// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * rtase is the Linux device driver released for Realtek Automotive Switch * controllers with PCI-Express interface. * * Copyright(c) 2024 Realtek Semiconductor Corp. * * Below is a simplified block diagram of the chip and its relevant interfaces. * * ************************* * * * * * CPU network device * * * * * * +-------------+ * * * | PCIE Host | * * ***********++************ * || * PCIE * || * ********************++********************** * * | PCIE Endpoint | * * * +---------------+ * * * | GMAC | * * * +--++--+ Realtek * * * || RTL90xx Series * * * || * * * +-------------++----------------+ * * * | | MAC | | * * * | +-----+ | * * * | | * * * | Ethernet Switch Core | * * * | | * * * | +-----+ +-----+ | * * * | | MAC |...........| MAC | | * * * +---+-----+-----------+-----+---+ * * * | PHY |...........| PHY | * * * +--++-+ +--++-+ * * *************||****************||*********** * * The block of the Realtek RTL90xx series is our entire chip architecture, * the GMAC is connected to the switch core, and there is no PHY in between. * In addition, this driver is mainly used to control GMAC, but does not * control the switch core, so it is not the same as DSA. Linux only plays * the role of a normal leaf node in this model. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rtase.h" #define RTK_OPTS1_DEBUG_VALUE 0x0BADBEEF #define RTK_MAGIC_NUMBER 0x0BADBADBADBADBAD static const struct pci_device_id rtase_pci_tbl[] = { {PCI_VDEVICE(REALTEK, 0x906A)}, {} }; MODULE_DEVICE_TABLE(pci, rtase_pci_tbl); MODULE_AUTHOR("Realtek ARD Software Team"); MODULE_DESCRIPTION("Network Driver for the PCIe interface of Realtek Automotive Ethernet Switch"); MODULE_LICENSE("Dual BSD/GPL"); struct rtase_counters { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underrun; } __packed; static void rtase_w8(const struct rtase_private *tp, u16 reg, u8 val8) { writeb(val8, tp->mmio_addr + reg); } static void rtase_w16(const struct rtase_private *tp, u16 reg, u16 val16) { writew(val16, tp->mmio_addr + reg); } static void rtase_w32(const struct rtase_private *tp, u16 reg, u32 val32) { writel(val32, tp->mmio_addr + reg); } static u8 rtase_r8(const struct rtase_private *tp, u16 reg) { return readb(tp->mmio_addr + reg); } static u16 rtase_r16(const struct rtase_private *tp, u16 reg) { return readw(tp->mmio_addr + reg); } static u32 rtase_r32(const struct rtase_private *tp, u16 reg) { return readl(tp->mmio_addr + reg); } static void rtase_free_desc(struct rtase_private *tp) { struct pci_dev *pdev = tp->pdev; u32 i; for (i = 0; i < tp->func_tx_queue_num; i++) { if (!tp->tx_ring[i].desc) continue; dma_free_coherent(&pdev->dev, RTASE_TX_RING_DESC_SIZE, tp->tx_ring[i].desc, tp->tx_ring[i].phy_addr); tp->tx_ring[i].desc = NULL; } for (i = 0; i < tp->func_rx_queue_num; i++) { if (!tp->rx_ring[i].desc) continue; dma_free_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE, tp->rx_ring[i].desc, tp->rx_ring[i].phy_addr); tp->rx_ring[i].desc = NULL; } } static int rtase_alloc_desc(struct rtase_private *tp) { struct pci_dev *pdev = tp->pdev; u32 i; /* rx and tx descriptors needs 256 bytes alignment. * dma_alloc_coherent provides more. */ for (i = 0; i < tp->func_tx_queue_num; i++) { tp->tx_ring[i].desc = dma_alloc_coherent(&pdev->dev, RTASE_TX_RING_DESC_SIZE, &tp->tx_ring[i].phy_addr, GFP_KERNEL); if (!tp->tx_ring[i].desc) goto err_out; } for (i = 0; i < tp->func_rx_queue_num; i++) { tp->rx_ring[i].desc = dma_alloc_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE, &tp->rx_ring[i].phy_addr, GFP_KERNEL); if (!tp->rx_ring[i].desc) goto err_out; } return 0; err_out: rtase_free_desc(tp); return -ENOMEM; } static void rtase_unmap_tx_skb(struct pci_dev *pdev, u32 len, struct rtase_tx_desc *desc) { dma_unmap_single(&pdev->dev, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE); desc->opts1 = cpu_to_le32(RTK_OPTS1_DEBUG_VALUE); desc->opts2 = 0x00; desc->addr = cpu_to_le64(RTK_MAGIC_NUMBER); } static void rtase_tx_clear_range(struct rtase_ring *ring, u32 start, u32 n) { struct rtase_tx_desc *desc_base = ring->desc; struct rtase_private *tp = ring->ivec->tp; u32 i; for (i = 0; i < n; i++) { u32 entry = (start + i) % RTASE_NUM_DESC; struct rtase_tx_desc *desc = desc_base + entry; u32 len = ring->mis.len[entry]; struct sk_buff *skb; if (len == 0) continue; rtase_unmap_tx_skb(tp->pdev, len, desc); ring->mis.len[entry] = 0; skb = ring->skbuff[entry]; if (!skb) continue; tp->stats.tx_dropped++; dev_kfree_skb_any(skb); ring->skbuff[entry] = NULL; } } static void rtase_tx_clear(struct rtase_private *tp) { struct rtase_ring *ring; u16 i; for (i = 0; i < tp->func_tx_queue_num; i++) { ring = &tp->tx_ring[i]; rtase_tx_clear_range(ring, ring->dirty_idx, RTASE_NUM_DESC); ring->cur_idx = 0; ring->dirty_idx = 0; } } static void rtase_mark_to_asic(union rtase_rx_desc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->desc_cmd.opts1) & RTASE_RING_END; desc->desc_status.opts2 = 0; /* force memory writes to complete before releasing descriptor */ dma_wmb(); WRITE_ONCE(desc->desc_cmd.opts1, cpu_to_le32(RTASE_DESC_OWN | eor | rx_buf_sz)); } static u32 rtase_tx_avail(struct rtase_ring *ring) { return READ_ONCE(ring->dirty_idx) + RTASE_NUM_DESC - READ_ONCE(ring->cur_idx); } static int tx_handler(struct rtase_ring *ring, int budget) { const struct rtase_private *tp = ring->ivec->tp; struct net_device *dev = tp->dev; u32 dirty_tx, tx_left; u32 bytes_compl = 0; u32 pkts_compl = 0; int workdone = 0; dirty_tx = ring->dirty_idx; tx_left = READ_ONCE(ring->cur_idx) - dirty_tx; while (tx_left > 0) { u32 entry = dirty_tx % RTASE_NUM_DESC; struct rtase_tx_desc *desc = ring->desc + sizeof(struct rtase_tx_desc) * entry; u32 status; status = le32_to_cpu(desc->opts1); if (status & RTASE_DESC_OWN) break; rtase_unmap_tx_skb(tp->pdev, ring->mis.len[entry], desc); ring->mis.len[entry] = 0; if (ring->skbuff[entry]) { pkts_compl++; bytes_compl += ring->skbuff[entry]->len; napi_consume_skb(ring->skbuff[entry], budget); ring->skbuff[entry] = NULL; } dirty_tx++; tx_left--; workdone++; if (workdone == RTASE_TX_BUDGET_DEFAULT) break; } if (ring->dirty_idx != dirty_tx) { dev_sw_netstats_tx_add(dev, pkts_compl, bytes_compl); WRITE_ONCE(ring->dirty_idx, dirty_tx); netif_subqueue_completed_wake(dev, ring->index, pkts_compl, bytes_compl, rtase_tx_avail(ring), RTASE_TX_START_THRS); if (ring->cur_idx != dirty_tx) rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index)); } return 0; } static void rtase_tx_desc_init(struct rtase_private *tp, u16 idx) { struct rtase_ring *ring = &tp->tx_ring[idx]; struct rtase_tx_desc *desc; u32 i; memset(ring->desc, 0x0, RTASE_TX_RING_DESC_SIZE); memset(ring->skbuff, 0x0, sizeof(ring->skbuff)); ring->cur_idx = 0; ring->dirty_idx = 0; ring->index = idx; ring->alloc_fail = 0; for (i = 0; i < RTASE_NUM_DESC; i++) { ring->mis.len[i] = 0; if ((RTASE_NUM_DESC - 1) == i) { desc = ring->desc + sizeof(struct rtase_tx_desc) * i; desc->opts1 = cpu_to_le32(RTASE_RING_END); } } ring->ring_handler = tx_handler; if (idx < 4) { ring->ivec = &tp->int_vector[idx]; list_add_tail(&ring->ring_entry, &tp->int_vector[idx].ring_list); } else { ring->ivec = &tp->int_vector[0]; list_add_tail(&ring->ring_entry, &tp->int_vector[0].ring_list); } } static void rtase_map_to_asic(union rtase_rx_desc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->desc_cmd.addr = cpu_to_le64(mapping); rtase_mark_to_asic(desc, rx_buf_sz); } static void rtase_make_unusable_by_asic(union rtase_rx_desc *desc) { desc->desc_cmd.addr = cpu_to_le64(RTK_MAGIC_NUMBER); desc->desc_cmd.opts1 &= ~cpu_to_le32(RTASE_DESC_OWN | RSVD_MASK); } static int rtase_alloc_rx_data_buf(struct rtase_ring *ring, void **p_data_buf, union rtase_rx_desc *desc, dma_addr_t *rx_phy_addr) { struct rtase_int_vector *ivec = ring->ivec; const struct rtase_private *tp = ivec->tp; dma_addr_t mapping; struct page *page; page = page_pool_dev_alloc_pages(tp->page_pool); if (!page) { ring->alloc_fail++; goto err_out; } *p_data_buf = page_address(page); mapping = page_pool_get_dma_addr(page); *rx_phy_addr = mapping; rtase_map_to_asic(desc, mapping, tp->rx_buf_sz); return 0; err_out: rtase_make_unusable_by_asic(desc); return -ENOMEM; } static u32 rtase_rx_ring_fill(struct rtase_ring *ring, u32 ring_start, u32 ring_end) { union rtase_rx_desc *desc_base = ring->desc; u32 cur; for (cur = ring_start; ring_end - cur > 0; cur++) { u32 i = cur % RTASE_NUM_DESC; union rtase_rx_desc *desc = desc_base + i; int ret; if (ring->data_buf[i]) continue; ret = rtase_alloc_rx_data_buf(ring, &ring->data_buf[i], desc, &ring->mis.data_phy_addr[i]); if (ret) break; } return cur - ring_start; } static void rtase_mark_as_last_descriptor(union rtase_rx_desc *desc) { desc->desc_cmd.opts1 |= cpu_to_le32(RTASE_RING_END); } static void rtase_rx_ring_clear(struct page_pool *page_pool, struct rtase_ring *ring) { union rtase_rx_desc *desc; struct page *page; u32 i; for (i = 0; i < RTASE_NUM_DESC; i++) { desc = ring->desc + sizeof(union rtase_rx_desc) * i; page = virt_to_head_page(ring->data_buf[i]); if (ring->data_buf[i]) page_pool_put_full_page(page_pool, page, true); rtase_make_unusable_by_asic(desc); } } static int rtase_fragmented_frame(u32 status) { return (status & (RTASE_RX_FIRST_FRAG | RTASE_RX_LAST_FRAG)) != (RTASE_RX_FIRST_FRAG | RTASE_RX_LAST_FRAG); } static void rtase_rx_csum(const struct rtase_private *tp, struct sk_buff *skb, const union rtase_rx_desc *desc) { u32 opts2 = le32_to_cpu(desc->desc_status.opts2); /* rx csum offload */ if (((opts2 & RTASE_RX_V4F) && !(opts2 & RTASE_RX_IPF)) || (opts2 & RTASE_RX_V6F)) { if (((opts2 & RTASE_RX_TCPT) && !(opts2 & RTASE_RX_TCPF)) || ((opts2 & RTASE_RX_UDPT) && !(opts2 & RTASE_RX_UDPF))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } else { skb->ip_summed = CHECKSUM_NONE; } } static void rtase_rx_vlan_skb(union rtase_rx_desc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->desc_status.opts2); if (!(opts2 & RTASE_RX_VLAN_TAG)) return; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & RTASE_VLAN_TAG_MASK)); } static void rtase_rx_skb(const struct rtase_ring *ring, struct sk_buff *skb) { struct rtase_int_vector *ivec = ring->ivec; napi_gro_receive(&ivec->napi, skb); } static int rx_handler(struct rtase_ring *ring, int budget) { union rtase_rx_desc *desc_base = ring->desc; u32 pkt_size, cur_rx, delta, entry, status; struct rtase_private *tp = ring->ivec->tp; struct net_device *dev = tp->dev; union rtase_rx_desc *desc; struct sk_buff *skb; int workdone = 0; cur_rx = ring->cur_idx; entry = cur_rx % RTASE_NUM_DESC; desc = &desc_base[entry]; while (workdone < budget) { status = le32_to_cpu(desc->desc_status.opts1); if (status & RTASE_DESC_OWN) break; /* This barrier is needed to keep us from reading * any other fields out of the rx descriptor until * we know the status of RTASE_DESC_OWN */ dma_rmb(); if (unlikely(status & RTASE_RX_RES)) { if (net_ratelimit()) netdev_warn(dev, "Rx ERROR. status = %08x\n", status); tp->stats.rx_errors++; if (status & (RTASE_RX_RWT | RTASE_RX_RUNT)) tp->stats.rx_length_errors++; if (status & RTASE_RX_CRC) tp->stats.rx_crc_errors++; if (dev->features & NETIF_F_RXALL) goto process_pkt; rtase_mark_to_asic(desc, tp->rx_buf_sz); goto skip_process_pkt; } process_pkt: pkt_size = status & RTASE_RX_PKT_SIZE_MASK; if (likely(!(dev->features & NETIF_F_RXFCS))) pkt_size -= ETH_FCS_LEN; /* The driver does not support incoming fragmented frames. * They are seen as a symptom of over-mtu sized frames. */ if (unlikely(rtase_fragmented_frame(status))) { tp->stats.rx_dropped++; tp->stats.rx_length_errors++; rtase_mark_to_asic(desc, tp->rx_buf_sz); goto skip_process_pkt; } dma_sync_single_for_cpu(&tp->pdev->dev, ring->mis.data_phy_addr[entry], tp->rx_buf_sz, DMA_FROM_DEVICE); skb = build_skb(ring->data_buf[entry], PAGE_SIZE); if (!skb) { tp->stats.rx_dropped++; rtase_mark_to_asic(desc, tp->rx_buf_sz); goto skip_process_pkt; } ring->data_buf[entry] = NULL; if (dev->features & NETIF_F_RXCSUM) rtase_rx_csum(tp, skb, desc); skb_put(skb, pkt_size); skb_mark_for_recycle(skb); skb->protocol = eth_type_trans(skb, dev); if (skb->pkt_type == PACKET_MULTICAST) tp->stats.multicast++; rtase_rx_vlan_skb(desc, skb); rtase_rx_skb(ring, skb); dev_sw_netstats_rx_add(dev, pkt_size); skip_process_pkt: workdone++; cur_rx++; entry = cur_rx % RTASE_NUM_DESC; desc = ring->desc + sizeof(union rtase_rx_desc) * entry; } ring->cur_idx = cur_rx; delta = rtase_rx_ring_fill(ring, ring->dirty_idx, ring->cur_idx); ring->dirty_idx += delta; return workdone; } static void rtase_rx_desc_init(struct rtase_private *tp, u16 idx) { struct rtase_ring *ring = &tp->rx_ring[idx]; u16 i; memset(ring->desc, 0x0, RTASE_RX_RING_DESC_SIZE); memset(ring->data_buf, 0x0, sizeof(ring->data_buf)); ring->cur_idx = 0; ring->dirty_idx = 0; ring->index = idx; ring->alloc_fail = 0; for (i = 0; i < RTASE_NUM_DESC; i++) ring->mis.data_phy_addr[i] = 0; ring->ring_handler = rx_handler; ring->ivec = &tp->int_vector[idx]; list_add_tail(&ring->ring_entry, &tp->int_vector[idx].ring_list); } static void rtase_rx_clear(struct rtase_private *tp) { u32 i; for (i = 0; i < tp->func_rx_queue_num; i++) rtase_rx_ring_clear(tp->page_pool, &tp->rx_ring[i]); page_pool_destroy(tp->page_pool); tp->page_pool = NULL; } static int rtase_init_ring(const struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); struct page_pool_params pp_params = { 0 }; struct page_pool *page_pool; u32 num; u16 i; pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; pp_params.order = 0; pp_params.pool_size = RTASE_NUM_DESC * tp->func_rx_queue_num; pp_params.nid = dev_to_node(&tp->pdev->dev); pp_params.dev = &tp->pdev->dev; pp_params.dma_dir = DMA_FROM_DEVICE; pp_params.max_len = PAGE_SIZE; pp_params.offset = 0; page_pool = page_pool_create(&pp_params); if (IS_ERR(page_pool)) { netdev_err(tp->dev, "failed to create page pool\n"); return -ENOMEM; } tp->page_pool = page_pool; for (i = 0; i < tp->func_tx_queue_num; i++) rtase_tx_desc_init(tp, i); for (i = 0; i < tp->func_rx_queue_num; i++) { rtase_rx_desc_init(tp, i); num = rtase_rx_ring_fill(&tp->rx_ring[i], 0, RTASE_NUM_DESC); if (num != RTASE_NUM_DESC) goto err_out; rtase_mark_as_last_descriptor(tp->rx_ring[i].desc + sizeof(union rtase_rx_desc) * (RTASE_NUM_DESC - 1)); } return 0; err_out: rtase_rx_clear(tp); return -ENOMEM; } static void rtase_interrupt_mitigation(const struct rtase_private *tp) { u32 i; for (i = 0; i < tp->func_tx_queue_num; i++) rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit); for (i = 0; i < tp->func_rx_queue_num; i++) rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit); } static void rtase_tally_counter_addr_fill(const struct rtase_private *tp) { rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr)); rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr)); } static void rtase_tally_counter_clear(const struct rtase_private *tp) { u32 cmd = lower_32_bits(tp->tally_paddr); rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr)); rtase_w32(tp, RTASE_DTCCR0, cmd | RTASE_COUNTER_RESET); } static void rtase_desc_addr_fill(const struct rtase_private *tp) { const struct rtase_ring *ring; u16 i, cmd, val; int err; for (i = 0; i < tp->func_tx_queue_num; i++) { ring = &tp->tx_ring[i]; rtase_w32(tp, RTASE_TX_DESC_ADDR0, lower_32_bits(ring->phy_addr)); rtase_w32(tp, RTASE_TX_DESC_ADDR4, upper_32_bits(ring->phy_addr)); cmd = i | RTASE_TX_DESC_CMD_WE | RTASE_TX_DESC_CMD_CS; rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd); err = read_poll_timeout(rtase_r16, val, !(val & RTASE_TX_DESC_CMD_CS), 10, 1000, false, tp, RTASE_TX_DESC_COMMAND); if (err == -ETIMEDOUT) netdev_err(tp->dev, "error occurred in fill tx descriptor\n"); } for (i = 0; i < tp->func_rx_queue_num; i++) { ring = &tp->rx_ring[i]; if (i == 0) { rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0, lower_32_bits(ring->phy_addr)); rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4, upper_32_bits(ring->phy_addr)); } else { rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)), lower_32_bits(ring->phy_addr)); rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)), upper_32_bits(ring->phy_addr)); } } } static void rtase_hw_set_features(const struct net_device *dev, netdev_features_t features) { const struct rtase_private *tp = netdev_priv(dev); u16 rx_config, val; rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0); if (features & NETIF_F_RXALL) rx_config |= (RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT); else rx_config &= ~(RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT); rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config); val = rtase_r16(tp, RTASE_CPLUS_CMD); if (features & NETIF_F_RXCSUM) rtase_w16(tp, RTASE_CPLUS_CMD, val | RTASE_RX_CHKSUM); else rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RTASE_RX_CHKSUM); rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1); if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) rx_config |= (RTASE_INNER_VLAN_DETAG_EN | RTASE_OUTER_VLAN_DETAG_EN); else rx_config &= ~(RTASE_INNER_VLAN_DETAG_EN | RTASE_OUTER_VLAN_DETAG_EN); rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config); } static void rtase_hw_set_rx_packet_filter(struct net_device *dev) { u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF }; struct rtase_private *tp = netdev_priv(dev); u16 rx_mode; rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~RTASE_ACCEPT_MASK; rx_mode |= RTASE_ACCEPT_BROADCAST | RTASE_ACCEPT_MYPHYS; if (dev->flags & IFF_PROMISC) { rx_mode |= RTASE_ACCEPT_MULTICAST | RTASE_ACCEPT_ALLPHYS; } else if (dev->flags & IFF_ALLMULTI) { rx_mode |= RTASE_ACCEPT_MULTICAST; } else { struct netdev_hw_addr *hw_addr; mc_filter[0] = 0; mc_filter[1] = 0; netdev_for_each_mc_addr(hw_addr, dev) { u32 bit_nr = eth_hw_addr_crc(hw_addr); u32 idx = u32_get_bits(bit_nr, BIT(31)); u32 bit = u32_get_bits(bit_nr, RTASE_MULTICAST_FILTER_MASK); mc_filter[idx] |= BIT(bit); rx_mode |= RTASE_ACCEPT_MULTICAST; } } if (dev->features & NETIF_F_RXALL) rx_mode |= RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT; rtase_w32(tp, RTASE_MAR0, swab32(mc_filter[1])); rtase_w32(tp, RTASE_MAR1, swab32(mc_filter[0])); rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode); } static void rtase_irq_dis_and_clear(const struct rtase_private *tp) { const struct rtase_int_vector *ivec = &tp->int_vector[0]; u32 val1; u16 val2; u8 i; rtase_w32(tp, ivec->imr_addr, 0); val1 = rtase_r32(tp, ivec->isr_addr); rtase_w32(tp, ivec->isr_addr, val1); for (i = 1; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; rtase_w16(tp, ivec->imr_addr, 0); val2 = rtase_r16(tp, ivec->isr_addr); rtase_w16(tp, ivec->isr_addr, val2); } } static void rtase_poll_timeout(const struct rtase_private *tp, u32 cond, u32 sleep_us, u64 timeout_us, u16 reg) { int err; u8 val; err = read_poll_timeout(rtase_r8, val, val & cond, sleep_us, timeout_us, false, tp, reg); if (err == -ETIMEDOUT) netdev_err(tp->dev, "poll reg 0x00%x timeout\n", reg); } static void rtase_nic_reset(const struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); u16 rx_config; u8 val; rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0); rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config & ~RTASE_ACCEPT_MASK); val = rtase_r8(tp, RTASE_MISC); rtase_w8(tp, RTASE_MISC, val | RTASE_RX_DV_GATE_EN); val = rtase_r8(tp, RTASE_CHIP_CMD); rtase_w8(tp, RTASE_CHIP_CMD, val | RTASE_STOP_REQ); mdelay(2); rtase_poll_timeout(tp, RTASE_STOP_REQ_DONE, 100, 150000, RTASE_CHIP_CMD); rtase_poll_timeout(tp, RTASE_TX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR); rtase_poll_timeout(tp, RTASE_RX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR); val = rtase_r8(tp, RTASE_CHIP_CMD); rtase_w8(tp, RTASE_CHIP_CMD, val & ~(RTASE_TE | RTASE_RE)); val = rtase_r8(tp, RTASE_CHIP_CMD); rtase_w8(tp, RTASE_CHIP_CMD, val & ~RTASE_STOP_REQ); rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config); } static void rtase_hw_reset(const struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); rtase_irq_dis_and_clear(tp); rtase_nic_reset(dev); } static void rtase_set_rx_queue(const struct rtase_private *tp) { u16 reg_data; reg_data = rtase_r16(tp, RTASE_FCR); switch (tp->func_rx_queue_num) { case 1: u16p_replace_bits(®_data, 0x1, RTASE_FCR_RXQ_MASK); break; case 2: u16p_replace_bits(®_data, 0x2, RTASE_FCR_RXQ_MASK); break; case 4: u16p_replace_bits(®_data, 0x3, RTASE_FCR_RXQ_MASK); break; } rtase_w16(tp, RTASE_FCR, reg_data); } static void rtase_set_tx_queue(const struct rtase_private *tp) { u16 reg_data; reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1); switch (tp->tx_queue_ctrl) { case 1: u16p_replace_bits(®_data, 0x0, RTASE_TC_MODE_MASK); break; case 2: u16p_replace_bits(®_data, 0x1, RTASE_TC_MODE_MASK); break; case 3: case 4: u16p_replace_bits(®_data, 0x2, RTASE_TC_MODE_MASK); break; default: u16p_replace_bits(®_data, 0x3, RTASE_TC_MODE_MASK); break; } rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data); } static void rtase_hw_config(struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); u32 reg_data32; u16 reg_data16; rtase_hw_reset(dev); /* set rx dma burst */ reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0); reg_data16 &= ~(RTASE_RX_SINGLE_TAG | RTASE_RX_SINGLE_FETCH); u16p_replace_bits(®_data16, RTASE_RX_DMA_BURST_256, RTASE_RX_MX_DMA_MASK); rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16); /* new rx descritpor */ reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1); reg_data16 |= RTASE_RX_NEW_DESC_FORMAT_EN | RTASE_PCIE_NEW_FLOW; u16p_replace_bits(®_data16, 0xF, RTASE_RX_MAX_FETCH_DESC_MASK); rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16); rtase_set_rx_queue(tp); rtase_interrupt_mitigation(tp); /* set tx dma burst size and interframe gap time */ reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0); u32p_replace_bits(®_data32, RTASE_TX_DMA_BURST_UNLIMITED, RTASE_TX_DMA_MASK); u32p_replace_bits(®_data32, RTASE_INTERFRAMEGAP, RTASE_TX_INTER_FRAME_GAP_MASK); rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32); /* new tx descriptor */ reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL); rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 | RTASE_TX_NEW_DESC_FORMAT_EN); /* tx fetch desc number */ rtase_w8(tp, RTASE_TDFNR, 0x10); /* tag num select */ reg_data16 = rtase_r16(tp, RTASE_MTPS); u16p_replace_bits(®_data16, 0x4, RTASE_TAG_NUM_SEL_MASK); rtase_w16(tp, RTASE_MTPS, reg_data16); rtase_set_tx_queue(tp); rtase_w16(tp, RTASE_TOKSEL, 0x5555); rtase_tally_counter_addr_fill(tp); rtase_desc_addr_fill(tp); rtase_hw_set_features(dev, dev->features); /* enable flow control */ reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD); reg_data16 |= (RTASE_FORCE_TXFLOW_EN | RTASE_FORCE_RXFLOW_EN); rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16); /* set near fifo threshold - rx missed issue. */ rtase_w16(tp, RTASE_RFIFONFULL, 0x190); rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz); rtase_hw_set_rx_packet_filter(dev); } static void rtase_nic_enable(const struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); u16 rcr = rtase_r16(tp, RTASE_RX_CONFIG_1); u8 val; rtase_w16(tp, RTASE_RX_CONFIG_1, rcr & ~RTASE_PCIE_RELOAD_EN); rtase_w16(tp, RTASE_RX_CONFIG_1, rcr | RTASE_PCIE_RELOAD_EN); val = rtase_r8(tp, RTASE_CHIP_CMD); rtase_w8(tp, RTASE_CHIP_CMD, val | RTASE_TE | RTASE_RE); val = rtase_r8(tp, RTASE_MISC); rtase_w8(tp, RTASE_MISC, val & ~RTASE_RX_DV_GATE_EN); } static void rtase_enable_hw_interrupt(const struct rtase_private *tp) { const struct rtase_int_vector *ivec = &tp->int_vector[0]; u32 i; rtase_w32(tp, ivec->imr_addr, ivec->imr); for (i = 1; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; rtase_w16(tp, ivec->imr_addr, ivec->imr); } } static void rtase_hw_start(const struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); rtase_nic_enable(dev); rtase_enable_hw_interrupt(tp); } /* the interrupt handler does RXQ0 and TXQ0, TXQ4~7 interrutp status */ static irqreturn_t rtase_interrupt(int irq, void *dev_instance) { const struct rtase_private *tp; struct rtase_int_vector *ivec; u32 status; ivec = dev_instance; tp = ivec->tp; status = rtase_r32(tp, ivec->isr_addr); rtase_w32(tp, ivec->imr_addr, 0x0); rtase_w32(tp, ivec->isr_addr, status & ~RTASE_FOVW); if (napi_schedule_prep(&ivec->napi)) __napi_schedule(&ivec->napi); return IRQ_HANDLED; } /* the interrupt handler does RXQ1&TXQ1 or RXQ2&TXQ2 or RXQ3&TXQ3 interrupt * status according to interrupt vector */ static irqreturn_t rtase_q_interrupt(int irq, void *dev_instance) { const struct rtase_private *tp; struct rtase_int_vector *ivec; u16 status; ivec = dev_instance; tp = ivec->tp; status = rtase_r16(tp, ivec->isr_addr); rtase_w16(tp, ivec->imr_addr, 0x0); rtase_w16(tp, ivec->isr_addr, status); if (napi_schedule_prep(&ivec->napi)) __napi_schedule(&ivec->napi); return IRQ_HANDLED; } static int rtase_poll(struct napi_struct *napi, int budget) { const struct rtase_int_vector *ivec; const struct rtase_private *tp; struct rtase_ring *ring; int total_workdone = 0; ivec = container_of(napi, struct rtase_int_vector, napi); tp = ivec->tp; list_for_each_entry(ring, &ivec->ring_list, ring_entry) total_workdone += ring->ring_handler(ring, budget); if (total_workdone >= budget) return budget; if (napi_complete_done(napi, total_workdone)) { if (!ivec->index) rtase_w32(tp, ivec->imr_addr, ivec->imr); else rtase_w16(tp, ivec->imr_addr, ivec->imr); } return total_workdone; } static int rtase_open(struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); const struct pci_dev *pdev = tp->pdev; struct rtase_int_vector *ivec; u16 i = 0, j; int ret; ivec = &tp->int_vector[0]; tp->rx_buf_sz = RTASE_RX_BUF_SIZE; ret = rtase_alloc_desc(tp); if (ret) return ret; ret = rtase_init_ring(dev); if (ret) goto err_free_all_allocated_mem; rtase_hw_config(dev); if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) { ret = request_irq(ivec->irq, rtase_interrupt, 0, dev->name, ivec); if (ret) goto err_free_all_allocated_irq; /* request other interrupts to handle multiqueue */ for (i = 1; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; snprintf(ivec->name, sizeof(ivec->name), "%s_int%i", tp->dev->name, i); ret = request_irq(ivec->irq, rtase_q_interrupt, 0, ivec->name, ivec); if (ret) goto err_free_all_allocated_irq; } } else { ret = request_irq(pdev->irq, rtase_interrupt, 0, dev->name, ivec); if (ret) goto err_free_all_allocated_mem; } rtase_hw_start(dev); for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; napi_enable(&ivec->napi); } netif_carrier_on(dev); netif_wake_queue(dev); return 0; err_free_all_allocated_irq: for (j = 0; j < i; j++) free_irq(tp->int_vector[j].irq, &tp->int_vector[j]); err_free_all_allocated_mem: rtase_free_desc(tp); return ret; } static void rtase_down(struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); struct rtase_int_vector *ivec; struct rtase_ring *ring, *tmp; u32 i; for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; napi_disable(&ivec->napi); list_for_each_entry_safe(ring, tmp, &ivec->ring_list, ring_entry) list_del(&ring->ring_entry); } netif_tx_disable(dev); netif_carrier_off(dev); rtase_hw_reset(dev); rtase_tx_clear(tp); rtase_rx_clear(tp); } static int rtase_close(struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); const struct pci_dev *pdev = tp->pdev; u32 i; rtase_down(dev); if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) { for (i = 0; i < tp->int_nums; i++) free_irq(tp->int_vector[i].irq, &tp->int_vector[i]); } else { free_irq(pdev->irq, &tp->int_vector[0]); } rtase_free_desc(tp); return 0; } static u32 rtase_tx_vlan_tag(const struct rtase_private *tp, const struct sk_buff *skb) { return (skb_vlan_tag_present(skb)) ? (RTASE_TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb))) : 0x00; } static u32 rtase_tx_csum(struct sk_buff *skb, const struct net_device *dev) { u32 csum_cmd = 0; u8 ip_protocol; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): csum_cmd = RTASE_TX_IPCS_C; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): csum_cmd = RTASE_TX_IPV6F_C; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) csum_cmd |= RTASE_TX_TCPCS_C; else if (ip_protocol == IPPROTO_UDP) csum_cmd |= RTASE_TX_UDPCS_C; csum_cmd |= u32_encode_bits(skb_transport_offset(skb), RTASE_TCPHO_MASK); return csum_cmd; } static int rtase_xmit_frags(struct rtase_ring *ring, struct sk_buff *skb, u32 opts1, u32 opts2) { const struct skb_shared_info *info = skb_shinfo(skb); const struct rtase_private *tp = ring->ivec->tp; const u8 nr_frags = info->nr_frags; struct rtase_tx_desc *txd = NULL; u32 cur_frag, entry; entry = ring->cur_idx; for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) { const skb_frag_t *frag = &info->frags[cur_frag]; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % RTASE_NUM_DESC; txd = ring->desc + sizeof(struct rtase_tx_desc) * entry; len = skb_frag_size(frag); addr = skb_frag_address(frag); mapping = dma_map_single(&tp->pdev->dev, addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) { if (unlikely(net_ratelimit())) netdev_err(tp->dev, "Failed to map TX fragments DMA!\n"); goto err_out; } if (((entry + 1) % RTASE_NUM_DESC) == 0) status = (opts1 | len | RTASE_RING_END); else status = opts1 | len; if (cur_frag == (nr_frags - 1)) { ring->skbuff[entry] = skb; status |= RTASE_TX_LAST_FRAG; } ring->mis.len[entry] = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(opts2); /* make sure the operating fields have been updated */ dma_wmb(); txd->opts1 = cpu_to_le32(status); } return cur_frag; err_out: rtase_tx_clear_range(ring, ring->cur_idx + 1, cur_frag); return -EIO; } static netdev_tx_t rtase_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct rtase_private *tp = netdev_priv(dev); u32 q_idx, entry, len, opts1, opts2; struct netdev_queue *tx_queue; bool stop_queue, door_bell; u32 mss = shinfo->gso_size; struct rtase_tx_desc *txd; struct rtase_ring *ring; dma_addr_t mapping; int frags; /* multiqueues */ q_idx = skb_get_queue_mapping(skb); ring = &tp->tx_ring[q_idx]; tx_queue = netdev_get_tx_queue(dev, q_idx); if (unlikely(!rtase_tx_avail(ring))) { if (net_ratelimit()) netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); netif_stop_queue(dev); return NETDEV_TX_BUSY; } entry = ring->cur_idx % RTASE_NUM_DESC; txd = ring->desc + sizeof(struct rtase_tx_desc) * entry; opts1 = RTASE_DESC_OWN; opts2 = rtase_tx_vlan_tag(tp, skb); /* tcp segmentation offload (or tcp large send) */ if (mss) { if (shinfo->gso_type & SKB_GSO_TCPV4) { opts1 |= RTASE_GIANT_SEND_V4; } else if (shinfo->gso_type & SKB_GSO_TCPV6) { if (skb_cow_head(skb, 0)) goto err_dma_0; tcp_v6_gso_csum_prep(skb); opts1 |= RTASE_GIANT_SEND_V6; } else { WARN_ON_ONCE(1); } opts1 |= u32_encode_bits(skb_transport_offset(skb), RTASE_TCPHO_MASK); opts2 |= u32_encode_bits(mss, RTASE_MSS_MASK); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { opts2 |= rtase_tx_csum(skb, dev); } frags = rtase_xmit_frags(ring, skb, opts1, opts2); if (unlikely(frags < 0)) goto err_dma_0; if (frags) { len = skb_headlen(skb); opts1 |= RTASE_TX_FIRST_FRAG; } else { len = skb->len; ring->skbuff[entry] = skb; opts1 |= RTASE_TX_FIRST_FRAG | RTASE_TX_LAST_FRAG; } if (((entry + 1) % RTASE_NUM_DESC) == 0) opts1 |= (len | RTASE_RING_END); else opts1 |= len; mapping = dma_map_single(&tp->pdev->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) { if (unlikely(net_ratelimit())) netdev_err(dev, "Failed to map TX DMA!\n"); goto err_dma_1; } ring->mis.len[entry] = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(opts2); txd->opts1 = cpu_to_le32(opts1 & ~RTASE_DESC_OWN); /* make sure the operating fields have been updated */ dma_wmb(); door_bell = __netdev_tx_sent_queue(tx_queue, skb->len, netdev_xmit_more()); txd->opts1 = cpu_to_le32(opts1); skb_tx_timestamp(skb); /* tx needs to see descriptor changes before updated cur_idx */ smp_wmb(); WRITE_ONCE(ring->cur_idx, ring->cur_idx + frags + 1); stop_queue = !netif_subqueue_maybe_stop(dev, ring->index, rtase_tx_avail(ring), RTASE_TX_STOP_THRS, RTASE_TX_START_THRS); if (door_bell || stop_queue) rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index)); return NETDEV_TX_OK; err_dma_1: ring->skbuff[entry] = NULL; rtase_tx_clear_range(ring, ring->cur_idx + 1, frags); err_dma_0: tp->stats.tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static void rtase_set_rx_mode(struct net_device *dev) { rtase_hw_set_rx_packet_filter(dev); } static void rtase_enable_eem_write(const struct rtase_private *tp) { u8 val; val = rtase_r8(tp, RTASE_EEM); rtase_w8(tp, RTASE_EEM, val | RTASE_EEM_UNLOCK); } static void rtase_disable_eem_write(const struct rtase_private *tp) { u8 val; val = rtase_r8(tp, RTASE_EEM); rtase_w8(tp, RTASE_EEM, val & ~RTASE_EEM_UNLOCK); } static void rtase_rar_set(const struct rtase_private *tp, const u8 *addr) { u32 rar_low, rar_high; rar_low = (u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24); rar_high = (u32)addr[4] | ((u32)addr[5] << 8); rtase_enable_eem_write(tp); rtase_w32(tp, RTASE_MAC0, rar_low); rtase_w32(tp, RTASE_MAC4, rar_high); rtase_disable_eem_write(tp); rtase_w16(tp, RTASE_LBK_CTRL, RTASE_LBK_ATLD | RTASE_LBK_CLR); } static int rtase_set_mac_address(struct net_device *dev, void *p) { struct rtase_private *tp = netdev_priv(dev); int ret; ret = eth_mac_addr(dev, p); if (ret) return ret; rtase_rar_set(tp, dev->dev_addr); return 0; } static int rtase_change_mtu(struct net_device *dev, int new_mtu) { dev->mtu = new_mtu; netdev_update_features(dev); return 0; } static void rtase_wait_for_quiescence(const struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); struct rtase_int_vector *ivec; u32 i; for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; synchronize_irq(ivec->irq); /* wait for any pending NAPI task to complete */ napi_disable(&ivec->napi); } rtase_irq_dis_and_clear(tp); for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; napi_enable(&ivec->napi); } } static void rtase_sw_reset(struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); int ret; netif_stop_queue(dev); netif_carrier_off(dev); rtase_hw_reset(dev); /* let's wait a bit while any (async) irq lands on */ rtase_wait_for_quiescence(dev); rtase_tx_clear(tp); rtase_rx_clear(tp); ret = rtase_init_ring(dev); if (ret) { netdev_err(dev, "unable to init ring\n"); rtase_free_desc(tp); return; } rtase_hw_config(dev); /* always link, so start to transmit & receive */ rtase_hw_start(dev); netif_carrier_on(dev); netif_wake_queue(dev); } static void rtase_dump_tally_counter(const struct rtase_private *tp) { dma_addr_t paddr = tp->tally_paddr; u32 cmd = lower_32_bits(paddr); u32 val; int err; rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(paddr)); rtase_w32(tp, RTASE_DTCCR0, cmd); rtase_w32(tp, RTASE_DTCCR0, cmd | RTASE_COUNTER_DUMP); err = read_poll_timeout(rtase_r32, val, !(val & RTASE_COUNTER_DUMP), 10, 250, false, tp, RTASE_DTCCR0); if (err == -ETIMEDOUT) netdev_err(tp->dev, "error occurred in dump tally counter\n"); } static void rtase_dump_state(const struct net_device *dev) { const struct rtase_private *tp = netdev_priv(dev); int max_reg_size = RTASE_PCI_REGS_SIZE; const struct rtase_counters *counters; const struct rtase_ring *ring; u32 dword_rd; int n = 0; ring = &tp->tx_ring[0]; netdev_err(dev, "Tx descriptor info:\n"); netdev_err(dev, "Tx curIdx = 0x%x\n", ring->cur_idx); netdev_err(dev, "Tx dirtyIdx = 0x%x\n", ring->dirty_idx); netdev_err(dev, "Tx phyAddr = %pad\n", &ring->phy_addr); ring = &tp->rx_ring[0]; netdev_err(dev, "Rx descriptor info:\n"); netdev_err(dev, "Rx curIdx = 0x%x\n", ring->cur_idx); netdev_err(dev, "Rx dirtyIdx = 0x%x\n", ring->dirty_idx); netdev_err(dev, "Rx phyAddr = %pad\n", &ring->phy_addr); netdev_err(dev, "Device Registers:\n"); netdev_err(dev, "Chip Command = 0x%02x\n", rtase_r8(tp, RTASE_CHIP_CMD)); netdev_err(dev, "IMR = %08x\n", rtase_r32(tp, RTASE_IMR0)); netdev_err(dev, "ISR = %08x\n", rtase_r32(tp, RTASE_ISR0)); netdev_err(dev, "Boot Ctrl Reg(0xE004) = %04x\n", rtase_r16(tp, RTASE_BOOT_CTL)); netdev_err(dev, "EPHY ISR(0xE014) = %04x\n", rtase_r16(tp, RTASE_EPHY_ISR)); netdev_err(dev, "EPHY IMR(0xE016) = %04x\n", rtase_r16(tp, RTASE_EPHY_IMR)); netdev_err(dev, "CLKSW SET REG(0xE018) = %04x\n", rtase_r16(tp, RTASE_CLKSW_SET)); netdev_err(dev, "Dump PCI Registers:\n"); while (n < max_reg_size) { if ((n % RTASE_DWORD_MOD) == 0) netdev_err(tp->dev, "0x%03x:\n", n); pci_read_config_dword(tp->pdev, n, &dword_rd); netdev_err(tp->dev, "%08x\n", dword_rd); n += 4; } netdev_err(dev, "Dump tally counter:\n"); counters = tp->tally_vaddr; rtase_dump_tally_counter(tp); netdev_err(dev, "tx_packets %lld\n", le64_to_cpu(counters->tx_packets)); netdev_err(dev, "rx_packets %lld\n", le64_to_cpu(counters->rx_packets)); netdev_err(dev, "tx_errors %lld\n", le64_to_cpu(counters->tx_errors)); netdev_err(dev, "rx_errors %d\n", le32_to_cpu(counters->rx_errors)); netdev_err(dev, "rx_missed %d\n", le16_to_cpu(counters->rx_missed)); netdev_err(dev, "align_errors %d\n", le16_to_cpu(counters->align_errors)); netdev_err(dev, "tx_one_collision %d\n", le32_to_cpu(counters->tx_one_collision)); netdev_err(dev, "tx_multi_collision %d\n", le32_to_cpu(counters->tx_multi_collision)); netdev_err(dev, "rx_unicast %lld\n", le64_to_cpu(counters->rx_unicast)); netdev_err(dev, "rx_broadcast %lld\n", le64_to_cpu(counters->rx_broadcast)); netdev_err(dev, "rx_multicast %d\n", le32_to_cpu(counters->rx_multicast)); netdev_err(dev, "tx_aborted %d\n", le16_to_cpu(counters->tx_aborted)); netdev_err(dev, "tx_underrun %d\n", le16_to_cpu(counters->tx_underrun)); } static void rtase_tx_timeout(struct net_device *dev, unsigned int txqueue) { rtase_dump_state(dev); rtase_sw_reset(dev); } static void rtase_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { const struct rtase_private *tp = netdev_priv(dev); const struct rtase_counters *counters; counters = tp->tally_vaddr; dev_fetch_sw_netstats(stats, dev->tstats); /* fetch additional counter values missing in stats collected by driver * from tally counter */ rtase_dump_tally_counter(tp); stats->rx_errors = tp->stats.rx_errors; stats->tx_errors = le64_to_cpu(counters->tx_errors); stats->rx_dropped = tp->stats.rx_dropped; stats->tx_dropped = tp->stats.tx_dropped; stats->multicast = tp->stats.multicast; stats->rx_length_errors = tp->stats.rx_length_errors; } static netdev_features_t rtase_fix_features(struct net_device *dev, netdev_features_t features) { netdev_features_t features_fix = features; /* not support TSO for jumbo frames */ if (dev->mtu > ETH_DATA_LEN) features_fix &= ~NETIF_F_ALL_TSO; return features_fix; } static int rtase_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t features_set = features; features_set &= NETIF_F_RXALL | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; if (features_set ^ dev->features) rtase_hw_set_features(dev, features_set); return 0; } static const struct net_device_ops rtase_netdev_ops = { .ndo_open = rtase_open, .ndo_stop = rtase_close, .ndo_start_xmit = rtase_start_xmit, .ndo_set_rx_mode = rtase_set_rx_mode, .ndo_set_mac_address = rtase_set_mac_address, .ndo_change_mtu = rtase_change_mtu, .ndo_tx_timeout = rtase_tx_timeout, .ndo_get_stats64 = rtase_get_stats64, .ndo_fix_features = rtase_fix_features, .ndo_set_features = rtase_set_features, }; static void rtase_get_mac_address(struct net_device *dev) { struct rtase_private *tp = netdev_priv(dev); u8 mac_addr[ETH_ALEN] __aligned(2) = {}; u32 i; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = rtase_r8(tp, RTASE_MAC0 + i); if (!is_valid_ether_addr(mac_addr)) { eth_hw_addr_random(dev); netdev_warn(dev, "Random ether addr %pM\n", dev->dev_addr); } else { eth_hw_addr_set(dev, mac_addr); ether_addr_copy(dev->perm_addr, dev->dev_addr); } rtase_rar_set(tp, dev->dev_addr); } static int rtase_get_settings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { u32 supported = SUPPORTED_MII | SUPPORTED_Pause | SUPPORTED_Asym_Pause; const struct rtase_private *tp = netdev_priv(dev); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); switch (tp->hw_ver) { case RTASE_HW_VER_906X_7XA: case RTASE_HW_VER_906X_7XC: cmd->base.speed = SPEED_5000; break; case RTASE_HW_VER_907XD_V1: case RTASE_HW_VER_907XD_VA: cmd->base.speed = SPEED_10000; break; } cmd->base.duplex = DUPLEX_FULL; cmd->base.port = PORT_MII; cmd->base.autoneg = AUTONEG_DISABLE; return 0; } static void rtase_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { const struct rtase_private *tp = netdev_priv(dev); u16 value = rtase_r16(tp, RTASE_CPLUS_CMD); pause->autoneg = AUTONEG_DISABLE; pause->tx_pause = !!(value & RTASE_FORCE_TXFLOW_EN); pause->rx_pause = !!(value & RTASE_FORCE_RXFLOW_EN); } static int rtase_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { const struct rtase_private *tp = netdev_priv(dev); u16 value = rtase_r16(tp, RTASE_CPLUS_CMD); if (pause->autoneg) return -EOPNOTSUPP; value &= ~(RTASE_FORCE_TXFLOW_EN | RTASE_FORCE_RXFLOW_EN); if (pause->tx_pause) value |= RTASE_FORCE_TXFLOW_EN; if (pause->rx_pause) value |= RTASE_FORCE_RXFLOW_EN; rtase_w16(tp, RTASE_CPLUS_CMD, value); return 0; } static void rtase_get_eth_mac_stats(struct net_device *dev, struct ethtool_eth_mac_stats *stats) { struct rtase_private *tp = netdev_priv(dev); const struct rtase_counters *counters; counters = tp->tally_vaddr; rtase_dump_tally_counter(tp); stats->FramesTransmittedOK = le64_to_cpu(counters->tx_packets); stats->FramesReceivedOK = le64_to_cpu(counters->rx_packets); stats->FramesLostDueToIntMACXmitError = le64_to_cpu(counters->tx_errors); stats->BroadcastFramesReceivedOK = le64_to_cpu(counters->rx_broadcast); } static const struct ethtool_ops rtase_ethtool_ops = { .get_link = ethtool_op_get_link, .get_link_ksettings = rtase_get_settings, .get_pauseparam = rtase_get_pauseparam, .set_pauseparam = rtase_set_pauseparam, .get_eth_mac_stats = rtase_get_eth_mac_stats, .get_ts_info = ethtool_op_get_ts_info, }; static void rtase_init_netdev_ops(struct net_device *dev) { dev->netdev_ops = &rtase_netdev_ops; dev->ethtool_ops = &rtase_ethtool_ops; } static void rtase_reset_interrupt(struct pci_dev *pdev, const struct rtase_private *tp) { if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) pci_disable_msix(pdev); else pci_disable_msi(pdev); } static int rtase_alloc_msix(struct pci_dev *pdev, struct rtase_private *tp) { int ret, irq; u16 i; memset(tp->msix_entry, 0x0, RTASE_NUM_MSIX * sizeof(struct msix_entry)); for (i = 0; i < RTASE_NUM_MSIX; i++) tp->msix_entry[i].entry = i; ret = pci_enable_msix_exact(pdev, tp->msix_entry, tp->int_nums); if (ret) return ret; for (i = 0; i < tp->int_nums; i++) { irq = pci_irq_vector(pdev, i); if (!irq) { pci_disable_msix(pdev); return irq; } tp->int_vector[i].irq = irq; } return 0; } static int rtase_alloc_interrupt(struct pci_dev *pdev, struct rtase_private *tp) { int ret; ret = rtase_alloc_msix(pdev, tp); if (ret) { ret = pci_enable_msi(pdev); if (ret) { dev_err(&pdev->dev, "unable to alloc interrupt.(MSI)\n"); return ret; } tp->sw_flag |= RTASE_SWF_MSI_ENABLED; } else { tp->sw_flag |= RTASE_SWF_MSIX_ENABLED; } return 0; } static void rtase_init_hardware(const struct rtase_private *tp) { u16 i; for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++) rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0); } static void rtase_init_int_vector(struct rtase_private *tp) { u16 i; /* interrupt vector 0 */ tp->int_vector[0].tp = tp; tp->int_vector[0].index = 0; tp->int_vector[0].imr_addr = RTASE_IMR0; tp->int_vector[0].isr_addr = RTASE_ISR0; tp->int_vector[0].imr = RTASE_ROK | RTASE_RDU | RTASE_TOK | RTASE_TOK4 | RTASE_TOK5 | RTASE_TOK6 | RTASE_TOK7; tp->int_vector[0].poll = rtase_poll; memset(tp->int_vector[0].name, 0x0, sizeof(tp->int_vector[0].name)); INIT_LIST_HEAD(&tp->int_vector[0].ring_list); netif_napi_add(tp->dev, &tp->int_vector[0].napi, tp->int_vector[0].poll); /* interrupt vector 1 ~ 3 */ for (i = 1; i < tp->int_nums; i++) { tp->int_vector[i].tp = tp; tp->int_vector[i].index = i; tp->int_vector[i].imr_addr = RTASE_IMR1 + (i - 1) * 4; tp->int_vector[i].isr_addr = RTASE_ISR1 + (i - 1) * 4; tp->int_vector[i].imr = RTASE_Q_ROK | RTASE_Q_RDU | RTASE_Q_TOK; tp->int_vector[i].poll = rtase_poll; memset(tp->int_vector[i].name, 0x0, sizeof(tp->int_vector[0].name)); INIT_LIST_HEAD(&tp->int_vector[i].ring_list); netif_napi_add(tp->dev, &tp->int_vector[i].napi, tp->int_vector[i].poll); } } static u16 rtase_calc_time_mitigation(u32 time_us) { u8 msb, time_count, time_unit; u16 int_miti; time_us = min_t(int, time_us, RTASE_MITI_MAX_TIME); msb = fls(time_us); if (msb >= RTASE_MITI_COUNT_BIT_NUM) { time_unit = msb - RTASE_MITI_COUNT_BIT_NUM; time_count = time_us >> (msb - RTASE_MITI_COUNT_BIT_NUM); } else { time_unit = 0; time_count = time_us; } int_miti = u16_encode_bits(time_count, RTASE_MITI_TIME_COUNT_MASK) | u16_encode_bits(time_unit, RTASE_MITI_TIME_UNIT_MASK); return int_miti; } static u16 rtase_calc_packet_num_mitigation(u16 pkt_num) { u8 msb, pkt_num_count, pkt_num_unit; u16 int_miti; pkt_num = min_t(int, pkt_num, RTASE_MITI_MAX_PKT_NUM); if (pkt_num > 60) { pkt_num_unit = RTASE_MITI_MAX_PKT_NUM_IDX; pkt_num_count = pkt_num / RTASE_MITI_MAX_PKT_NUM_UNIT; } else { msb = fls(pkt_num); if (msb >= RTASE_MITI_COUNT_BIT_NUM) { pkt_num_unit = msb - RTASE_MITI_COUNT_BIT_NUM; pkt_num_count = pkt_num >> (msb - RTASE_MITI_COUNT_BIT_NUM); } else { pkt_num_unit = 0; pkt_num_count = pkt_num; } } int_miti = u16_encode_bits(pkt_num_count, RTASE_MITI_PKT_NUM_COUNT_MASK) | u16_encode_bits(pkt_num_unit, RTASE_MITI_PKT_NUM_UNIT_MASK); return int_miti; } static void rtase_init_software_variable(struct pci_dev *pdev, struct rtase_private *tp) { u16 int_miti; tp->tx_queue_ctrl = RTASE_TXQ_CTRL; tp->func_tx_queue_num = RTASE_FUNC_TXQ_NUM; tp->func_rx_queue_num = RTASE_FUNC_RXQ_NUM; tp->int_nums = RTASE_INTERRUPT_NUM; int_miti = rtase_calc_time_mitigation(RTASE_MITI_DEFAULT_TIME) | rtase_calc_packet_num_mitigation(RTASE_MITI_DEFAULT_PKT_NUM); tp->tx_int_mit = int_miti; tp->rx_int_mit = int_miti; tp->sw_flag = 0; rtase_init_int_vector(tp); /* MTU range: 60 - hw-specific max */ tp->dev->min_mtu = ETH_ZLEN; tp->dev->max_mtu = RTASE_MAX_JUMBO_SIZE; } static int rtase_check_mac_version_valid(struct rtase_private *tp) { int ret = -ENODEV; tp->hw_ver = rtase_r32(tp, RTASE_TX_CONFIG_0) & RTASE_HW_VER_MASK; switch (tp->hw_ver) { case RTASE_HW_VER_906X_7XA: case RTASE_HW_VER_906X_7XC: case RTASE_HW_VER_907XD_V1: case RTASE_HW_VER_907XD_VA: ret = 0; break; } return ret; } static int rtase_init_board(struct pci_dev *pdev, struct net_device **dev_out, void __iomem **ioaddr_out) { struct net_device *dev; void __iomem *ioaddr; int ret = -ENOMEM; /* dev zeroed in alloc_etherdev */ dev = alloc_etherdev_mq(sizeof(struct rtase_private), RTASE_FUNC_TXQ_NUM); if (!dev) goto err_out; SET_NETDEV_DEV(dev, &pdev->dev); ret = pci_enable_device(pdev); if (ret) goto err_out_free_dev; /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { ret = -ENODEV; goto err_out_disable; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, 2) < RTASE_REGS_SIZE) { ret = -ENODEV; goto err_out_disable; } ret = pci_request_regions(pdev, KBUILD_MODNAME); if (ret) goto err_out_disable; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(&pdev->dev, "no usable dma addressing method\n"); goto err_out_free_res; } pci_set_master(pdev); /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); if (!ioaddr) { ret = -EIO; goto err_out_free_res; } *ioaddr_out = ioaddr; *dev_out = dev; return ret; err_out_free_res: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out_free_dev: free_netdev(dev); err_out: *ioaddr_out = NULL; *dev_out = NULL; return ret; } static void rtase_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { const struct rtase_private *tp = netdev_priv(dev); rtase_rar_set(tp, tp->dev->perm_addr); iounmap(ioaddr); if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) pci_disable_msix(pdev); else pci_disable_msi(pdev); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(dev); } static int rtase_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct rtase_int_vector *ivec; void __iomem *ioaddr = NULL; struct rtase_private *tp; int ret, i; if (!pdev->is_physfn && pdev->is_virtfn) { dev_err(&pdev->dev, "This module does not support a virtual function."); return -EINVAL; } dev_dbg(&pdev->dev, "Automotive Switch Ethernet driver loaded\n"); ret = rtase_init_board(pdev, &dev, &ioaddr); if (ret) return ret; tp = netdev_priv(dev); tp->mmio_addr = ioaddr; tp->dev = dev; tp->pdev = pdev; /* identify chip attached to board */ ret = rtase_check_mac_version_valid(tp); if (ret) { dev_err(&pdev->dev, "unknown chip version: 0x%08x, contact rtase maintainers (see MAINTAINERS file)\n", tp->hw_ver); goto err_out_release_board; } rtase_init_software_variable(pdev, tp); rtase_init_hardware(tp); ret = rtase_alloc_interrupt(pdev, tp); if (ret) { dev_err(&pdev->dev, "unable to alloc MSIX/MSI\n"); goto err_out_del_napi; } rtase_init_netdev_ops(dev); dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_IPV6_CSUM | NETIF_F_TSO6; dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXALL | NETIF_F_RXFCS | NETIF_F_IPV6_CSUM | NETIF_F_TSO6; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; netif_set_tso_max_size(dev, RTASE_LSO_64K); netif_set_tso_max_segs(dev, RTASE_NIC_MAX_PHYS_BUF_COUNT_LSO2); rtase_get_mac_address(dev); tp->tally_vaddr = dma_alloc_coherent(&pdev->dev, sizeof(*tp->tally_vaddr), &tp->tally_paddr, GFP_KERNEL); if (!tp->tally_vaddr) { ret = -ENOMEM; goto err_out_free_dma; } rtase_tally_counter_clear(tp); pci_set_drvdata(pdev, dev); netif_carrier_off(dev); ret = register_netdev(dev); if (ret) goto err_out_free_dma; netdev_dbg(dev, "%pM, IRQ %d\n", dev->dev_addr, dev->irq); return 0; err_out_free_dma: if (tp->tally_vaddr) { dma_free_coherent(&pdev->dev, sizeof(*tp->tally_vaddr), tp->tally_vaddr, tp->tally_paddr); tp->tally_vaddr = NULL; } err_out_del_napi: for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; netif_napi_del(&ivec->napi); } err_out_release_board: rtase_release_board(pdev, dev, ioaddr); return ret; } static void rtase_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtase_private *tp = netdev_priv(dev); struct rtase_int_vector *ivec; u32 i; unregister_netdev(dev); for (i = 0; i < tp->int_nums; i++) { ivec = &tp->int_vector[i]; netif_napi_del(&ivec->napi); } rtase_reset_interrupt(pdev, tp); if (tp->tally_vaddr) { dma_free_coherent(&pdev->dev, sizeof(*tp->tally_vaddr), tp->tally_vaddr, tp->tally_paddr); tp->tally_vaddr = NULL; } rtase_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } static void rtase_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); const struct rtase_private *tp; tp = netdev_priv(dev); if (netif_running(dev)) rtase_close(dev); rtase_reset_interrupt(pdev, tp); } static int rtase_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); if (netif_running(dev)) { netif_device_detach(dev); rtase_hw_reset(dev); } return 0; } static int rtase_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtase_private *tp = netdev_priv(dev); int ret; /* restore last modified mac address */ rtase_rar_set(tp, dev->dev_addr); if (!netif_running(dev)) goto out; rtase_wait_for_quiescence(dev); rtase_tx_clear(tp); rtase_rx_clear(tp); ret = rtase_init_ring(dev); if (ret) { netdev_err(dev, "unable to init ring\n"); rtase_free_desc(tp); return -ENOMEM; } rtase_hw_config(dev); /* always link, so start to transmit & receive */ rtase_hw_start(dev); netif_device_attach(dev); out: return 0; } static const struct dev_pm_ops rtase_pm_ops = { SYSTEM_SLEEP_PM_OPS(rtase_suspend, rtase_resume) }; static struct pci_driver rtase_pci_driver = { .name = KBUILD_MODNAME, .id_table = rtase_pci_tbl, .probe = rtase_init_one, .remove = rtase_remove_one, .shutdown = rtase_shutdown, .driver.pm = pm_ptr(&rtase_pm_ops), }; module_pci_driver(rtase_pci_driver);