// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Ethernet driver * * Copyright (C) 2020 Marvell. * */ #include #include #include "otx2_common.h" #define OTX2_DEFAULT_ACTION 0x1 struct otx2_flow { struct ethtool_rx_flow_spec flow_spec; struct list_head list; u32 location; u32 entry; bool is_vf; u8 rss_ctx_id; #define DMAC_FILTER_RULE BIT(0) #define PFC_FLOWCTRL_RULE BIT(1) u16 rule_type; int vf; }; enum dmac_req { DMAC_ADDR_UPDATE, DMAC_ADDR_DEL }; static void otx2_clear_ntuple_flow_info(struct otx2_nic *pfvf, struct otx2_flow_config *flow_cfg) { devm_kfree(pfvf->dev, flow_cfg->flow_ent); flow_cfg->flow_ent = NULL; flow_cfg->max_flows = 0; } static int otx2_free_ntuple_mcam_entries(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_mcam_free_entry_req *req; int ent, err; if (!flow_cfg->max_flows) return 0; mutex_lock(&pfvf->mbox.lock); for (ent = 0; ent < flow_cfg->max_flows; ent++) { req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox); if (!req) break; req->entry = flow_cfg->flow_ent[ent]; /* Send message to AF to free MCAM entries */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) break; } mutex_unlock(&pfvf->mbox.lock); otx2_clear_ntuple_flow_info(pfvf, flow_cfg); return 0; } int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_mcam_alloc_entry_req *req; struct npc_mcam_alloc_entry_rsp *rsp; int ent, allocated = 0; /* Free current ones and allocate new ones with requested count */ otx2_free_ntuple_mcam_entries(pfvf); if (!count) return 0; flow_cfg->flow_ent = devm_kmalloc_array(pfvf->dev, count, sizeof(u16), GFP_KERNEL); if (!flow_cfg->flow_ent) { netdev_err(pfvf->netdev, "%s: Unable to allocate memory for flow entries\n", __func__); return -ENOMEM; } mutex_lock(&pfvf->mbox.lock); /* In a single request a max of NPC_MAX_NONCONTIG_ENTRIES MCAM entries * can only be allocated. */ while (allocated < count) { req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox); if (!req) goto exit; req->contig = false; req->count = (count - allocated) > NPC_MAX_NONCONTIG_ENTRIES ? NPC_MAX_NONCONTIG_ENTRIES : count - allocated; /* Allocate higher priority entries for PFs, so that VF's entries * will be on top of PF. */ if (!is_otx2_vf(pfvf->pcifunc)) { req->priority = NPC_MCAM_HIGHER_PRIO; req->ref_entry = flow_cfg->def_ent[0]; } /* Send message to AF */ if (otx2_sync_mbox_msg(&pfvf->mbox)) goto exit; rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp (&pfvf->mbox.mbox, 0, &req->hdr); if (IS_ERR(rsp)) goto exit; for (ent = 0; ent < rsp->count; ent++) flow_cfg->flow_ent[ent + allocated] = rsp->entry_list[ent]; allocated += rsp->count; /* If this request is not fulfilled, no need to send * further requests. */ if (rsp->count != req->count) break; } /* Multiple MCAM entry alloc requests could result in non-sequential * MCAM entries in the flow_ent[] array. Sort them in an ascending order, * otherwise user installed ntuple filter index and MCAM entry index will * not be in sync. */ if (allocated) sort(&flow_cfg->flow_ent[0], allocated, sizeof(flow_cfg->flow_ent[0]), mcam_entry_cmp, NULL); exit: mutex_unlock(&pfvf->mbox.lock); flow_cfg->max_flows = allocated; if (allocated) { pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC; pfvf->flags |= OTX2_FLAG_NTUPLE_SUPPORT; } if (allocated != count) netdev_info(pfvf->netdev, "Unable to allocate %d MCAM entries, got only %d\n", count, allocated); return allocated; } EXPORT_SYMBOL(otx2_alloc_mcam_entries); int otx2_mcam_entry_init(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_get_field_status_req *freq; struct npc_get_field_status_rsp *frsp; struct npc_mcam_alloc_entry_req *req; struct npc_mcam_alloc_entry_rsp *rsp; int vf_vlan_max_flows; int ent, count; vf_vlan_max_flows = pfvf->total_vfs * OTX2_PER_VF_VLAN_FLOWS; count = flow_cfg->ucast_flt_cnt + OTX2_MAX_VLAN_FLOWS + vf_vlan_max_flows; flow_cfg->def_ent = devm_kmalloc_array(pfvf->dev, count, sizeof(u16), GFP_KERNEL); if (!flow_cfg->def_ent) return -ENOMEM; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->contig = false; req->count = count; /* Send message to AF */ if (otx2_sync_mbox_msg(&pfvf->mbox)) { mutex_unlock(&pfvf->mbox.lock); return -EINVAL; } rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp (&pfvf->mbox.mbox, 0, &req->hdr); if (IS_ERR(rsp)) { mutex_unlock(&pfvf->mbox.lock); return PTR_ERR(rsp); } if (rsp->count != req->count) { netdev_info(pfvf->netdev, "Unable to allocate MCAM entries for ucast, vlan and vf_vlan\n"); mutex_unlock(&pfvf->mbox.lock); devm_kfree(pfvf->dev, flow_cfg->def_ent); return 0; } for (ent = 0; ent < rsp->count; ent++) flow_cfg->def_ent[ent] = rsp->entry_list[ent]; flow_cfg->vf_vlan_offset = 0; flow_cfg->unicast_offset = vf_vlan_max_flows; flow_cfg->rx_vlan_offset = flow_cfg->unicast_offset + flow_cfg->ucast_flt_cnt; pfvf->flags |= OTX2_FLAG_UCAST_FLTR_SUPPORT; /* Check if NPC_DMAC field is supported * by the mkex profile before setting VLAN support flag. */ freq = otx2_mbox_alloc_msg_npc_get_field_status(&pfvf->mbox); if (!freq) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } freq->field = NPC_DMAC; if (otx2_sync_mbox_msg(&pfvf->mbox)) { mutex_unlock(&pfvf->mbox.lock); return -EINVAL; } frsp = (struct npc_get_field_status_rsp *)otx2_mbox_get_rsp (&pfvf->mbox.mbox, 0, &freq->hdr); if (IS_ERR(frsp)) { mutex_unlock(&pfvf->mbox.lock); return PTR_ERR(frsp); } if (frsp->enable) { pfvf->flags |= OTX2_FLAG_RX_VLAN_SUPPORT; pfvf->flags |= OTX2_FLAG_VF_VLAN_SUPPORT; } pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC; mutex_unlock(&pfvf->mbox.lock); /* Allocate entries for Ntuple filters */ count = otx2_alloc_mcam_entries(pfvf, OTX2_DEFAULT_FLOWCOUNT); if (count <= 0) { otx2_clear_ntuple_flow_info(pfvf, flow_cfg); return 0; } pfvf->flags |= OTX2_FLAG_TC_FLOWER_SUPPORT; refcount_set(&flow_cfg->mark_flows, 1); return 0; } EXPORT_SYMBOL(otx2_mcam_entry_init); /* TODO : revisit on size */ #define OTX2_DMAC_FLTR_BITMAP_SZ (4 * 2048 + 32) int otx2vf_mcam_flow_init(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg; pfvf->flow_cfg = devm_kzalloc(pfvf->dev, sizeof(struct otx2_flow_config), GFP_KERNEL); if (!pfvf->flow_cfg) return -ENOMEM; pfvf->flow_cfg->dmacflt_bmap = devm_kcalloc(pfvf->dev, BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ), sizeof(long), GFP_KERNEL); if (!pfvf->flow_cfg->dmacflt_bmap) return -ENOMEM; flow_cfg = pfvf->flow_cfg; INIT_LIST_HEAD(&flow_cfg->flow_list); INIT_LIST_HEAD(&flow_cfg->flow_list_tc); flow_cfg->max_flows = 0; return 0; } EXPORT_SYMBOL(otx2vf_mcam_flow_init); int otx2_mcam_flow_init(struct otx2_nic *pf) { int err; pf->flow_cfg = devm_kzalloc(pf->dev, sizeof(struct otx2_flow_config), GFP_KERNEL); if (!pf->flow_cfg) return -ENOMEM; pf->flow_cfg->dmacflt_bmap = devm_kcalloc(pf->dev, BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ), sizeof(long), GFP_KERNEL); if (!pf->flow_cfg->dmacflt_bmap) return -ENOMEM; INIT_LIST_HEAD(&pf->flow_cfg->flow_list); INIT_LIST_HEAD(&pf->flow_cfg->flow_list_tc); pf->flow_cfg->ucast_flt_cnt = OTX2_DEFAULT_UNICAST_FLOWS; /* Allocate bare minimum number of MCAM entries needed for * unicast and ntuple filters. */ err = otx2_mcam_entry_init(pf); if (err) return err; /* Check if MCAM entries are allocate or not */ if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT)) return 0; pf->mac_table = devm_kzalloc(pf->dev, sizeof(struct otx2_mac_table) * pf->flow_cfg->ucast_flt_cnt, GFP_KERNEL); if (!pf->mac_table) return -ENOMEM; otx2_dmacflt_get_max_cnt(pf); /* DMAC filters are not allocated */ if (!pf->flow_cfg->dmacflt_max_flows) return 0; pf->flow_cfg->bmap_to_dmacindex = devm_kzalloc(pf->dev, sizeof(u32) * pf->flow_cfg->dmacflt_max_flows, GFP_KERNEL); if (!pf->flow_cfg->bmap_to_dmacindex) return -ENOMEM; pf->flags |= OTX2_FLAG_DMACFLTR_SUPPORT; return 0; } void otx2_mcam_flow_del(struct otx2_nic *pf) { otx2_destroy_mcam_flows(pf); } EXPORT_SYMBOL(otx2_mcam_flow_del); /* On success adds mcam entry * On failure enable promisous mode */ static int otx2_do_add_macfilter(struct otx2_nic *pf, const u8 *mac) { struct otx2_flow_config *flow_cfg = pf->flow_cfg; struct npc_install_flow_req *req; int err, i; if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT)) return -ENOMEM; /* dont have free mcam entries or uc list is greater than alloted */ if (netdev_uc_count(pf->netdev) > pf->flow_cfg->ucast_flt_cnt) return -ENOMEM; mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox); if (!req) { mutex_unlock(&pf->mbox.lock); return -ENOMEM; } /* unicast offset starts with 32 0..31 for ntuple */ for (i = 0; i < pf->flow_cfg->ucast_flt_cnt; i++) { if (pf->mac_table[i].inuse) continue; ether_addr_copy(pf->mac_table[i].addr, mac); pf->mac_table[i].inuse = true; pf->mac_table[i].mcam_entry = flow_cfg->def_ent[i + flow_cfg->unicast_offset]; req->entry = pf->mac_table[i].mcam_entry; break; } ether_addr_copy(req->packet.dmac, mac); eth_broadcast_addr((u8 *)&req->mask.dmac); req->features = BIT_ULL(NPC_DMAC); req->channel = pf->hw.rx_chan_base; req->intf = NIX_INTF_RX; req->op = NIX_RX_ACTION_DEFAULT; req->set_cntr = 1; err = otx2_sync_mbox_msg(&pf->mbox); mutex_unlock(&pf->mbox.lock); return err; } int otx2_add_macfilter(struct net_device *netdev, const u8 *mac) { struct otx2_nic *pf = netdev_priv(netdev); if (!bitmap_empty(pf->flow_cfg->dmacflt_bmap, pf->flow_cfg->dmacflt_max_flows)) netdev_warn(netdev, "Add %pM to CGX/RPM DMAC filters list as well\n", mac); return otx2_do_add_macfilter(pf, mac); } static bool otx2_get_mcamentry_for_mac(struct otx2_nic *pf, const u8 *mac, int *mcam_entry) { int i; for (i = 0; i < pf->flow_cfg->ucast_flt_cnt; i++) { if (!pf->mac_table[i].inuse) continue; if (ether_addr_equal(pf->mac_table[i].addr, mac)) { *mcam_entry = pf->mac_table[i].mcam_entry; pf->mac_table[i].inuse = false; return true; } } return false; } int otx2_del_macfilter(struct net_device *netdev, const u8 *mac) { struct otx2_nic *pf = netdev_priv(netdev); struct npc_delete_flow_req *req; int err, mcam_entry; /* check does mcam entry exists for given mac */ if (!otx2_get_mcamentry_for_mac(pf, mac, &mcam_entry)) return 0; mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_npc_delete_flow(&pf->mbox); if (!req) { mutex_unlock(&pf->mbox.lock); return -ENOMEM; } req->entry = mcam_entry; /* Send message to AF */ err = otx2_sync_mbox_msg(&pf->mbox); mutex_unlock(&pf->mbox.lock); return err; } static struct otx2_flow *otx2_find_flow(struct otx2_nic *pfvf, u32 location) { struct otx2_flow *iter; list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) { if (iter->location == location) return iter; } return NULL; } static void otx2_add_flow_to_list(struct otx2_nic *pfvf, struct otx2_flow *flow) { struct list_head *head = &pfvf->flow_cfg->flow_list; struct otx2_flow *iter; list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) { if (iter->location > flow->location) break; head = &iter->list; } list_add(&flow->list, head); } int otx2_get_maxflows(struct otx2_flow_config *flow_cfg) { if (!flow_cfg) return 0; if (flow_cfg->nr_flows == flow_cfg->max_flows || !bitmap_empty(flow_cfg->dmacflt_bmap, flow_cfg->dmacflt_max_flows)) return flow_cfg->max_flows + flow_cfg->dmacflt_max_flows; else return flow_cfg->max_flows; } EXPORT_SYMBOL(otx2_get_maxflows); int otx2_get_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc, u32 location) { struct otx2_flow *iter; if (location >= otx2_get_maxflows(pfvf->flow_cfg)) return -EINVAL; list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) { if (iter->location == location) { nfc->fs = iter->flow_spec; nfc->rss_context = iter->rss_ctx_id; return 0; } } return -ENOENT; } int otx2_get_all_flows(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc, u32 *rule_locs) { u32 rule_cnt = nfc->rule_cnt; u32 location = 0; int idx = 0; int err = 0; nfc->data = otx2_get_maxflows(pfvf->flow_cfg); while ((!err || err == -ENOENT) && idx < rule_cnt) { err = otx2_get_flow(pfvf, nfc, location); if (!err) rule_locs[idx++] = location; location++; } nfc->rule_cnt = rule_cnt; return err; } static int otx2_prepare_ipv4_flow(struct ethtool_rx_flow_spec *fsp, struct npc_install_flow_req *req, u32 flow_type) { struct ethtool_usrip4_spec *ipv4_usr_mask = &fsp->m_u.usr_ip4_spec; struct ethtool_usrip4_spec *ipv4_usr_hdr = &fsp->h_u.usr_ip4_spec; struct ethtool_tcpip4_spec *ipv4_l4_mask = &fsp->m_u.tcp_ip4_spec; struct ethtool_tcpip4_spec *ipv4_l4_hdr = &fsp->h_u.tcp_ip4_spec; struct ethtool_ah_espip4_spec *ah_esp_hdr = &fsp->h_u.ah_ip4_spec; struct ethtool_ah_espip4_spec *ah_esp_mask = &fsp->m_u.ah_ip4_spec; struct flow_msg *pmask = &req->mask; struct flow_msg *pkt = &req->packet; switch (flow_type) { case IP_USER_FLOW: if (ipv4_usr_mask->ip4src) { memcpy(&pkt->ip4src, &ipv4_usr_hdr->ip4src, sizeof(pkt->ip4src)); memcpy(&pmask->ip4src, &ipv4_usr_mask->ip4src, sizeof(pmask->ip4src)); req->features |= BIT_ULL(NPC_SIP_IPV4); } if (ipv4_usr_mask->ip4dst) { memcpy(&pkt->ip4dst, &ipv4_usr_hdr->ip4dst, sizeof(pkt->ip4dst)); memcpy(&pmask->ip4dst, &ipv4_usr_mask->ip4dst, sizeof(pmask->ip4dst)); req->features |= BIT_ULL(NPC_DIP_IPV4); } if (ipv4_usr_mask->tos) { pkt->tos = ipv4_usr_hdr->tos; pmask->tos = ipv4_usr_mask->tos; req->features |= BIT_ULL(NPC_TOS); } if (ipv4_usr_mask->proto) { switch (ipv4_usr_hdr->proto) { case IPPROTO_ICMP: req->features |= BIT_ULL(NPC_IPPROTO_ICMP); break; case IPPROTO_TCP: req->features |= BIT_ULL(NPC_IPPROTO_TCP); break; case IPPROTO_UDP: req->features |= BIT_ULL(NPC_IPPROTO_UDP); break; case IPPROTO_SCTP: req->features |= BIT_ULL(NPC_IPPROTO_SCTP); break; case IPPROTO_AH: req->features |= BIT_ULL(NPC_IPPROTO_AH); break; case IPPROTO_ESP: req->features |= BIT_ULL(NPC_IPPROTO_ESP); break; default: return -EOPNOTSUPP; } } pkt->etype = cpu_to_be16(ETH_P_IP); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); break; case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: pkt->etype = cpu_to_be16(ETH_P_IP); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); if (ipv4_l4_mask->ip4src) { memcpy(&pkt->ip4src, &ipv4_l4_hdr->ip4src, sizeof(pkt->ip4src)); memcpy(&pmask->ip4src, &ipv4_l4_mask->ip4src, sizeof(pmask->ip4src)); req->features |= BIT_ULL(NPC_SIP_IPV4); } if (ipv4_l4_mask->ip4dst) { memcpy(&pkt->ip4dst, &ipv4_l4_hdr->ip4dst, sizeof(pkt->ip4dst)); memcpy(&pmask->ip4dst, &ipv4_l4_mask->ip4dst, sizeof(pmask->ip4dst)); req->features |= BIT_ULL(NPC_DIP_IPV4); } if (ipv4_l4_mask->tos) { pkt->tos = ipv4_l4_hdr->tos; pmask->tos = ipv4_l4_mask->tos; req->features |= BIT_ULL(NPC_TOS); } if (ipv4_l4_mask->psrc) { memcpy(&pkt->sport, &ipv4_l4_hdr->psrc, sizeof(pkt->sport)); memcpy(&pmask->sport, &ipv4_l4_mask->psrc, sizeof(pmask->sport)); if (flow_type == UDP_V4_FLOW) req->features |= BIT_ULL(NPC_SPORT_UDP); else if (flow_type == TCP_V4_FLOW) req->features |= BIT_ULL(NPC_SPORT_TCP); else req->features |= BIT_ULL(NPC_SPORT_SCTP); } if (ipv4_l4_mask->pdst) { memcpy(&pkt->dport, &ipv4_l4_hdr->pdst, sizeof(pkt->dport)); memcpy(&pmask->dport, &ipv4_l4_mask->pdst, sizeof(pmask->dport)); if (flow_type == UDP_V4_FLOW) req->features |= BIT_ULL(NPC_DPORT_UDP); else if (flow_type == TCP_V4_FLOW) req->features |= BIT_ULL(NPC_DPORT_TCP); else req->features |= BIT_ULL(NPC_DPORT_SCTP); } if (flow_type == UDP_V4_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_UDP); else if (flow_type == TCP_V4_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_TCP); else req->features |= BIT_ULL(NPC_IPPROTO_SCTP); break; case AH_V4_FLOW: case ESP_V4_FLOW: pkt->etype = cpu_to_be16(ETH_P_IP); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); if (ah_esp_mask->ip4src) { memcpy(&pkt->ip4src, &ah_esp_hdr->ip4src, sizeof(pkt->ip4src)); memcpy(&pmask->ip4src, &ah_esp_mask->ip4src, sizeof(pmask->ip4src)); req->features |= BIT_ULL(NPC_SIP_IPV4); } if (ah_esp_mask->ip4dst) { memcpy(&pkt->ip4dst, &ah_esp_hdr->ip4dst, sizeof(pkt->ip4dst)); memcpy(&pmask->ip4dst, &ah_esp_mask->ip4dst, sizeof(pmask->ip4dst)); req->features |= BIT_ULL(NPC_DIP_IPV4); } if (ah_esp_mask->tos) { pkt->tos = ah_esp_hdr->tos; pmask->tos = ah_esp_mask->tos; req->features |= BIT_ULL(NPC_TOS); } /* NPC profile doesn't extract AH/ESP header fields */ if (ah_esp_mask->spi & ah_esp_hdr->spi) return -EOPNOTSUPP; if (flow_type == AH_V4_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_AH); else req->features |= BIT_ULL(NPC_IPPROTO_ESP); break; default: break; } return 0; } static int otx2_prepare_ipv6_flow(struct ethtool_rx_flow_spec *fsp, struct npc_install_flow_req *req, u32 flow_type) { struct ethtool_usrip6_spec *ipv6_usr_mask = &fsp->m_u.usr_ip6_spec; struct ethtool_usrip6_spec *ipv6_usr_hdr = &fsp->h_u.usr_ip6_spec; struct ethtool_tcpip6_spec *ipv6_l4_mask = &fsp->m_u.tcp_ip6_spec; struct ethtool_tcpip6_spec *ipv6_l4_hdr = &fsp->h_u.tcp_ip6_spec; struct ethtool_ah_espip6_spec *ah_esp_hdr = &fsp->h_u.ah_ip6_spec; struct ethtool_ah_espip6_spec *ah_esp_mask = &fsp->m_u.ah_ip6_spec; struct flow_msg *pmask = &req->mask; struct flow_msg *pkt = &req->packet; switch (flow_type) { case IPV6_USER_FLOW: if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6src)) { memcpy(&pkt->ip6src, &ipv6_usr_hdr->ip6src, sizeof(pkt->ip6src)); memcpy(&pmask->ip6src, &ipv6_usr_mask->ip6src, sizeof(pmask->ip6src)); req->features |= BIT_ULL(NPC_SIP_IPV6); } if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6dst)) { memcpy(&pkt->ip6dst, &ipv6_usr_hdr->ip6dst, sizeof(pkt->ip6dst)); memcpy(&pmask->ip6dst, &ipv6_usr_mask->ip6dst, sizeof(pmask->ip6dst)); req->features |= BIT_ULL(NPC_DIP_IPV6); } if (ipv6_usr_hdr->l4_proto == IPPROTO_FRAGMENT) { pkt->next_header = ipv6_usr_hdr->l4_proto; pmask->next_header = ipv6_usr_mask->l4_proto; req->features |= BIT_ULL(NPC_IPFRAG_IPV6); } pkt->etype = cpu_to_be16(ETH_P_IPV6); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: pkt->etype = cpu_to_be16(ETH_P_IPV6); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6src)) { memcpy(&pkt->ip6src, &ipv6_l4_hdr->ip6src, sizeof(pkt->ip6src)); memcpy(&pmask->ip6src, &ipv6_l4_mask->ip6src, sizeof(pmask->ip6src)); req->features |= BIT_ULL(NPC_SIP_IPV6); } if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6dst)) { memcpy(&pkt->ip6dst, &ipv6_l4_hdr->ip6dst, sizeof(pkt->ip6dst)); memcpy(&pmask->ip6dst, &ipv6_l4_mask->ip6dst, sizeof(pmask->ip6dst)); req->features |= BIT_ULL(NPC_DIP_IPV6); } if (ipv6_l4_mask->psrc) { memcpy(&pkt->sport, &ipv6_l4_hdr->psrc, sizeof(pkt->sport)); memcpy(&pmask->sport, &ipv6_l4_mask->psrc, sizeof(pmask->sport)); if (flow_type == UDP_V6_FLOW) req->features |= BIT_ULL(NPC_SPORT_UDP); else if (flow_type == TCP_V6_FLOW) req->features |= BIT_ULL(NPC_SPORT_TCP); else req->features |= BIT_ULL(NPC_SPORT_SCTP); } if (ipv6_l4_mask->pdst) { memcpy(&pkt->dport, &ipv6_l4_hdr->pdst, sizeof(pkt->dport)); memcpy(&pmask->dport, &ipv6_l4_mask->pdst, sizeof(pmask->dport)); if (flow_type == UDP_V6_FLOW) req->features |= BIT_ULL(NPC_DPORT_UDP); else if (flow_type == TCP_V6_FLOW) req->features |= BIT_ULL(NPC_DPORT_TCP); else req->features |= BIT_ULL(NPC_DPORT_SCTP); } if (flow_type == UDP_V6_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_UDP); else if (flow_type == TCP_V6_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_TCP); else req->features |= BIT_ULL(NPC_IPPROTO_SCTP); break; case AH_V6_FLOW: case ESP_V6_FLOW: pkt->etype = cpu_to_be16(ETH_P_IPV6); pmask->etype = cpu_to_be16(0xFFFF); req->features |= BIT_ULL(NPC_ETYPE); if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6src)) { memcpy(&pkt->ip6src, &ah_esp_hdr->ip6src, sizeof(pkt->ip6src)); memcpy(&pmask->ip6src, &ah_esp_mask->ip6src, sizeof(pmask->ip6src)); req->features |= BIT_ULL(NPC_SIP_IPV6); } if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6dst)) { memcpy(&pkt->ip6dst, &ah_esp_hdr->ip6dst, sizeof(pkt->ip6dst)); memcpy(&pmask->ip6dst, &ah_esp_mask->ip6dst, sizeof(pmask->ip6dst)); req->features |= BIT_ULL(NPC_DIP_IPV6); } /* NPC profile doesn't extract AH/ESP header fields */ if ((ah_esp_mask->spi & ah_esp_hdr->spi) || (ah_esp_mask->tclass & ah_esp_hdr->tclass)) return -EOPNOTSUPP; if (flow_type == AH_V6_FLOW) req->features |= BIT_ULL(NPC_IPPROTO_AH); else req->features |= BIT_ULL(NPC_IPPROTO_ESP); break; default: break; } return 0; } static int otx2_prepare_flow_request(struct ethtool_rx_flow_spec *fsp, struct npc_install_flow_req *req) { struct ethhdr *eth_mask = &fsp->m_u.ether_spec; struct ethhdr *eth_hdr = &fsp->h_u.ether_spec; struct flow_msg *pmask = &req->mask; struct flow_msg *pkt = &req->packet; u32 flow_type; int ret; flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); switch (flow_type) { /* bits not set in mask are don't care */ case ETHER_FLOW: if (!is_zero_ether_addr(eth_mask->h_source)) { ether_addr_copy(pkt->smac, eth_hdr->h_source); ether_addr_copy(pmask->smac, eth_mask->h_source); req->features |= BIT_ULL(NPC_SMAC); } if (!is_zero_ether_addr(eth_mask->h_dest)) { ether_addr_copy(pkt->dmac, eth_hdr->h_dest); ether_addr_copy(pmask->dmac, eth_mask->h_dest); req->features |= BIT_ULL(NPC_DMAC); } if (eth_hdr->h_proto) { memcpy(&pkt->etype, ð_hdr->h_proto, sizeof(pkt->etype)); memcpy(&pmask->etype, ð_mask->h_proto, sizeof(pmask->etype)); req->features |= BIT_ULL(NPC_ETYPE); } break; case IP_USER_FLOW: case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: ret = otx2_prepare_ipv4_flow(fsp, req, flow_type); if (ret) return ret; break; case IPV6_USER_FLOW: case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: ret = otx2_prepare_ipv6_flow(fsp, req, flow_type); if (ret) return ret; break; default: return -EOPNOTSUPP; } if (fsp->flow_type & FLOW_EXT) { u16 vlan_etype; if (fsp->m_ext.vlan_etype) { /* Partial masks not supported */ if (be16_to_cpu(fsp->m_ext.vlan_etype) != 0xFFFF) return -EINVAL; vlan_etype = be16_to_cpu(fsp->h_ext.vlan_etype); /* Drop rule with vlan_etype == 802.1Q * and vlan_id == 0 is not supported */ if (vlan_etype == ETH_P_8021Q && !fsp->m_ext.vlan_tci && fsp->ring_cookie == RX_CLS_FLOW_DISC) return -EINVAL; /* Only ETH_P_8021Q and ETH_P_802AD types supported */ if (vlan_etype != ETH_P_8021Q && vlan_etype != ETH_P_8021AD) return -EINVAL; memcpy(&pkt->vlan_etype, &fsp->h_ext.vlan_etype, sizeof(pkt->vlan_etype)); memcpy(&pmask->vlan_etype, &fsp->m_ext.vlan_etype, sizeof(pmask->vlan_etype)); if (vlan_etype == ETH_P_8021Q) req->features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG); else req->features |= BIT_ULL(NPC_VLAN_ETYPE_STAG); } if (fsp->m_ext.vlan_tci) { memcpy(&pkt->vlan_tci, &fsp->h_ext.vlan_tci, sizeof(pkt->vlan_tci)); memcpy(&pmask->vlan_tci, &fsp->m_ext.vlan_tci, sizeof(pmask->vlan_tci)); req->features |= BIT_ULL(NPC_OUTER_VID); } if (fsp->m_ext.data[1]) { if (flow_type == IP_USER_FLOW) { if (be32_to_cpu(fsp->h_ext.data[1]) != IPV4_FLAG_MORE) return -EINVAL; pkt->ip_flag = be32_to_cpu(fsp->h_ext.data[1]); pmask->ip_flag = be32_to_cpu(fsp->m_ext.data[1]); req->features |= BIT_ULL(NPC_IPFRAG_IPV4); } else if (fsp->h_ext.data[1] == cpu_to_be32(OTX2_DEFAULT_ACTION)) { /* Not Drop/Direct to queue but use action * in default entry */ req->op = NIX_RX_ACTION_DEFAULT; } } } if (fsp->flow_type & FLOW_MAC_EXT && !is_zero_ether_addr(fsp->m_ext.h_dest)) { ether_addr_copy(pkt->dmac, fsp->h_ext.h_dest); ether_addr_copy(pmask->dmac, fsp->m_ext.h_dest); req->features |= BIT_ULL(NPC_DMAC); } if (!req->features) return -EOPNOTSUPP; return 0; } static int otx2_is_flow_rule_dmacfilter(struct otx2_nic *pfvf, struct ethtool_rx_flow_spec *fsp) { struct ethhdr *eth_mask = &fsp->m_u.ether_spec; struct ethhdr *eth_hdr = &fsp->h_u.ether_spec; u64 ring_cookie = fsp->ring_cookie; u32 flow_type; if (!(pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)) return false; flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); /* CGX/RPM block dmac filtering configured for white listing * check for action other than DROP */ if (flow_type == ETHER_FLOW && ring_cookie != RX_CLS_FLOW_DISC && !ethtool_get_flow_spec_ring_vf(ring_cookie)) { if (is_zero_ether_addr(eth_mask->h_dest) && is_valid_ether_addr(eth_hdr->h_dest)) return true; } return false; } static int otx2_add_flow_msg(struct otx2_nic *pfvf, struct otx2_flow *flow) { u64 ring_cookie = flow->flow_spec.ring_cookie; #ifdef CONFIG_DCB int vlan_prio, qidx, pfc_rule = 0; #endif struct npc_install_flow_req *req; int err, vf = 0; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_prepare_flow_request(&flow->flow_spec, req); if (err) { /* free the allocated msg above */ otx2_mbox_reset(&pfvf->mbox.mbox, 0); mutex_unlock(&pfvf->mbox.lock); return err; } req->entry = flow->entry; req->intf = NIX_INTF_RX; req->set_cntr = 1; req->channel = pfvf->hw.rx_chan_base; if (ring_cookie == RX_CLS_FLOW_DISC) { req->op = NIX_RX_ACTIONOP_DROP; } else { /* change to unicast only if action of default entry is not * requested by user */ if (flow->flow_spec.flow_type & FLOW_RSS) { req->op = NIX_RX_ACTIONOP_RSS; req->index = flow->rss_ctx_id; req->flow_key_alg = pfvf->hw.flowkey_alg_idx; } else { req->op = NIX_RX_ACTIONOP_UCAST; req->index = ethtool_get_flow_spec_ring(ring_cookie); } vf = ethtool_get_flow_spec_ring_vf(ring_cookie); if (vf > pci_num_vf(pfvf->pdev)) { mutex_unlock(&pfvf->mbox.lock); return -EINVAL; } #ifdef CONFIG_DCB /* Identify PFC rule if PFC enabled and ntuple rule is vlan */ if (!vf && (req->features & BIT_ULL(NPC_OUTER_VID)) && pfvf->pfc_en && req->op != NIX_RX_ACTIONOP_RSS) { vlan_prio = ntohs(req->packet.vlan_tci) & ntohs(req->mask.vlan_tci); /* Get the priority */ vlan_prio >>= 13; flow->rule_type |= PFC_FLOWCTRL_RULE; /* Check if PFC enabled for this priority */ if (pfvf->pfc_en & BIT(vlan_prio)) { pfc_rule = true; qidx = req->index; } } #endif } /* ethtool ring_cookie has (VF + 1) for VF */ if (vf) { req->vf = vf; flow->is_vf = true; flow->vf = vf; } /* Send message to AF */ err = otx2_sync_mbox_msg(&pfvf->mbox); #ifdef CONFIG_DCB if (!err && pfc_rule) otx2_update_bpid_in_rqctx(pfvf, vlan_prio, qidx, true); #endif mutex_unlock(&pfvf->mbox.lock); return err; } static int otx2_add_flow_with_pfmac(struct otx2_nic *pfvf, struct otx2_flow *flow) { struct otx2_flow *pf_mac; struct ethhdr *eth_hdr; pf_mac = kzalloc(sizeof(*pf_mac), GFP_KERNEL); if (!pf_mac) return -ENOMEM; pf_mac->entry = 0; pf_mac->rule_type |= DMAC_FILTER_RULE; pf_mac->location = pfvf->flow_cfg->max_flows; memcpy(&pf_mac->flow_spec, &flow->flow_spec, sizeof(struct ethtool_rx_flow_spec)); pf_mac->flow_spec.location = pf_mac->location; /* Copy PF mac address */ eth_hdr = &pf_mac->flow_spec.h_u.ether_spec; ether_addr_copy(eth_hdr->h_dest, pfvf->netdev->dev_addr); /* Install DMAC filter with PF mac address */ otx2_dmacflt_add(pfvf, eth_hdr->h_dest, 0); otx2_add_flow_to_list(pfvf, pf_mac); pfvf->flow_cfg->nr_flows++; set_bit(0, pfvf->flow_cfg->dmacflt_bmap); return 0; } int otx2_add_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct ethtool_rx_flow_spec *fsp = &nfc->fs; struct otx2_flow *flow; struct ethhdr *eth_hdr; bool new = false; int err = 0; u64 vf_num; u32 ring; if (!flow_cfg->max_flows) { netdev_err(pfvf->netdev, "Ntuple rule count is 0, allocate and retry\n"); return -EINVAL; } ring = ethtool_get_flow_spec_ring(fsp->ring_cookie); if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT)) return -ENOMEM; /* Number of queues on a VF can be greater or less than * the PF's queue. Hence no need to check for the * queue count. Hence no need to check queue count if PF * is installing for its VF. Below is the expected vf_num value * based on the ethtool commands. * * e.g. * 1. ethtool -U ... action -1 ==> vf_num:255 * 2. ethtool -U ... action ==> vf_num:0 * 3. ethtool -U ... vf queue ==> * vf_num:vf_idx+1 */ vf_num = ethtool_get_flow_spec_ring_vf(fsp->ring_cookie); if (!is_otx2_vf(pfvf->pcifunc) && !vf_num && ring >= pfvf->hw.rx_queues && fsp->ring_cookie != RX_CLS_FLOW_DISC) return -EINVAL; if (fsp->location >= otx2_get_maxflows(flow_cfg)) return -EINVAL; flow = otx2_find_flow(pfvf, fsp->location); if (!flow) { flow = kzalloc(sizeof(*flow), GFP_KERNEL); if (!flow) return -ENOMEM; flow->location = fsp->location; flow->entry = flow_cfg->flow_ent[flow->location]; new = true; } /* struct copy */ flow->flow_spec = *fsp; if (fsp->flow_type & FLOW_RSS) flow->rss_ctx_id = nfc->rss_context; if (otx2_is_flow_rule_dmacfilter(pfvf, &flow->flow_spec)) { eth_hdr = &flow->flow_spec.h_u.ether_spec; /* Sync dmac filter table with updated fields */ if (flow->rule_type & DMAC_FILTER_RULE) return otx2_dmacflt_update(pfvf, eth_hdr->h_dest, flow->entry); if (bitmap_full(flow_cfg->dmacflt_bmap, flow_cfg->dmacflt_max_flows)) { netdev_warn(pfvf->netdev, "Can't insert the rule %d as max allowed dmac filters are %d\n", flow->location + flow_cfg->dmacflt_max_flows, flow_cfg->dmacflt_max_flows); err = -EINVAL; if (new) kfree(flow); return err; } /* Install PF mac address to DMAC filter list */ if (!test_bit(0, flow_cfg->dmacflt_bmap)) otx2_add_flow_with_pfmac(pfvf, flow); flow->rule_type |= DMAC_FILTER_RULE; flow->entry = find_first_zero_bit(flow_cfg->dmacflt_bmap, flow_cfg->dmacflt_max_flows); fsp->location = flow_cfg->max_flows + flow->entry; flow->flow_spec.location = fsp->location; flow->location = fsp->location; set_bit(flow->entry, flow_cfg->dmacflt_bmap); otx2_dmacflt_add(pfvf, eth_hdr->h_dest, flow->entry); } else { if (flow->location >= pfvf->flow_cfg->max_flows) { netdev_warn(pfvf->netdev, "Can't insert non dmac ntuple rule at %d, allowed range %d-0\n", flow->location, flow_cfg->max_flows - 1); err = -EINVAL; } else { err = otx2_add_flow_msg(pfvf, flow); } } if (err) { if (err == MBOX_MSG_INVALID) err = -EINVAL; if (new) kfree(flow); return err; } /* add the new flow installed to list */ if (new) { otx2_add_flow_to_list(pfvf, flow); flow_cfg->nr_flows++; } if (flow->is_vf) netdev_info(pfvf->netdev, "Make sure that VF's queue number is within its queue limit\n"); return 0; } static int otx2_remove_flow_msg(struct otx2_nic *pfvf, u16 entry, bool all) { struct npc_delete_flow_req *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->entry = entry; if (all) req->all = 1; /* Send message to AF */ err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } static void otx2_update_rem_pfmac(struct otx2_nic *pfvf, int req) { struct otx2_flow *iter; struct ethhdr *eth_hdr; bool found = false; list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) { if ((iter->rule_type & DMAC_FILTER_RULE) && iter->entry == 0) { eth_hdr = &iter->flow_spec.h_u.ether_spec; if (req == DMAC_ADDR_DEL) { otx2_dmacflt_remove(pfvf, eth_hdr->h_dest, 0); clear_bit(0, pfvf->flow_cfg->dmacflt_bmap); found = true; } else { ether_addr_copy(eth_hdr->h_dest, pfvf->netdev->dev_addr); otx2_dmacflt_update(pfvf, eth_hdr->h_dest, 0); } break; } } if (found) { list_del(&iter->list); kfree(iter); pfvf->flow_cfg->nr_flows--; } } int otx2_remove_flow(struct otx2_nic *pfvf, u32 location) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct otx2_flow *flow; int err; if (location >= otx2_get_maxflows(flow_cfg)) return -EINVAL; flow = otx2_find_flow(pfvf, location); if (!flow) return -ENOENT; if (flow->rule_type & DMAC_FILTER_RULE) { struct ethhdr *eth_hdr = &flow->flow_spec.h_u.ether_spec; /* user not allowed to remove dmac filter with interface mac */ if (ether_addr_equal(pfvf->netdev->dev_addr, eth_hdr->h_dest)) return -EPERM; err = otx2_dmacflt_remove(pfvf, eth_hdr->h_dest, flow->entry); clear_bit(flow->entry, flow_cfg->dmacflt_bmap); /* If all dmac filters are removed delete macfilter with * interface mac address and configure CGX/RPM block in * promiscuous mode */ if (bitmap_weight(flow_cfg->dmacflt_bmap, flow_cfg->dmacflt_max_flows) == 1) otx2_update_rem_pfmac(pfvf, DMAC_ADDR_DEL); } else { #ifdef CONFIG_DCB if (flow->rule_type & PFC_FLOWCTRL_RULE) otx2_update_bpid_in_rqctx(pfvf, 0, flow->flow_spec.ring_cookie, false); #endif err = otx2_remove_flow_msg(pfvf, flow->entry, false); } if (err) return err; list_del(&flow->list); kfree(flow); flow_cfg->nr_flows--; return 0; } void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id) { struct otx2_flow *flow, *tmp; int err; list_for_each_entry_safe(flow, tmp, &pfvf->flow_cfg->flow_list, list) { if (flow->rss_ctx_id != ctx_id) continue; err = otx2_remove_flow(pfvf, flow->location); if (err) netdev_warn(pfvf->netdev, "Can't delete the rule %d associated with this rss group err:%d", flow->location, err); } } int otx2_destroy_ntuple_flows(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_delete_flow_req *req; struct otx2_flow *iter, *tmp; int err; if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT)) return 0; if (!flow_cfg->max_flows) return 0; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->start = flow_cfg->flow_ent[0]; req->end = flow_cfg->flow_ent[flow_cfg->max_flows - 1]; err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) { list_del(&iter->list); kfree(iter); flow_cfg->nr_flows--; } return err; } int otx2_destroy_mcam_flows(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_mcam_free_entry_req *req; struct otx2_flow *iter, *tmp; int err; if (!(pfvf->flags & OTX2_FLAG_MCAM_ENTRIES_ALLOC)) return 0; /* remove all flows */ err = otx2_remove_flow_msg(pfvf, 0, true); if (err) return err; list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) { list_del(&iter->list); kfree(iter); flow_cfg->nr_flows--; } mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->all = 1; /* Send message to AF to free MCAM entries */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } pfvf->flags &= ~OTX2_FLAG_MCAM_ENTRIES_ALLOC; flow_cfg->max_flows = 0; mutex_unlock(&pfvf->mbox.lock); return 0; } int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_install_flow_req *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset]; req->intf = NIX_INTF_RX; ether_addr_copy(req->packet.dmac, pfvf->netdev->dev_addr); eth_broadcast_addr((u8 *)&req->mask.dmac); req->channel = pfvf->hw.rx_chan_base; req->op = NIX_RX_ACTION_DEFAULT; req->features = BIT_ULL(NPC_OUTER_VID) | BIT_ULL(NPC_DMAC); req->vtag0_valid = true; req->vtag0_type = NIX_AF_LFX_RX_VTAG_TYPE0; /* Send message to AF */ err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } static int otx2_delete_rxvlan_offload_flow(struct otx2_nic *pfvf) { struct otx2_flow_config *flow_cfg = pfvf->flow_cfg; struct npc_delete_flow_req *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset]; /* Send message to AF */ err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable) { struct nix_vtag_config *req; struct mbox_msghdr *rsp_hdr; int err; /* Dont have enough mcam entries */ if (!(pf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)) return -ENOMEM; if (enable) { err = otx2_install_rxvlan_offload_flow(pf); if (err) return err; } else { err = otx2_delete_rxvlan_offload_flow(pf); if (err) return err; } mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_nix_vtag_cfg(&pf->mbox); if (!req) { mutex_unlock(&pf->mbox.lock); return -ENOMEM; } /* config strip, capture and size */ req->vtag_size = VTAGSIZE_T4; req->cfg_type = 1; /* rx vlan cfg */ req->rx.vtag_type = NIX_AF_LFX_RX_VTAG_TYPE0; req->rx.strip_vtag = enable; req->rx.capture_vtag = enable; err = otx2_sync_mbox_msg(&pf->mbox); if (err) { mutex_unlock(&pf->mbox.lock); return err; } rsp_hdr = otx2_mbox_get_rsp(&pf->mbox.mbox, 0, &req->hdr); if (IS_ERR(rsp_hdr)) { mutex_unlock(&pf->mbox.lock); return PTR_ERR(rsp_hdr); } mutex_unlock(&pf->mbox.lock); return rsp_hdr->rc; } void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf) { struct otx2_flow *iter; struct ethhdr *eth_hdr; list_for_each_entry(iter, &pf->flow_cfg->flow_list, list) { if (iter->rule_type & DMAC_FILTER_RULE) { eth_hdr = &iter->flow_spec.h_u.ether_spec; otx2_dmacflt_add(pf, eth_hdr->h_dest, iter->entry); } } } void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf) { otx2_update_rem_pfmac(pfvf, DMAC_ADDR_UPDATE); }