPC_IPPROTO_ICMP); } /* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */ if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) { *features |= BIT_ULL(NPC_IPPROTO_AH); *features |= BIT_ULL(NPC_IPPROTO_ICMP); *features |= BIT_ULL(NPC_IPPROTO_ICMP6); } /* for ESP, check if corresponding layer type is present in the key */ if (npc_check_field(rvu, blkaddr, NPC_LE, intf)) *features |= BIT_ULL(NPC_IPPROTO_ESP); /* for vlan corresponding layer type should be in the key */ if (*features & BIT_ULL(NPC_OUTER_VID)) if (!npc_check_field(rvu, blkaddr, NPC_LB, intf)) *features &= ~BIT_ULL(NPC_OUTER_VID); /* Set SPI flag only if AH/ESP and IPSEC_SPI are in the key */ if (npc_check_field(rvu, blkaddr, NPC_IPSEC_SPI, intf) && (*features & (BIT_ULL(NPC_IPPROTO_ESP) | BIT_ULL(NPC_IPPROTO_AH)))) *features |= BIT_ULL(NPC_IPSEC_SPI); /* for vlan ethertypes corresponding layer type should be in the key */ if (npc_check_field(rvu, blkaddr, NPC_LB, intf)) *features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) | BIT_ULL(NPC_VLAN_ETYPE_STAG); /* for L2M/L2B/L3M/L3B, check if the type is present in the key */ if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf)) *features |= BIT_ULL(NPC_LXMB); for (hdr = NPC_MPLS1_LBTCBOS; hdr <= NPC_MPLS4_TTL; hdr++) { if (npc_check_field(rvu, blkaddr, hdr, intf)) *features |= BIT_ULL(hdr); } } /* Scan key extraction profile and record how fields of our interest * fill the key structure. Also verify Channel and DMAC exists in * key and not overwritten by other header fields. */ static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; u8 lid, lt, ld, bitnr; u64 cfg, masked_cfg; u8 key_nibble = 0; /* Scan and note how parse result is going to be in key. * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from * parse result in the key. The enabled nibbles from parse result * will be concatenated in key. */ cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf)); masked_cfg = cfg & NPC_PARSE_NIBBLE; for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) { npc_scan_parse_result(mcam, bitnr, key_nibble, intf); key_nibble++; } /* Ignore exact match bits for mcam entries except the first rule * which is drop on hit. This first rule is configured explitcitly by * exact match code. */ masked_cfg = cfg & NPC_EXACT_NIBBLE; bitnr = NPC_EXACT_NIBBLE_START; for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) { npc_scan_exact_result(mcam, bitnr, key_nibble, intf); key_nibble++; } /* Scan and note how layer data is going to be in key */ for (lid = 0; lid < NPC_MAX_LID; lid++) { for (lt = 0; lt < NPC_MAX_LT; lt++) { for (ld = 0; ld < NPC_MAX_LD; ld++) { cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_LIDX_LTX_LDX_CFG (intf, lid, lt, ld)); if (!FIELD_GET(NPC_LDATA_EN, cfg)) continue; npc_scan_ldata(rvu, blkaddr, lid, lt, cfg, intf); } } } return 0; } static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr) { int err; err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX); if (err) return err; err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX); if (err) return err; /* Channel is mandatory */ if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) { dev_err(rvu->dev, "Channel not present in Key\n"); return -EINVAL; } /* check that none of the fields overwrite channel */ if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) { dev_err(rvu->dev, "Channel cannot be overwritten\n"); return -EINVAL; } npc_set_features(rvu, blkaddr, NIX_INTF_TX); npc_set_features(rvu, blkaddr, NIX_INTF_RX); npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX); npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX); return 0; } int npc_flow_steering_init(struct rvu *rvu, int blkaddr) { struct npc_mcam *mcam = &rvu->hw->mcam; INIT_LIST_HEAD(&mcam->mcam_rules); return npc_scan_verify_kex(rvu, blkaddr); } static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; u64 *mcam_features = &mcam->rx_features; u64 unsupported; u8 bit; if (is_npc_intf_tx(intf)) mcam_features = &mcam->tx_features; unsupported = (*mcam_features ^ features) & ~(*mcam_features); if (unsupported) { dev_warn(rvu->dev, "Unsupported flow(s):\n"); for_each_set_bit(bit, (unsigned long *)&unsupported, 64) dev_warn(rvu->dev, "%s ", npc_get_field_name(bit)); return -EOPNOTSUPP; } return 0; } /* npc_update_entry - Based on the masks generated during * the key scanning, updates the given entry with value and * masks for the field of interest. Maximum 16 bytes of a packet * header can be extracted by HW hence lo and hi are sufficient. * When field bytes are less than or equal to 8 then hi should be * 0 for value and mask. * * If exact match of value is required then mask should be all 1's. * If any bits in mask are 0 then corresponding bits in value are * dont care. */ void npc_update_entry(struct rvu *rvu, enum key_fields type, struct mcam_entry *entry, u64 val_lo, u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf) { struct npc_mcam *mcam = &rvu->hw->mcam; struct mcam_entry dummy = { {0} }; struct npc_key_field *field; u64 kw1, kw2, kw3; u8 shift; int i; field = &mcam->rx_key_fields[type]; if (is_npc_intf_tx(intf)) field = &mcam->tx_key_fields[type]; if (!field->nr_kws) return; for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (!field->kw_mask[i]) continue; /* place key value in kw[x] */ shift = __ffs64(field->kw_mask[i]); /* update entry value */ kw1 = (val_lo << shift) & field->kw_mask[i]; dummy.kw[i] = kw1; /* update entry mask */ kw1 = (mask_lo << shift) & field->kw_mask[i]; dummy.kw_mask[i] = kw1; if (field->nr_kws == 1) break; /* place remaining bits of key value in kw[x + 1] */ if (field->nr_kws == 2) { /* update entry value */ kw2 = shift ? val_lo >> (64 - shift) : 0; kw2 |= (val_hi << shift); kw2 &= field->kw_mask[i + 1]; dummy.kw[i + 1] = kw2; /* update entry mask */ kw2 = shift ? mask_lo >> (64 - shift) : 0; kw2 |= (mask_hi << shift); kw2 &= field->kw_mask[i + 1]; dummy.kw_mask[i + 1] = kw2; break; } /* place remaining bits of key value in kw[x + 1], kw[x + 2] */ if (field->nr_kws == 3) { /* update entry value */ kw2 = shift ? val_lo >> (64 - shift) : 0; kw2 |= (val_hi << shift); kw2 &= field->kw_mask[i + 1]; kw3 = shift ? val_hi >> (64 - shift) : 0; kw3 &= field->kw_mask[i + 2]; dummy.kw[i + 1] = kw2; dummy.kw[i + 2] = kw3; /* update entry mask */ kw2 = shift ? mask_lo >> (64 - shift) : 0; kw2 |= (mask_hi << shift); kw2 &= field->kw_mask[i + 1]; kw3 = shift ? mask_hi >> (64 - shift) : 0; kw3 &= field->kw_mask[i + 2]; dummy.kw_mask[i + 1] = kw2; dummy.kw_mask[i + 2] = kw3; break; } } /* dummy is ready with values and masks for given key * field now clear and update input entry with those */ for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { if (!field->kw_mask[i]) continue; entry->kw[i] &= ~field->kw_mask[i]; entry->kw_mask[i] &= ~field->kw_mask[i]; entry->kw[i] |= dummy.kw[i]; entry->kw_mask[i] |= dummy.kw_mask[i]; } } static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry, u64 features, struct flow_msg *pkt, struct flow_msg *mask, struct rvu_npc_mcam_rule *output, u8 intf) { u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS]; u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS]; struct flow_msg *opkt = &output->packet; struct flow_msg *omask = &output->mask; u64 mask_lo, mask_hi; u64 val_lo, val_hi; /* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet * values to be programmed in MCAM should as below: * val_high: 0xfe80000000000000 * val_low: 0x2c6863fffe5e2d0a */ if (features & BIT_ULL(NPC_SIP_IPV6)) { be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS); be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS); mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1]; mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3]; val_hi = (u64)src_ip[0] << 32 | src_ip[1]; val_lo = (u64)src_ip[2] << 32 | src_ip[3]; npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi, mask_lo, mask_hi, intf); memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src)); memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src)); } if (features & BIT_ULL(NPC_DIP_IPV6)) { be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS); be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS); mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1]; mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3]; val_hi = (u64)dst_ip[0] << 32 | dst_ip[1]; val_lo = (u64)dst_ip[2] << 32 | dst_ip[3]; npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi, mask_lo, mask_hi, intf); memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst)); memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst)); } } static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry, u64 features, u8 intf) { bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG)); bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG)); bool vid = !!(features & BIT_ULL(NPC_OUTER_VID)); /* If only VLAN id is given then always match outer VLAN id */ if (vid && !ctag && !stag) { npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0, NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf); return; } if (ctag) npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0, ~0ULL, 0, intf); if (stag) npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0, ~0ULL, 0, intf); } static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry, u64 features, struct flow_msg *pkt, struct flow_msg *mask, struct rvu_npc_mcam_rule *output, u8 intf, int blkaddr) { u64 dmac_mask = ether_addr_to_u64(mask->dmac); u64 smac_mask = ether_addr_to_u64(mask->smac); u64 dmac_val = ether_addr_to_u64(pkt->dmac); u64 smac_val = ether_addr_to_u64(pkt->smac); struct flow_msg *opkt = &output->packet; struct flow_msg *omask = &output->mask; if (!features) return; /* For tcp/udp/sctp LTYPE should be present in entry */ if (features & BIT_ULL(NPC_IPPROTO_TCP)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP, 0, ~0ULL, 0, intf); if (features & BIT_ULL(NPC_IPPROTO_UDP)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP, 0, ~0ULL, 0, intf); if (features & BIT_ULL(NPC_IPPROTO_SCTP)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP, 0, ~0ULL, 0, intf); if (features & BIT_ULL(NPC_IPPROTO_ICMP)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP, 0, ~0ULL, 0, intf); if (features & BIT_ULL(NPC_IPPROTO_ICMP6)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6, 0, ~0ULL, 0, intf); /* For AH, LTYPE should be present in entry */ if (features & BIT_ULL(NPC_IPPROTO_AH)) npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH, 0, ~0ULL, 0, intf); /* For ESP, LTYPE should be present in entry */ if (features & BIT_ULL(NPC_IPPROTO_ESP)) npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP, 0, ~0ULL, 0, intf); if (features & BIT_ULL(NPC_LXMB)) { output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1; npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0, output->lxmb, 0, intf); } #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi) \ do { \ if (features & BIT_ULL((field))) { \ npc_update_entry(rvu, (field), entry, (val_lo), (val_hi), \ (mask_lo), (mask_hi), intf); \ memcpy(&opkt->member, &pkt->member, sizeof(pkt->member)); \ memcpy(&omask->member, &mask->member, sizeof(mask->member)); \ } \ } while (0) NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0); NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0); NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0, ntohs(mask->etype), 0); NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0); NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0, mask->ip_flag, 0); NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0, ntohl(mask->ip4src), 0); NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0, ntohl(mask->ip4dst), 0); NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0, ntohs(mask->sport), 0); NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0, ntohs(mask->sport), 0); NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0, ntohs(mask->dport), 0); NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0, ntohs(mask->dport), 0); NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0, ntohs(mask->sport), 0); NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0, ntohs(mask->dport), 0); NPC_WRITE_FLOW(NPC_TYPE_ICMP, icmp_type, pkt->icmp_type, 0, mask->icmp_type, 0); NPC_WRITE_FLOW(NPC_CODE_ICMP, icmp_code, pkt->icmp_code, 0, mask->icmp_code, 0); NPC_WRITE_FLOW(NPC_TCP_FLAGS, tcp_flags, ntohs(pkt->tcp_flags), 0, ntohs(mask->tcp_flags), 0); NPC_WRITE_FLOW(NPC_IPSEC_SPI, spi, ntohl(pkt->spi), 0, ntohl(mask->spi), 0); NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0, ntohs(mask->vlan_tci), 0); NPC_WRITE_FLOW(NPC_INNER_VID, vlan_itci, ntohs(pkt->vlan_itci), 0, ntohs(mask->vlan_itci), 0); NPC_WRITE_FLOW(NPC_MPLS1_LBTCBOS, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, pkt->mpls_lse[0]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, mask->mpls_lse[0]), 0); NPC_WRITE_FLOW(NPC_MPLS1_TTL, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, pkt->mpls_lse[0]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, mask->mpls_lse[0]), 0); NPC_WRITE_FLOW(NPC_MPLS2_LBTCBOS, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, pkt->mpls_lse[1]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, mask->mpls_lse[1]), 0); NPC_WRITE_FLOW(NPC_MPLS2_TTL, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, pkt->mpls_lse[1]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, mask->mpls_lse[1]), 0); NPC_WRITE_FLOW(NPC_MPLS3_LBTCBOS, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, pkt->mpls_lse[2]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, mask->mpls_lse[2]), 0); NPC_WRITE_FLOW(NPC_MPLS3_TTL, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, pkt->mpls_lse[2]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, mask->mpls_lse[2]), 0); NPC_WRITE_FLOW(NPC_MPLS4_LBTCBOS, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, pkt->mpls_lse[3]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL, mask->mpls_lse[3]), 0); NPC_WRITE_FLOW(NPC_MPLS4_TTL, mpls_lse, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, pkt->mpls_lse[3]), 0, FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL, mask->mpls_lse[3]), 0); NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0, mask->next_header, 0); npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf); npc_update_vlan_features(rvu, entry, features, intf); npc_update_field_hash(rvu, intf, entry, blkaddr, features, pkt, mask, opkt, omask); } static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry) { struct rvu_npc_mcam_rule *iter; mutex_lock(&mcam->lock); list_for_each_entry(iter, &mcam->mcam_rules, list) { if (iter->entry == entry) { mutex_unlock(&mcam->lock); return iter; } } mutex_unlock(&mcam->lock); return NULL; } static void rvu_mcam_add_rule(struct npc_mcam *mcam, struct rvu_npc_mcam_rule *rule) { struct list_head *head = &mcam->mcam_rules; struct rvu_npc_mcam_rule *iter; mutex_lock(&mcam->lock); list_for_each_entry(iter, &mcam->mcam_rules, list) { if (iter->entry > rule->entry) break; head = &iter->list; } list_add(&rule->list, head); mutex_unlock(&mcam->lock); } static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc, struct rvu_npc_mcam_rule *rule) { struct npc_mcam *mcam = &rvu->hw->mcam; mutex_lock(&mcam->lock); __rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule); mutex_unlock(&mcam->lock); } static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc, struct rvu_npc_mcam_rule *rule, struct npc_install_flow_rsp *rsp) { struct npc_mcam *mcam = &rvu->hw->mcam; mutex_lock(&mcam->lock); __rvu_mcam_add_counter_to_rule(rvu, pcifunc, rule, rsp); mutex_unlock(&mcam->lock); } static int npc_mcast_update_action_index(struct rvu *rvu, struct npc_install_flow_req *req, u64 op, void *action) { int mce_index; /* If a PF/VF is installing a multicast rule then it is expected * that the PF/VF should have created a group for the multicast/mirror * list. Otherwise reject the configuration. * During this scenario, req->index is set as multicast/mirror * group index. */ if (req->hdr.pcifunc && (op == NIX_RX_ACTIONOP_MCAST || op == NIX_TX_ACTIONOP_MCAST)) { mce_index = rvu_nix_mcast_get_mce_index(rvu, req->hdr.pcifunc, req->index); if (mce_index < 0) return mce_index; if (op == NIX_RX_ACTIONOP_MCAST) ((struct nix_rx_action *)action)->index = mce_index; else ((struct nix_tx_action *)action)->index = mce_index; } return 0; } static int npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, struct mcam_entry *entry, struct npc_install_flow_req *req, u16 target, bool pf_set_vfs_mac) { struct rvu_switch *rswitch = &rvu->rswitch; struct nix_rx_action action; int ret; if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac) req->chan_mask = 0x0; /* Do not care channel */ npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask, 0, NIX_INTF_RX); *(u64 *)&action = 0x00; action.pf_func = target; action.op = req->op; action.index = req->index; ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action); if (ret) return ret; action.match_id = req->match_id; action.flow_key_alg = req->flow_key_alg; if (req->op == NIX_RX_ACTION_DEFAULT) { if (pfvf->def_ucast_rule) { action = pfvf->def_ucast_rule->rx_action; } else { /* For profiles which do not extract DMAC, the default * unicast entry is unused. Hence modify action for the * requests which use same action as default unicast * entry */ *(u64 *)&action = 0; action.pf_func = target; action.op = NIX_RX_ACTIONOP_UCAST; } if (req->match_id) action.match_id = req->match_id; } entry->action = *(u64 *)&action; /* VTAG0 starts at 0th byte of LID_B. * VTAG1 starts at 4th byte of LID_B. */ entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) | FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) | FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) | FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) | FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) | FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) | FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) | FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4); return 0; } static int npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, struct mcam_entry *entry, struct npc_install_flow_req *req, u16 target) { struct nix_tx_action action; u64 mask = ~0ULL; int ret; /* If AF is installing then do not care about * PF_FUNC in Send Descriptor */ if (is_pffunc_af(req->hdr.pcifunc)) mask = 0; npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target), 0, mask, 0, NIX_INTF_TX); *(u64 *)&action = 0x00; action.op = req->op; action.index = req->index; ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action); if (ret) return ret; action.match_id = req->match_id; entry->action = *(u64 *)&action; /* VTAG0 starts at 0th byte of LID_B. * VTAG1 starts at 4th byte of LID_B. */ entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) | FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) | FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) | FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) | FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) | FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) | FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) | FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24); return 0; } static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target, int nixlf, struct rvu_pfvf *pfvf, struct npc_install_flow_req *req, struct npc_install_flow_rsp *rsp, bool enable, bool pf_set_vfs_mac) { struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule; u64 features, installed_features, missing_features = 0; struct npc_mcam_write_entry_req write_req = { 0 }; struct npc_mcam *mcam = &rvu->hw->mcam; struct rvu_npc_mcam_rule dummy = { 0 }; struct rvu_npc_mcam_rule *rule; u16 owner = req->hdr.pcifunc; struct msg_rsp write_rsp; struct mcam_entry *entry; bool new = false; u16 entry_index; int err; installed_features = req->features; features = req->features; entry = &write_req.entry_data; entry_index = req->entry; npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy, req->intf, blkaddr); if (is_npc_intf_rx(req->intf)) { err = npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac); if (err) return err; } else { err = npc_update_tx_entry(rvu, pfvf, entry, req, target); if (err) return err; } /* Default unicast rules do not exist for TX */ if (is_npc_intf_tx(req->intf)) goto find_rule; if (req->default_rule) { entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf, NIXLF_UCAST_ENTRY); enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index); } /* update mcam entry with default unicast rule attributes */ if (def_ucast_rule && (req->default_rule && req->append)) { missing_features = (def_ucast_rule->features ^ features) & def_ucast_rule->features; if (missing_features) npc_update_flow(rvu, entry, missing_features, &def_ucast_rule->packet, &def_ucast_rule->mask, &dummy, req->intf, blkaddr); installed_features = req->features | missing_features; } find_rule: rule = rvu_mcam_find_rule(mcam, entry_index); if (!rule) { rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return -ENOMEM; new = true; } /* allocate new counter if rule has no counter */ if (!req->default_rule && req->set_cntr && !rule->has_cntr) rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp); /* if user wants to delete an existing counter for a rule then * free the counter */ if (!req->set_cntr && rule->has_cntr) rvu_mcam_remove_counter_from_rule(rvu, owner, rule); write_req.hdr.pcifunc = owner; /* AF owns the default rules so change the owner just to relax * the checks in rvu_mbox_handler_npc_mcam_write_entry */ if (req->default_rule) write_req.hdr.pcifunc = 0; write_req.entry = entry_index; write_req.intf = req->intf; write_req.enable_entry = (u8)enable; /* if counter is available then clear and use it */ if (req->set_cntr && rule->has_cntr) { rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), req->cntr_val); write_req.set_cntr = 1; write_req.cntr = rule->cntr; } /* update rule */ memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet)); memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask)); rule->entry = entry_index; memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action)); if (is_npc_intf_tx(req->intf)) memcpy(&rule->tx_action, &entry->action, sizeof(struct nix_tx_action)); rule->vtag_action = entry->vtag_action; rule->features = installed_features; rule->default_rule = req->default_rule; rule->owner = owner; rule->enable = enable; rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK; rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK; rule->chan &= rule->chan_mask; rule->lxmb = dummy.lxmb; if (is_npc_intf_tx(req->intf)) rule->intf = pfvf->nix_tx_intf; else rule->intf = pfvf->nix_rx_intf; if (new) rvu_mcam_add_rule(mcam, rule); if (req->default_rule) pfvf->def_ucast_rule = rule; /* write to mcam entry registers */ err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &write_rsp); if (err) { rvu_mcam_remove_counter_from_rule(rvu, owner, rule); if (new) { list_del(&rule->list); kfree(rule); } return err; } /* VF's MAC address is being changed via PF */ if (pf_set_vfs_mac) { ether_addr_copy(pfvf->default_mac, req->packet.dmac); ether_addr_copy(pfvf->mac_addr, req->packet.dmac); set_bit(PF_SET_VF_MAC, &pfvf->flags); } if (test_bit(PF_SET_VF_CFG, &pfvf->flags) && req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7) rule->vfvlan_cfg = true; if (is_npc_intf_rx(req->intf) && req->match_id && (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS)) return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc, req->index, req->match_id); if (owner && req->op == NIX_RX_ACTIONOP_MCAST) return rvu_nix_mcast_update_mcam_entry(rvu, req->hdr.pcifunc, req->index, entry_index); return 0; } int rvu_mbox_handler_npc_install_flow(struct rvu *rvu, struct npc_install_flow_req *req, struct npc_install_flow_rsp *rsp) { bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK); bool from_rep_dev = !!is_rep_dev(rvu, req->hdr.pcifunc); struct rvu_switch *rswitch = &rvu->rswitch; int blkaddr, nixlf, err; struct rvu_pfvf *pfvf; bool pf_set_vfs_mac = false; bool enable = true; u16 target; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr < 0) { dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); return NPC_MCAM_INVALID_REQ; } if (!is_npc_interface_valid(rvu, req->intf)) return NPC_FLOW_INTF_INVALID; /* If DMAC is not extracted in MKEX, rules installed by AF * can rely on L2MB bit set by hardware protocol checker for * broadcast and multicast addresses. */ if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf)) goto process_flow; if (is_pffunc_af(req->hdr.pcifunc) && req->features & BIT_ULL(NPC_DMAC)) { if (is_unicast_ether_addr(req->packet.dmac)) { dev_warn(rvu->dev, "%s: mkex profile does not support ucast flow\n", __func__); return NPC_FLOW_NOT_SUPPORTED; } if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) { dev_warn(rvu->dev, "%s: mkex profile does not support bcast/mcast flow", __func__); return NPC_FLOW_NOT_SUPPORTED; } /* Modify feature to use LXMB instead of DMAC */ req->features &= ~BIT_ULL(NPC_DMAC); req->features |= BIT_ULL(NPC_LXMB); } process_flow: if (from_vf && req->default_rule) return NPC_FLOW_VF_PERM_DENIED; /* Each PF/VF info is maintained in struct rvu_pfvf. * rvu_pfvf for the target PF/VF needs to be retrieved * hence modify pcifunc accordingly. */ if (!req->hdr.pcifunc) { /* AF installing for a PF/VF */ target = req->vf; } else if (!from_vf && req->vf && !from_rep_dev) { /* PF installing for its VF */ target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf; pf_set_vfs_mac = req->default_rule && (req->features & BIT_ULL(NPC_DMAC)); } else if (from_rep_dev && req->vf) { /* Representor device installing for a representee */ target = req->vf; } else { /* msg received from PF/VF */ target = req->hdr.pcifunc; } /* ignore chan_mask in case pf func is not AF, revisit later */ if (!is_pffunc_af(req->hdr.pcifunc)) req->chan_mask = 0xFFF; err = npc_check_unsupported_flows(rvu, req->features, req->intf); if (err) return NPC_FLOW_NOT_SUPPORTED; pfvf = rvu_get_pfvf(rvu, target); if (from_rep_dev) req->channel = pfvf->rx_chan_base; /* PF installing for its VF */ if (req->hdr.pcifunc && !from_vf && req->vf && !from_rep_dev) set_bit(PF_SET_VF_CFG, &pfvf->flags); /* update req destination mac addr */ if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) && is_zero_ether_addr(req->packet.dmac)) { ether_addr_copy(req->packet.dmac, pfvf->mac_addr); eth_broadcast_addr((u8 *)&req->mask.dmac); } /* Proceed if NIXLF is attached or not for TX rules */ err = nix_get_nixlf(rvu, target, &nixlf, NULL); if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac) return NPC_FLOW_NO_NIXLF; /* don't enable rule when nixlf not attached or initialized */ if (!(is_nixlf_attached(rvu, target) && test_bit(NIXLF_INITIALIZED, &pfvf->flags))) enable = false; /* Packets reaching NPC in Tx path implies that a * NIXLF is properly setup and transmitting. * Hence rules can be enabled for Tx. */ if (is_npc_intf_tx(req->intf)) enable = true; /* Do not allow requests from uninitialized VFs */ if (from_vf && !enable) return NPC_FLOW_VF_NOT_INIT; /* PF sets VF mac & VF NIXLF is not attached, update the mac addr */ if (pf_set_vfs_mac && !enable) { ether_addr_copy(pfvf->default_mac, req->packet.dmac); ether_addr_copy(pfvf->mac_addr, req->packet.dmac); set_bit(PF_SET_VF_MAC, &pfvf->flags); return 0; } mutex_lock(&rswitch->switch_lock); err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf, req, rsp, enable, pf_set_vfs_mac); mutex_unlock(&rswitch->switch_lock); return err; } static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule, u16 pcifunc) { struct npc_mcam_ena_dis_entry_req dis_req = { 0 }; struct msg_rsp dis_rsp; if (rule->default_rule) return 0; if (rule->has_cntr) rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule); dis_req.hdr.pcifunc = pcifunc; dis_req.entry = rule->entry; list_del(&rule->list); kfree(rule); return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp); } int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu, struct npc_delete_flow_req *req, struct npc_delete_flow_rsp *rsp) { struct npc_mcam *mcam = &rvu->hw->mcam; struct rvu_npc_mcam_rule *iter, *tmp; u16 pcifunc = req->hdr.pcifunc; struct list_head del_list; int blkaddr; INIT_LIST_HEAD(&del_list); mutex_lock(&mcam->lock); list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) { if (iter->owner == pcifunc) { /* All rules */ if (req->all) { list_move_tail(&iter->list, &del_list); /* Range of rules */ } else if (req->end && iter->entry >= req->start && iter->entry <= req->end) { list_move_tail(&iter->list, &del_list); /* single rule */ } else if (req->entry == iter->entry) { blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr) rsp->cntr_val = rvu_read64(rvu, blkaddr, NPC_AF_MATCH_STATX(iter->cntr)); list_move_tail(&iter->list, &del_list); break; } } } mutex_unlock(&mcam->lock); list_for_each_entry_safe(iter, tmp, &del_list, list) { u16 entry = iter->entry; /* clear the mcam entry target pcifunc */ mcam->entry2target_pffunc[entry] = 0x0; if (npc_delete_flow(rvu, iter, pcifunc)) dev_err(rvu->dev, "rule deletion failed for entry:%u", entry); } return 0; } static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr, struct rvu_npc_mcam_rule *rule, struct rvu_pfvf *pfvf) { struct npc_mcam_write_entry_req write_req = { 0 }; struct mcam_entry *entry = &write_req.entry_data; struct npc_mcam *mcam = &rvu->hw->mcam; struct msg_rsp rsp; u8 intf, enable; int err; ether_addr_copy(rule->packet.dmac, pfvf->mac_addr); npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry, entry, &intf, &enable); npc_update_entry(rvu, NPC_DMAC, entry, ether_addr_to_u64(pfvf->mac_addr), 0, 0xffffffffffffull, 0, intf); write_req.hdr.pcifunc = rule->owner; write_req.entry = rule->entry; write_req.intf = pfvf->nix_rx_intf; mutex_unlock(&mcam->lock); err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp); mutex_lock(&mcam->lock); return err; } void npc_mcam_enable_flows(struct rvu *rvu, u16 target) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target); struct rvu_npc_mcam_rule *def_ucast_rule; struct npc_mcam *mcam = &rvu->hw->mcam; struct rvu_npc_mcam_rule *rule; int blkaddr, bank, index; u64 def_action; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr < 0) return; def_ucast_rule = pfvf->def_ucast_rule; mutex_lock(&mcam->lock); list_for_each_entry(rule, &mcam->mcam_rules, list) { if (is_npc_intf_rx(rule->intf) && rule->rx_action.pf_func == target && !rule->enable) { if (rule->default_rule) { npc_enable_mcam_entry(rvu, mcam, blkaddr, rule->entry, true); rule->enable = true; continue; } if (rule->vfvlan_cfg) npc_update_dmac_value(rvu, blkaddr, rule, pfvf); if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) { if (!def_ucast_rule) continue; /* Use default unicast entry action */ rule->rx_action = def_ucast_rule->rx_action; def_action = *(u64 *)&def_ucast_rule->rx_action; bank = npc_get_bank(mcam, rule->entry); rvu_write64(rvu, blkaddr, NPC_AF_MCAMEX_BANKX_ACTION (rule->entry, bank), def_action); } npc_enable_mcam_entry(rvu, mcam, blkaddr, rule->entry, true); rule->enable = true; } } /* Enable MCAM entries installed by PF with target as VF pcifunc */ for (index = 0; index < mcam->bmap_entries; index++) { if (mcam->entry2target_pffunc[index] == target) npc_enable_mcam_entry(rvu, mcam, blkaddr, index, true); } mutex_unlock(&mcam->lock); } void npc_mcam_disable_flows(struct rvu *rvu, u16 target) { struct npc_mcam *mcam = &rvu->hw->mcam; int blkaddr, index; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr < 0) return; mutex_lock(&mcam->lock); /* Disable MCAM entries installed by PF with target as VF pcifunc */ for (index = 0; index < mcam->bmap_entries; index++) { if (mcam->entry2target_pffunc[index] == target) npc_enable_mcam_entry(rvu, mcam, blkaddr, index, false); } mutex_unlock(&mcam->lock); } /* single drop on non hit rule starting from 0th index. This an extension * to RPM mac filter to support more rules. */ int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx, u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask, u64 bcast_mcast_val, u64 bcast_mcast_mask) { struct npc_mcam_alloc_counter_req cntr_req = { 0 }; struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 }; struct npc_mcam_write_entry_req req = { 0 }; struct npc_mcam *mcam = &rvu->hw->mcam; struct rvu_npc_mcam_rule *rule; struct msg_rsp rsp; bool enabled; int blkaddr; int err; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr < 0) { dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); return -ENODEV; } /* Bail out if no exact match support */ if (!rvu_npc_exact_has_match_table(rvu)) { dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__); return -EINVAL; } /* If 0th entry is already used, return err */ enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx); if (enabled) { dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n", __func__, mcam_idx); return -EINVAL; } /* Add this entry to mcam rules list */ rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return -ENOMEM; /* Disable rule by default. Enable rule when first dmac filter is * installed */ rule->enable = false; rule->chan = chan_val; rule->chan_mask = chan_mask; rule->entry = mcam_idx; rvu_mcam_add_rule(mcam, rule); /* Reserve slot 0 */ npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx); /* Allocate counter for this single drop on non hit rule */ cntr_req.hdr.pcifunc = 0; /* AF request */ cntr_req.contig = true; cntr_req.count = 1; err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp); if (err) { dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n", __func__, err); return -EFAULT; } *counter_idx = cntr_rsp.cntr; /* Fill in fields for this mcam entry */ npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0, exact_mask, 0, NIX_INTF_RX); npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0, chan_mask, 0, NIX_INTF_RX); npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0, bcast_mcast_mask, 0, NIX_INTF_RX); req.intf = NIX_INTF_RX; req.set_cntr = true; req.cntr = cntr_rsp.cntr; req.entry = mcam_idx; err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp); if (err) { dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n", __func__, mcam_idx); return err; } dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n", __func__, mcam_idx, req.cntr); /* disable entry at Bank 0, index 0 */ npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false); return 0; } int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu, struct npc_get_field_status_req *req, struct npc_get_field_status_rsp *rsp) { int blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); if (blkaddr < 0) return NPC_MCAM_INVALID_REQ; if (!is_npc_interface_valid(rvu, req->intf)) return NPC_FLOW_INTF_INVALID; if (npc_check_field(rvu, blkaddr, req->field, req->intf)) rsp->enable = 1; return 0; }