// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. */ #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "nic.h" #include "farch_regs.h" #include "io.h" #include "phy.h" #include "workarounds.h" #include "selftest.h" #include "mdio_10g.h" /* Hardware control for SFC4000 (aka Falcon). */ /************************************************************************** * * NIC stats * ************************************************************************** */ #define FALCON_MAC_STATS_SIZE 0x100 #define XgRxOctets_offset 0x0 #define XgRxOctets_WIDTH 48 #define XgRxOctetsOK_offset 0x8 #define XgRxOctetsOK_WIDTH 48 #define XgRxPkts_offset 0x10 #define XgRxPkts_WIDTH 32 #define XgRxPktsOK_offset 0x14 #define XgRxPktsOK_WIDTH 32 #define XgRxBroadcastPkts_offset 0x18 #define XgRxBroadcastPkts_WIDTH 32 #define XgRxMulticastPkts_offset 0x1C #define XgRxMulticastPkts_WIDTH 32 #define XgRxUnicastPkts_offset 0x20 #define XgRxUnicastPkts_WIDTH 32 #define XgRxUndersizePkts_offset 0x24 #define XgRxUndersizePkts_WIDTH 32 #define XgRxOversizePkts_offset 0x28 #define XgRxOversizePkts_WIDTH 32 #define XgRxJabberPkts_offset 0x2C #define XgRxJabberPkts_WIDTH 32 #define XgRxUndersizeFCSerrorPkts_offset 0x30 #define XgRxUndersizeFCSerrorPkts_WIDTH 32 #define XgRxDropEvents_offset 0x34 #define XgRxDropEvents_WIDTH 32 #define XgRxFCSerrorPkts_offset 0x38 #define XgRxFCSerrorPkts_WIDTH 32 #define XgRxAlignError_offset 0x3C #define XgRxAlignError_WIDTH 32 #define XgRxSymbolError_offset 0x40 #define XgRxSymbolError_WIDTH 32 #define XgRxInternalMACError_offset 0x44 #define XgRxInternalMACError_WIDTH 32 #define XgRxControlPkts_offset 0x48 #define XgRxControlPkts_WIDTH 32 #define XgRxPausePkts_offset 0x4C #define XgRxPausePkts_WIDTH 32 #define XgRxPkts64Octets_offset 0x50 #define XgRxPkts64Octets_WIDTH 32 #define XgRxPkts65to127Octets_offset 0x54 #define XgRxPkts65to127Octets_WIDTH 32 #define XgRxPkts128to255Octets_offset 0x58 #define XgRxPkts128to255Octets_WIDTH 32 #define XgRxPkts256to511Octets_offset 0x5C #define XgRxPkts256to511Octets_WIDTH 32 #define XgRxPkts512to1023Octets_offset 0x60 #define XgRxPkts512to1023Octets_WIDTH 32 #define XgRxPkts1024to15xxOctets_offset 0x64 #define XgRxPkts1024to15xxOctets_WIDTH 32 #define XgRxPkts15xxtoMaxOctets_offset 0x68 #define XgRxPkts15xxtoMaxOctets_WIDTH 32 #define XgRxLengthError_offset 0x6C #define XgRxLengthError_WIDTH 32 #define XgTxPkts_offset 0x80 #define XgTxPkts_WIDTH 32 #define XgTxOctets_offset 0x88 #define XgTxOctets_WIDTH 48 #define XgTxMulticastPkts_offset 0x90 #define XgTxMulticastPkts_WIDTH 32 #define XgTxBroadcastPkts_offset 0x94 #define XgTxBroadcastPkts_WIDTH 32 #define XgTxUnicastPkts_offset 0x98 #define XgTxUnicastPkts_WIDTH 32 #define XgTxControlPkts_offset 0x9C #define XgTxControlPkts_WIDTH 32 #define XgTxPausePkts_offset 0xA0 #define XgTxPausePkts_WIDTH 32 #define XgTxPkts64Octets_offset 0xA4 #define XgTxPkts64Octets_WIDTH 32 #define XgTxPkts65to127Octets_offset 0xA8 #define XgTxPkts65to127Octets_WIDTH 32 #define XgTxPkts128to255Octets_offset 0xAC #define XgTxPkts128to255Octets_WIDTH 32 #define XgTxPkts256to511Octets_offset 0xB0 #define XgTxPkts256to511Octets_WIDTH 32 #define XgTxPkts512to1023Octets_offset 0xB4 #define XgTxPkts512to1023Octets_WIDTH 32 #define XgTxPkts1024to15xxOctets_offset 0xB8 #define XgTxPkts1024to15xxOctets_WIDTH 32 #define XgTxPkts1519toMaxOctets_offset 0xBC #define XgTxPkts1519toMaxOctets_WIDTH 32 #define XgTxUndersizePkts_offset 0xC0 #define XgTxUndersizePkts_WIDTH 32 #define XgTxOversizePkts_offset 0xC4 #define XgTxOversizePkts_WIDTH 32 #define XgTxNonTcpUdpPkt_offset 0xC8 #define XgTxNonTcpUdpPkt_WIDTH 16 #define XgTxMacSrcErrPkt_offset 0xCC #define XgTxMacSrcErrPkt_WIDTH 16 #define XgTxIpSrcErrPkt_offset 0xD0 #define XgTxIpSrcErrPkt_WIDTH 16 #define XgDmaDone_offset 0xD4 #define XgDmaDone_WIDTH 32 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \ (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset)) #define FALCON_DMA_STAT(ext_name, hw_name) \ [FALCON_STAT_ ## ext_name] = \ { #ext_name, \ /* 48-bit stats are zero-padded to 64 on DMA */ \ hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \ hw_name ## _ ## offset } #define FALCON_OTHER_STAT(ext_name) \ [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 } #define GENERIC_SW_STAT(ext_name) \ [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = { FALCON_DMA_STAT(tx_bytes, XgTxOctets), FALCON_DMA_STAT(tx_packets, XgTxPkts), FALCON_DMA_STAT(tx_pause, XgTxPausePkts), FALCON_DMA_STAT(tx_control, XgTxControlPkts), FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts), FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts), FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts), FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts), FALCON_DMA_STAT(tx_64, XgTxPkts64Octets), FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets), FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets), FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets), FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets), FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets), FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets), FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts), FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt), FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt), FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt), FALCON_DMA_STAT(rx_bytes, XgRxOctets), FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK), FALCON_OTHER_STAT(rx_bad_bytes), FALCON_DMA_STAT(rx_packets, XgRxPkts), FALCON_DMA_STAT(rx_good, XgRxPktsOK), FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts), FALCON_DMA_STAT(rx_pause, XgRxPausePkts), FALCON_DMA_STAT(rx_control, XgRxControlPkts), FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts), FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts), FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts), FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts), FALCON_DMA_STAT(rx_64, XgRxPkts64Octets), FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets), FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets), FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets), FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets), FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets), FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets), FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts), FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts), FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts), FALCON_DMA_STAT(rx_overflow, XgRxDropEvents), FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError), FALCON_DMA_STAT(rx_align_error, XgRxAlignError), FALCON_DMA_STAT(rx_length_error, XgRxLengthError), FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError), FALCON_OTHER_STAT(rx_nodesc_drop_cnt), GENERIC_SW_STAT(rx_nodesc_trunc), GENERIC_SW_STAT(rx_noskb_drops), }; static const unsigned long falcon_stat_mask[] = { [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL, }; /************************************************************************** * * Basic SPI command set and bit definitions * *************************************************************************/ #define SPI_WRSR 0x01 /* Write status register */ #define SPI_WRITE 0x02 /* Write data to memory array */ #define SPI_READ 0x03 /* Read data from memory array */ #define SPI_WRDI 0x04 /* Reset write enable latch */ #define SPI_RDSR 0x05 /* Read status register */ #define SPI_WREN 0x06 /* Set write enable latch */ #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */ #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */ #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */ #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */ #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */ #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */ #define SPI_STATUS_NRDY 0x01 /* Device busy flag */ /************************************************************************** * * Non-volatile memory layout * ************************************************************************** */ /* SFC4000 flash is partitioned into: * 0-0x400 chip and board config (see struct falcon_nvconfig) * 0x400-0x8000 unused (or may contain VPD if EEPROM not present) * 0x8000-end boot code (mapped to PCI expansion ROM) * SFC4000 small EEPROM (size < 0x400) is used for VPD only. * SFC4000 large EEPROM (size >= 0x400) is partitioned into: * 0-0x400 chip and board config * configurable VPD * 0x800-0x1800 boot config * Aside from the chip and board config, all of these are optional and may * be absent or truncated depending on the devices used. */ #define FALCON_NVCONFIG_END 0x400U #define FALCON_FLASH_BOOTCODE_START 0x8000U #define FALCON_EEPROM_BOOTCONFIG_START 0x800U #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U /* Board configuration v2 (v1 is obsolete; later versions are compatible) */ struct falcon_nvconfig_board_v2 { __le16 nports; u8 port0_phy_addr; u8 port0_phy_type; u8 port1_phy_addr; u8 port1_phy_type; __le16 asic_sub_revision; __le16 board_revision; } __packed; /* Board configuration v3 extra information */ struct falcon_nvconfig_board_v3 { __le32 spi_device_type[2]; } __packed; /* Bit numbers for spi_device_type */ #define SPI_DEV_TYPE_SIZE_LBN 0 #define SPI_DEV_TYPE_SIZE_WIDTH 5 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5 #define SPI_DEV_TYPE_FIELD(type, field) \ (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field))) #define FALCON_NVCONFIG_OFFSET 0x300 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C struct falcon_nvconfig { ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */ u8 mac_address[2][8]; /* 0x310 */ ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */ ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */ ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */ ef4_oword_t hw_init_reg; /* 0x350 */ ef4_oword_t nic_stat_reg; /* 0x360 */ ef4_oword_t glb_ctl_reg; /* 0x370 */ ef4_oword_t srm_cfg_reg; /* 0x380 */ ef4_oword_t spare_reg; /* 0x390 */ __le16 board_magic_num; /* 0x3A0 */ __le16 board_struct_ver; __le16 board_checksum; struct falcon_nvconfig_board_v2 board_v2; ef4_oword_t ee_base_page_reg; /* 0x3B0 */ struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */ } __packed; /*************************************************************************/ static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method); static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx); static const unsigned int /* "Large" EEPROM device: Atmel AT25640 or similar * 8 KB, 16-bit address, 32 B write block */ large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), /* Default flash device: Atmel AT25F1024 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); /************************************************************************** * * I2C bus - this is a bit-bashing interface using GPIO pins * Note that it uses the output enables to tristate the outputs * SDA is the data pin and SCL is the clock * ************************************************************************** */ static void falcon_setsda(void *data, int state) { struct ef4_nic *efx = (struct ef4_nic *)data; ef4_oword_t reg; ef4_reado(efx, ®, FR_AB_GPIO_CTL); EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); ef4_writeo(efx, ®, FR_AB_GPIO_CTL); } static void falcon_setscl(void *data, int state) { struct ef4_nic *efx = (struct ef4_nic *)data; ef4_oword_t reg; ef4_reado(efx, ®, FR_AB_GPIO_CTL); EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); ef4_writeo(efx, ®, FR_AB_GPIO_CTL); } static int falcon_getsda(void *data) { struct ef4_nic *efx = (struct ef4_nic *)data; ef4_oword_t reg; ef4_reado(efx, ®, FR_AB_GPIO_CTL); return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); } static int falcon_getscl(void *data) { struct ef4_nic *efx = (struct ef4_nic *)data; ef4_oword_t reg; ef4_reado(efx, ®, FR_AB_GPIO_CTL); return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); } static const struct i2c_algo_bit_data falcon_i2c_bit_operations = { .setsda = falcon_setsda, .setscl = falcon_setscl, .getsda = falcon_getsda, .getscl = falcon_getscl, .udelay = 5, /* Wait up to 50 ms for target to let us pull SCL high */ .timeout = DIV_ROUND_UP(HZ, 20), }; static void falcon_push_irq_moderation(struct ef4_channel *channel) { ef4_dword_t timer_cmd; struct ef4_nic *efx = channel->efx; /* Set timer register */ if (channel->irq_moderation_us) { unsigned int ticks; ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us); EF4_POPULATE_DWORD_2(timer_cmd, FRF_AB_TC_TIMER_MODE, FFE_BB_TIMER_MODE_INT_HLDOFF, FRF_AB_TC_TIMER_VAL, ticks - 1); } else { EF4_POPULATE_DWORD_2(timer_cmd, FRF_AB_TC_TIMER_MODE, FFE_BB_TIMER_MODE_DIS, FRF_AB_TC_TIMER_VAL, 0); } BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, channel->channel); } static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx); static void falcon_prepare_flush(struct ef4_nic *efx) { falcon_deconfigure_mac_wrapper(efx); /* Wait for the tx and rx fifo's to get to the next packet boundary * (~1ms without back-pressure), then to drain the remainder of the * fifo's at data path speeds (negligible), with a healthy margin. */ msleep(10); } /* Acknowledge a legacy interrupt from Falcon * * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. * * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the * BIU. Interrupt acknowledge is read sensitive so must write instead * (then read to ensure the BIU collector is flushed) * * NB most hardware supports MSI interrupts */ static inline void falcon_irq_ack_a1(struct ef4_nic *efx) { ef4_dword_t reg; EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); ef4_writed(efx, ®, FR_AA_INT_ACK_KER); ef4_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); } static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) { struct ef4_nic *efx = dev_id; ef4_oword_t *int_ker = efx->irq_status.addr; int syserr; int queues; /* Check to see if this is our interrupt. If it isn't, we * exit without having touched the hardware. */ if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) { netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d not for me\n", irq, raw_smp_processor_id()); return IRQ_NONE; } efx->last_irq_cpu = raw_smp_processor_id(); netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n", irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker)); if (!likely(READ_ONCE(efx->irq_soft_enabled))) return IRQ_HANDLED; /* Check to see if we have a serious error condition */ syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return ef4_farch_fatal_interrupt(efx); /* Determine interrupting queues, clear interrupt status * register and acknowledge the device interrupt. */ BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS); queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); EF4_ZERO_OWORD(*int_ker); wmb(); /* Ensure the vector is cleared before interrupt ack */ falcon_irq_ack_a1(efx); if (queues & 1) ef4_schedule_channel_irq(ef4_get_channel(efx, 0)); if (queues & 2) ef4_schedule_channel_irq(ef4_get_channel(efx, 1)); return IRQ_HANDLED; } /************************************************************************** * * RSS * ************************************************************************** */ static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user, const u32 *rx_indir_table) { (void) efx; (void) user; (void) rx_indir_table; return -ENOSYS; } static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user, const u32 *rx_indir_table) { ef4_oword_t temp; (void) user; /* Set hash key for IPv4 */ memcpy(&temp, efx->rx_hash_key, sizeof(temp)); ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY); memcpy(efx->rx_indir_table, rx_indir_table, sizeof(efx->rx_indir_table)); ef4_farch_rx_push_indir_table(efx); return 0; } /************************************************************************** * * EEPROM/flash * ************************************************************************** */ #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t) static int falcon_spi_poll(struct ef4_nic *efx) { ef4_oword_t reg; ef4_reado(efx, ®, FR_AB_EE_SPI_HCMD); return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; } /* Wait for SPI command completion */ static int falcon_spi_wait(struct ef4_nic *efx) { /* Most commands will finish quickly, so we start polling at * very short intervals. Sometimes the command may have to * wait for VPD or expansion ROM access outside of our * control, so we allow up to 100 ms. */ unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); int i; for (i = 0; i < 10; i++) { if (!falcon_spi_poll(efx)) return 0; udelay(10); } for (;;) { if (!falcon_spi_poll(efx)) return 0; if (time_after_eq(jiffies, timeout)) { netif_err(efx, hw, efx->net_dev, "timed out waiting for SPI\n"); return -ETIMEDOUT; } schedule_timeout_uninterruptible(1); } } static int falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi, unsigned int command, int address, const void *in, void *out, size_t len) { bool addressed = (address >= 0); bool reading = (out != NULL); ef4_oword_t reg; int rc; /* Input validation */ if (len > FALCON_SPI_MAX_LEN) return -EINVAL; /* Check that previous command is not still running */ rc = falcon_spi_poll(efx); if (rc) return rc; /* Program address register, if we have an address */ if (addressed) { EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); ef4_writeo(efx, ®, FR_AB_EE_SPI_HADR); } /* Program data register, if we have data */ if (in != NULL) { memcpy(®, in, len); ef4_writeo(efx, ®, FR_AB_EE_SPI_HDATA); } /* Issue read/write command */ EF4_POPULATE_OWORD_7(reg, FRF_AB_EE_SPI_HCMD_CMD_EN, 1, FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, FRF_AB_EE_SPI_HCMD_DABCNT, len, FRF_AB_EE_SPI_HCMD_READ, reading, FRF_AB_EE_SPI_HCMD_DUBCNT, 0, FRF_AB_EE_SPI_HCMD_ADBCNT, (addressed ? spi->addr_len : 0), FRF_AB_EE_SPI_HCMD_ENC, command); ef4_writeo(efx, ®, FR_AB_EE_SPI_HCMD); /* Wait for read/write to complete */ rc = falcon_spi_wait(efx); if (rc) return rc; /* Read data */ if (out != NULL) { ef4_reado(efx, ®, FR_AB_EE_SPI_HDATA); memcpy(out, ®, len); } return 0; } static inline u8 falcon_spi_munge_command(const struct falcon_spi_device *spi, const u8 command, const unsigned int address) { return command | (((address >> 8) & spi->munge_address) << 3); } static int falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi, loff_t start, size_t len, size_t *retlen, u8 *buffer) { size_t block_len, pos = 0; unsigned int command; int rc = 0; while (pos < len) { block_len = min(len - pos, FALCON_SPI_MAX_LEN); command = falcon_spi_munge_command(spi, SPI_READ, start + pos); rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, buffer + pos, block_len); if (rc) break; pos += block_len; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) { rc = -EINTR; break; } } if (retlen) *retlen = pos; return rc; } #ifdef CONFIG_SFC_FALCON_MTD struct falcon_mtd_partition { struct ef4_mtd_partition common; const struct falcon_spi_device *spi; size_t offset; }; #define to_falcon_mtd_partition(mtd) \ container_of(mtd, struct falcon_mtd_partition, common.mtd) static size_t falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start) { return min(FALCON_SPI_MAX_LEN, (spi->block_size - (start & (spi->block_size - 1)))); } /* Wait up to 10 ms for buffered write completion */ static int falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi) { unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); u8 status; int rc; for (;;) { rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & SPI_STATUS_NRDY)) return 0; if (time_after_eq(jiffies, timeout)) { netif_err(efx, hw, efx->net_dev, "SPI write timeout on device %d" " last status=0x%02x\n", spi->device_id, status); return -ETIMEDOUT; } schedule_timeout_uninterruptible(1); } } static int falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { u8 verify_buffer[FALCON_SPI_MAX_LEN]; size_t block_len, pos = 0; unsigned int command; int rc = 0; while (pos < len) { rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) break; block_len = min(len - pos, falcon_spi_write_limit(spi, start + pos)); command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos); rc = falcon_spi_cmd(efx, spi, command, start + pos, buffer + pos, NULL, block_len); if (rc) break; rc = falcon_spi_wait_write(efx, spi); if (rc) break; command = falcon_spi_munge_command(spi, SPI_READ, start + pos); rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, verify_buffer, block_len); if (memcmp(verify_buffer, buffer + pos, block_len)) { rc = -EIO; break; } pos += block_len; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) { rc = -EINTR; break; } } if (retlen) *retlen = pos; return rc; } static int falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible) { const struct falcon_spi_device *spi = part->spi; struct ef4_nic *efx = part->common.mtd.priv; u8 status; int rc, i; /* Wait up to 4s for flash/EEPROM to finish a slow operation. */ for (i = 0; i < 40; i++) { __set_current_state(uninterruptible ? TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE); schedule_timeout(HZ / 10); rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & SPI_STATUS_NRDY)) return 0; if (signal_pending(current)) return -EINTR; } pr_err("%s: timed out waiting for %s\n", part->common.name, part->common.dev_type_name); return -ETIMEDOUT; } static int falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi) { const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 | SPI_STATUS_BP0); u8 status; int rc; rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & unlock_mask)) return 0; /* already unlocked */ rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0); if (rc) return rc; status &= ~unlock_mask; rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status, NULL, sizeof(status)); if (rc) return rc; rc = falcon_spi_wait_write(efx, spi); if (rc) return rc; return 0; } #define FALCON_SPI_VERIFY_BUF_LEN 16 static int falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len) { const struct falcon_spi_device *spi = part->spi; struct ef4_nic *efx = part->common.mtd.priv; unsigned pos, block_len; u8 empty[FALCON_SPI_VERIFY_BUF_LEN]; u8 buffer[FALCON_SPI_VERIFY_BUF_LEN]; int rc; if (len != spi->erase_size) return -EINVAL; if (spi->erase_command == 0) return -EOPNOTSUPP; rc = falcon_spi_unlock(efx, spi); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL, NULL, 0); if (rc) return rc; rc = falcon_spi_slow_wait(part, false); /* Verify the entire region has been wiped */ memset(empty, 0xff, sizeof(empty)); for (pos = 0; pos < len; pos += block_len) { block_len = min(len - pos, sizeof(buffer)); rc = falcon_spi_read(efx, spi, start + pos, block_len, NULL, buffer); if (rc) return rc; if (memcmp(empty, buffer, block_len)) return -EIO; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) return -EINTR; } return rc; } static void falcon_mtd_rename(struct ef4_mtd_partition *part) { struct ef4_nic *efx = part->mtd.priv; snprintf(part->name, sizeof(part->name), "%s %s", efx->name, part->type_name); } static int falcon_mtd_read(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer) { struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); struct ef4_nic *efx = mtd->priv; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = falcon_spi_read(efx, part->spi, part->offset + start, len, retlen, buffer); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) { struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); struct ef4_nic *efx = mtd->priv; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = falcon_spi_erase(part, part->offset + start, len); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); struct ef4_nic *efx = mtd->priv; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = falcon_spi_write(efx, part->spi, part->offset + start, len, retlen, buffer); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_sync(struct mtd_info *mtd) { struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); struct ef4_nic *efx = mtd->priv; struct falcon_nic_data *nic_data = efx->nic_data; int rc; mutex_lock(&nic_data->spi_lock); rc = falcon_spi_slow_wait(part, true); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_probe(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; struct falcon_mtd_partition *parts; struct falcon_spi_device *spi; size_t n_parts; int rc = -ENODEV; ASSERT_RTNL(); /* Allocate space for maximum number of partitions */ parts = kcalloc(2, sizeof(*parts), GFP_KERNEL); if (!parts) return -ENOMEM; n_parts = 0; spi = &nic_data->spi_flash; if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) { parts[n_parts].spi = spi; parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START; parts[n_parts].common.dev_type_name = "flash"; parts[n_parts].common.type_name = "sfc_flash_bootrom"; parts[n_parts].common.mtd.type = MTD_NORFLASH; parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH; parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START; parts[n_parts].common.mtd.erasesize = spi->erase_size; n_parts++; } spi = &nic_data->spi_eeprom; if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) { parts[n_parts].spi = spi; parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START; parts[n_parts].common.dev_type_name = "EEPROM"; parts[n_parts].common.type_name = "sfc_bootconfig"; parts[n_parts].common.mtd.type = MTD_RAM; parts[n_parts].common.mtd.flags = MTD_CAP_RAM; parts[n_parts].common.mtd.size = min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) - FALCON_EEPROM_BOOTCONFIG_START; parts[n_parts].common.mtd.erasesize = spi->erase_size; n_parts++; } rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); if (rc) kfree(parts); return rc; } #endif /* CONFIG_SFC_FALCON_MTD */ /************************************************************************** * * XMAC operations * ************************************************************************** */ /* Configure the XAUI driver that is an output from Falcon */ static void falcon_setup_xaui(struct ef4_nic *efx) { ef4_oword_t sdctl, txdrv; /* Move the XAUI into low power, unless there is no PHY, in * which case the XAUI will have to drive a cable. */ if (efx->phy_type == PHY_TYPE_NONE) return; ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF); EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF); ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL); EF4_POPULATE_OWORD_8(txdrv, FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF, FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF, FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF, FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF, FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF, FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF, FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF, FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF); ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL); } int falcon_reset_xaui(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg; int count; /* Don't fetch MAC statistics over an XMAC reset */ WARN_ON(nic_data->stats_disable_count == 0); /* Start reset sequence */ EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1); ef4_writeo(efx, ®, FR_AB_XX_PWR_RST); /* Wait up to 10 ms for completion, then reinitialise */ for (count = 0; count < 1000; count++) { ef4_reado(efx, ®, FR_AB_XX_PWR_RST); if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 && EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) { falcon_setup_xaui(efx); return 0; } udelay(10); } netif_err(efx, hw, efx->net_dev, "timed out waiting for XAUI/XGXS reset\n"); return -ETIMEDOUT; } static void falcon_ack_status_intr(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg; if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx)) return; /* We expect xgmii faults if the wireside link is down */ if (!efx->link_state.up) return; /* We can only use this interrupt to signal the negative edge of * xaui_align [we have to poll the positive edge]. */ if (nic_data->xmac_poll_required) return; ef4_reado(efx, ®, FR_AB_XM_MGT_INT_MSK); } static bool falcon_xgxs_link_ok(struct ef4_nic *efx) { ef4_oword_t reg; bool align_done, link_ok = false; int sync_status; /* Read link status */ ef4_reado(efx, ®, FR_AB_XX_CORE_STAT); align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE); sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT); if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES)) link_ok = true; /* Clear link status ready for next read */ EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES); ef4_writeo(efx, ®, FR_AB_XX_CORE_STAT); return link_ok; } static bool falcon_xmac_link_ok(struct ef4_nic *efx) { /* * Check MAC's XGXS link status except when using XGMII loopback * which bypasses the XGXS block. * If possible, check PHY's XGXS link status except when using * MAC loopback. */ return (efx->loopback_mode == LOOPBACK_XGMII || falcon_xgxs_link_ok(efx)) && (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) || LOOPBACK_INTERNAL(efx) || ef4_mdio_phyxgxs_lane_sync(efx)); } static void falcon_reconfigure_xmac_core(struct ef4_nic *efx) { unsigned int max_frame_len; ef4_oword_t reg; bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX); bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX); /* Configure MAC - cut-thru mode is hard wired on */ EF4_POPULATE_OWORD_3(reg, FRF_AB_XM_RX_JUMBO_MODE, 1, FRF_AB_XM_TX_STAT_EN, 1, FRF_AB_XM_RX_STAT_EN, 1); ef4_writeo(efx, ®, FR_AB_XM_GLB_CFG); /* Configure TX */ EF4_POPULATE_OWORD_6(reg, FRF_AB_XM_TXEN, 1, FRF_AB_XM_TX_PRMBL, 1, FRF_AB_XM_AUTO_PAD, 1, FRF_AB_XM_TXCRC, 1, FRF_AB_XM_FCNTL, tx_fc, FRF_AB_XM_IPG, 0x3); ef4_writeo(efx, ®, FR_AB_XM_TX_CFG); /* Configure RX */ EF4_POPULATE_OWORD_5(reg, FRF_AB_XM_RXEN, 1, FRF_AB_XM_AUTO_DEPAD, 0, FRF_AB_XM_ACPT_ALL_MCAST, 1, FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter, FRF_AB_XM_PASS_CRC_ERR, 1); ef4_writeo(efx, ®, FR_AB_XM_RX_CFG); /* Set frame length */ max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu); EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len); ef4_writeo(efx, ®, FR_AB_XM_RX_PARAM); EF4_POPULATE_OWORD_2(reg, FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len, FRF_AB_XM_TX_JUMBO_MODE, 1); ef4_writeo(efx, ®, FR_AB_XM_TX_PARAM); EF4_POPULATE_OWORD_2(reg, FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */ FRF_AB_XM_DIS_FCNTL, !rx_fc); ef4_writeo(efx, ®, FR_AB_XM_FC); /* Set MAC address */ memcpy(®, &efx->net_dev->dev_addr[0], 4); ef4_writeo(efx, ®, FR_AB_XM_ADR_LO); memcpy(®, &efx->net_dev->dev_addr[4], 2); ef4_writeo(efx, ®, FR_AB_XM_ADR_HI); } static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx) { ef4_oword_t reg; bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS); bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI); bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII); bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback; /* XGXS block is flaky and will need to be reset if moving * into our out of XGMII, XGXS or XAUI loopbacks. */ ef4_reado(efx, ®, FR_AB_XX_CORE_STAT); old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN); old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN); ef4_reado(efx, ®, FR_AB_XX_SD_CTL); old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA); /* The PHY driver may have turned XAUI off */ if ((xgxs_loopback != old_xgxs_loopback) || (xaui_loopback != old_xaui_loopback) || (xgmii_loopback != old_xgmii_loopback)) falcon_reset_xaui(efx); ef4_reado(efx, ®, FR_AB_XX_CORE_STAT); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG, (xgxs_loopback || xaui_loopback) ? FFE_AB_XX_FORCE_SIG_ALL_LANES : 0); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback); ef4_writeo(efx, ®, FR_AB_XX_CORE_STAT); ef4_reado(efx, ®, FR_AB_XX_SD_CTL); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback); EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback); ef4_writeo(efx, ®, FR_AB_XX_SD_CTL); } /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */ static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries) { bool mac_up = falcon_xmac_link_ok(efx); if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS || ef4_phy_mode_disabled(efx->phy_mode)) /* XAUI link is expected to be down */ return mac_up; falcon_stop_nic_stats(efx); while (!mac_up && tries) { netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n"); falcon_reset_xaui(efx); udelay(200); mac_up = falcon_xmac_link_ok(efx); --tries; } falcon_start_nic_stats(efx); return mac_up; } static bool falcon_xmac_check_fault(struct ef4_nic *efx) { return !falcon_xmac_link_ok_retry(efx, 5); } static int falcon_reconfigure_xmac(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_farch_filter_sync_rx_mode(efx); falcon_reconfigure_xgxs_core(efx); falcon_reconfigure_xmac_core(efx); falcon_reconfigure_mac_wrapper(efx); nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5); falcon_ack_status_intr(efx); return 0; } static void falcon_poll_xmac(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; /* We expect xgmii faults if the wireside link is down */ if (!efx->link_state.up || !nic_data->xmac_poll_required) return; nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1); falcon_ack_status_intr(efx); } /************************************************************************** * * MAC wrapper * ************************************************************************** */ static void falcon_push_multicast_hash(struct ef4_nic *efx) { union ef4_multicast_hash *mc_hash = &efx->multicast_hash; WARN_ON(!mutex_is_locked(&efx->mac_lock)); ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); } static void falcon_reset_macs(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg, mac_ctrl; int count; if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) { /* It's not safe to use GLB_CTL_REG to reset the * macs, so instead use the internal MAC resets */ EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); ef4_writeo(efx, ®, FR_AB_XM_GLB_CFG); for (count = 0; count < 10000; count++) { ef4_reado(efx, ®, FR_AB_XM_GLB_CFG); if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == 0) return; udelay(10); } netif_err(efx, hw, efx->net_dev, "timed out waiting for XMAC core reset\n"); } /* Mac stats will fail whist the TX fifo is draining */ WARN_ON(nic_data->stats_disable_count == 0); ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL); EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1); ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); ef4_reado(efx, ®, FR_AB_GLB_CTL); EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); ef4_writeo(efx, ®, FR_AB_GLB_CTL); count = 0; while (1) { ef4_reado(efx, ®, FR_AB_GLB_CTL); if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) { netif_dbg(efx, hw, efx->net_dev, "Completed MAC reset after %d loops\n", count); break; } if (count > 20) { netif_err(efx, hw, efx->net_dev, "MAC reset failed\n"); break; } count++; udelay(10); } /* Ensure the correct MAC is selected before statistics * are re-enabled by the caller */ ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); falcon_setup_xaui(efx); } static void falcon_drain_tx_fifo(struct ef4_nic *efx) { ef4_oword_t reg; if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) || (efx->loopback_mode != LOOPBACK_NONE)) return; ef4_reado(efx, ®, FR_AB_MAC_CTRL); /* There is no point in draining more than once */ if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) return; falcon_reset_macs(efx); } static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx) { ef4_oword_t reg; if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) return; /* Isolate the MAC -> RX */ ef4_reado(efx, ®, FR_AZ_RX_CFG); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); ef4_writeo(efx, ®, FR_AZ_RX_CFG); /* Isolate TX -> MAC */ falcon_drain_tx_fifo(efx); } static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx) { struct ef4_link_state *link_state = &efx->link_state; ef4_oword_t reg; int link_speed, isolate; isolate = !!READ_ONCE(efx->reset_pending); switch (link_state->speed) { case 10000: link_speed = 3; break; case 1000: link_speed = 2; break; case 100: link_speed = 1; break; default: link_speed = 0; break; } /* MAC_LINK_STATUS controls MAC backpressure but doesn't work * as advertised. Disable to ensure packets are not * indefinitely held and TX queue can be flushed at any point * while the link is down. */ EF4_POPULATE_OWORD_5(reg, FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, FRF_AB_MAC_BCAD_ACPT, 1, FRF_AB_MAC_UC_PROM, !efx->unicast_filter, FRF_AB_MAC_LINK_STATUS, 1, /* always set */ FRF_AB_MAC_SPEED, link_speed); /* On B0, MAC backpressure can be disabled and packets get * discarded. */ if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, !link_state->up || isolate); } ef4_writeo(efx, ®, FR_AB_MAC_CTRL); /* Restore the multicast hash registers. */ falcon_push_multicast_hash(efx); ef4_reado(efx, ®, FR_AZ_RX_CFG); /* Enable XOFF signal from RX FIFO (we enabled it during NIC * initialisation but it may read back as 0) */ EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); /* Unisolate the MAC -> RX */ if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate); ef4_writeo(efx, ®, FR_AZ_RX_CFG); } static void falcon_stats_request(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg; WARN_ON(nic_data->stats_pending); WARN_ON(nic_data->stats_disable_count); FALCON_XMAC_STATS_DMA_FLAG(efx) = 0; nic_data->stats_pending = true; wmb(); /* ensure done flag is clear */ /* Initiate DMA transfer of stats */ EF4_POPULATE_OWORD_2(reg, FRF_AB_MAC_STAT_DMA_CMD, 1, FRF_AB_MAC_STAT_DMA_ADR, efx->stats_buffer.dma_addr); ef4_writeo(efx, ®, FR_AB_MAC_STAT_DMA); mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2)); } static void falcon_stats_complete(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; if (!nic_data->stats_pending) return; nic_data->stats_pending = false; if (FALCON_XMAC_STATS_DMA_FLAG(efx)) { rmb(); /* read the done flag before the stats */ ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT, falcon_stat_mask, nic_data->stats, efx->stats_buffer.addr, true); } else { netif_err(efx, hw, efx->net_dev, "timed out waiting for statistics\n"); } } static void falcon_stats_timer_func(struct timer_list *t) { struct falcon_nic_data *nic_data = from_timer(nic_data, t, stats_timer); struct ef4_nic *efx = nic_data->efx; spin_lock(&efx->stats_lock); falcon_stats_complete(efx); if (nic_data->stats_disable_count == 0) falcon_stats_request(efx); spin_unlock(&efx->stats_lock); } static bool falcon_loopback_link_poll(struct ef4_nic *efx) { struct ef4_link_state old_state = efx->link_state; WARN_ON(!mutex_is_locked(&efx->mac_lock)); WARN_ON(!LOOPBACK_INTERNAL(efx)); efx->link_state.fd = true; efx->link_state.fc = efx->wanted_fc; efx->link_state.up = true; efx->link_state.speed = 10000; return !ef4_link_state_equal(&efx->link_state, &old_state); } static int falcon_reconfigure_port(struct ef4_nic *efx) { int rc; WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0); /* Poll the PHY link state *before* reconfiguring it. This means we * will pick up the correct speed (in loopback) to select the correct * MAC. */ if (LOOPBACK_INTERNAL(efx)) falcon_loopback_link_poll(efx); else efx->phy_op->poll(efx); falcon_stop_nic_stats(efx); falcon_deconfigure_mac_wrapper(efx); falcon_reset_macs(efx); efx->phy_op->reconfigure(efx); rc = falcon_reconfigure_xmac(efx); BUG_ON(rc); falcon_start_nic_stats(efx); /* Synchronise efx->link_state with the kernel */ ef4_link_status_changed(efx); return 0; } /* TX flow control may automatically turn itself off if the link * partner (intermittently) stops responding to pause frames. There * isn't any indication that this has happened, so the best we do is * leave it up to the user to spot this and fix it by cycling transmit * flow control on this end. */ static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx) { /* Schedule a reset to recover */ ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE); } static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx) { /* Recover by resetting the EM block */ falcon_stop_nic_stats(efx); falcon_drain_tx_fifo(efx); falcon_reconfigure_xmac(efx); falcon_start_nic_stats(efx); } /************************************************************************** * * PHY access via GMII * ************************************************************************** */ /* Wait for GMII access to complete */ static int falcon_gmii_wait(struct ef4_nic *efx) { ef4_oword_t md_stat; int count; /* wait up to 50ms - taken max from datasheet */ for (count = 0; count < 5000; count++) { ef4_reado(efx, &md_stat, FR_AB_MD_STAT); if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { netif_err(efx, hw, efx->net_dev, "error from GMII access " EF4_OWORD_FMT"\n", EF4_OWORD_VAL(md_stat)); return -EIO; } return 0; } udelay(10); } netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n"); return -ETIMEDOUT; } /* Write an MDIO register of a PHY connected to Falcon. */ static int falcon_mdio_write(struct net_device *net_dev, int prtad, int devad, u16 addr, u16 value) { struct ef4_nic *efx = netdev_priv(net_dev); struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg; int rc; netif_vdbg(efx, hw, efx->net_dev, "writing MDIO %d register %d.%d with 0x%04x\n", prtad, devad, addr, value); mutex_lock(&nic_data->mdio_lock); /* Check MDIO not currently being accessed */ rc = falcon_gmii_wait(efx); if (rc) goto out; /* Write the address/ID register */ EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); ef4_writeo(efx, ®, FR_AB_MD_PHY_ADR); EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, FRF_AB_MD_DEV_ADR, devad); ef4_writeo(efx, ®, FR_AB_MD_ID); /* Write data */ EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); ef4_writeo(efx, ®, FR_AB_MD_TXD); EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_WRC, 1, FRF_AB_MD_GC, 0); ef4_writeo(efx, ®, FR_AB_MD_CS); /* Wait for data to be written */ rc = falcon_gmii_wait(efx); if (rc) { /* Abort the write operation */ EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_WRC, 0, FRF_AB_MD_GC, 1); ef4_writeo(efx, ®, FR_AB_MD_CS); udelay(10); } out: mutex_unlock(&nic_data->mdio_lock); return rc; } /* Read an MDIO register of a PHY connected to Falcon. */ static int falcon_mdio_read(struct net_device *net_dev, int prtad, int devad, u16 addr) { struct ef4_nic *efx = netdev_priv(net_dev); struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t reg; int rc; mutex_lock(&nic_data->mdio_lock); /* Check MDIO not currently being accessed */ rc = falcon_gmii_wait(efx); if (rc) goto out; EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); ef4_writeo(efx, ®, FR_AB_MD_PHY_ADR); EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, FRF_AB_MD_DEV_ADR, devad); ef4_writeo(efx, ®, FR_AB_MD_ID); /* Request data to be read */ EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); ef4_writeo(efx, ®, FR_AB_MD_CS); /* Wait for data to become available */ rc = falcon_gmii_wait(efx); if (rc == 0) { ef4_reado(efx, ®, FR_AB_MD_RXD); rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD); netif_vdbg(efx, hw, efx->net_dev, "read from MDIO %d register %d.%d, got %04x\n", prtad, devad, addr, rc); } else { /* Abort the read operation */ EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RIC, 0, FRF_AB_MD_GC, 1); ef4_writeo(efx, ®, FR_AB_MD_CS); netif_dbg(efx, hw, efx->net_dev, "read from MDIO %d register %d.%d, got error %d\n", prtad, devad, addr, rc); } out: mutex_unlock(&nic_data->mdio_lock); return rc; } /* This call is responsible for hooking in the MAC and PHY operations */ static int falcon_probe_port(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; int rc; switch (efx->phy_type) { case PHY_TYPE_SFX7101: efx->phy_op = &falcon_sfx7101_phy_ops; break; case PHY_TYPE_QT2022C2: case PHY_TYPE_QT2025C: efx->phy_op = &falcon_qt202x_phy_ops; break; case PHY_TYPE_TXC43128: efx->phy_op = &falcon_txc_phy_ops; break; default: netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n", efx->phy_type); return -ENODEV; } /* Fill out MDIO structure and loopback modes */ mutex_init(&nic_data->mdio_lock); efx->mdio.mdio_read = falcon_mdio_read; efx->mdio.mdio_write = falcon_mdio_write; rc = efx->phy_op->probe(efx); if (rc != 0) return rc; /* Initial assumption */ efx->link_state.speed = 10000; efx->link_state.fd = true; /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) efx->wanted_fc = EF4_FC_RX | EF4_FC_TX; else efx->wanted_fc = EF4_FC_RX; if (efx->mdio.mmds & MDIO_DEVS_AN) efx->wanted_fc |= EF4_FC_AUTO; /* Allocate buffer for stats */ rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer, FALCON_MAC_STATS_SIZE, GFP_KERNEL); if (rc) return rc; netif_dbg(efx, probe, efx->net_dev, "stats buffer at %llx (virt %p phys %llx)\n", (u64)efx->stats_buffer.dma_addr, efx->stats_buffer.addr, (u64)virt_to_phys(efx->stats_buffer.addr)); return 0; } static void falcon_remove_port(struct ef4_nic *efx) { efx->phy_op->remove(efx); ef4_nic_free_buffer(efx, &efx->stats_buffer); } /* Global events are basically PHY events */ static bool falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event) { struct ef4_nic *efx = channel->efx; struct falcon_nic_data *nic_data = efx->nic_data; if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) || EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) || EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) /* Ignored */ return true; if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) && EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) { nic_data->xmac_poll_required = true; return true; } if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) : EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) { netif_err(efx, rx_err, efx->net_dev, "channel %d seen global RX_RESET event. Resetting.\n", channel->channel); atomic_inc(&efx->rx_reset); ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); return true; } return false; } /************************************************************************** * * Falcon test code * **************************************************************************/ static int falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out) { struct falcon_nic_data *nic_data = efx->nic_data; struct falcon_nvconfig *nvconfig; struct falcon_spi_device *spi; void *region; int rc, magic_num, struct_ver; __le16 *word, *limit; u32 csum; if (falcon_spi_present(&nic_data->spi_flash)) spi = &nic_data->spi_flash; else if (falcon_spi_present(&nic_data->spi_eeprom)) spi = &nic_data->spi_eeprom; else return -EINVAL; region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); if (!region) return -ENOMEM; nvconfig = region + FALCON_NVCONFIG_OFFSET; mutex_lock(&nic_data->spi_lock); rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region); mutex_unlock(&nic_data->spi_lock); if (rc) { netif_err(efx, hw, efx->net_dev, "Failed to read %s\n", falcon_spi_present(&nic_data->spi_flash) ? "flash" : "EEPROM"); rc = -EIO; goto out; } magic_num = le16_to_cpu(nvconfig->board_magic_num); struct_ver = le16_to_cpu(nvconfig->board_struct_ver); rc = -EINVAL; if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { netif_err(efx, hw, efx->net_dev, "NVRAM bad magic 0x%x\n", magic_num); goto out; } if (struct_ver < 2) { netif_err(efx, hw, efx->net_dev, "NVRAM has ancient version 0x%x\n", struct_ver); goto out; } else if (struct_ver < 4) { word = &nvconfig->board_magic_num; limit = (__le16 *) (nvconfig + 1); } else { word = region; limit = region + FALCON_NVCONFIG_END; } for (csum = 0; word < limit; ++word) csum += le16_to_cpu(*word); if (~csum & 0xffff) { netif_err(efx, hw, efx->net_dev, "NVRAM has incorrect checksum\n"); goto out; } rc = 0; if (nvconfig_out) memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); out: kfree(region); return rc; } static int falcon_test_nvram(struct ef4_nic *efx) { return falcon_read_nvram(efx, NULL); } static const struct ef4_farch_register_test falcon_b0_register_tests[] = { { FR_AZ_ADR_REGION, EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, { FR_AZ_RX_CFG, EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, { FR_AZ_TX_CFG, EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_TX_RESERVED, EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, { FR_AB_MAC_CTRL, EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_SRM_TX_DC_CFG, EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_RX_DC_CFG, EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_RX_DC_PF_WM, EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, { FR_BZ_DP_CTRL, EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_GM_CFG2, EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_GMF_CFG0, EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_GLB_CFG, EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_TX_CFG, EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_RX_CFG, EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_RX_PARAM, EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_FC, EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_ADR_LO, EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XX_SD_CTL, EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, }; static int falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests) { enum reset_type reset_method = RESET_TYPE_INVISIBLE; int rc, rc2; mutex_lock(&efx->mac_lock); if (efx->loopback_modes) { /* We need the 312 clock from the PHY to test the XMAC * registers, so move into XGMII loopback if available */ if (efx->loopback_modes & (1 << LOOPBACK_XGMII)) efx->loopback_mode = LOOPBACK_XGMII; else efx->loopback_mode = __ffs(efx->loopback_modes); } __ef4_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); ef4_reset_down(efx, reset_method); tests->registers = ef4_farch_test_registers(efx, falcon_b0_register_tests, ARRAY_SIZE(falcon_b0_register_tests)) ? -1 : 1; rc = falcon_reset_hw(efx, reset_method); rc2 = ef4_reset_up(efx, reset_method, rc == 0); return rc ? rc : rc2; } /************************************************************************** * * Device reset * ************************************************************************** */ static enum reset_type falcon_map_reset_reason(enum reset_type reason) { switch (reason) { case RESET_TYPE_RX_RECOVERY: case RESET_TYPE_DMA_ERROR: case RESET_TYPE_TX_SKIP: /* These can occasionally occur due to hardware bugs. * We try to reset without disrupting the link. */ return RESET_TYPE_INVISIBLE; default: return RESET_TYPE_ALL; } } static int falcon_map_reset_flags(u32 *flags) { enum { FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER | ETH_RESET_OFFLOAD | ETH_RESET_MAC), FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY, FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ, }; if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) { *flags &= ~FALCON_RESET_WORLD; return RESET_TYPE_WORLD; } if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) { *flags &= ~FALCON_RESET_ALL; return RESET_TYPE_ALL; } if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) { *flags &= ~FALCON_RESET_INVISIBLE; return RESET_TYPE_INVISIBLE; } return -EINVAL; } /* Resets NIC to known state. This routine must be called in process * context and is allowed to sleep. */ static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t glb_ctl_reg_ker; int rc; netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n", RESET_TYPE(method)); /* Initiate device reset */ if (method == RESET_TYPE_WORLD) { rc = pci_save_state(efx->pci_dev); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to backup PCI state of primary " "function prior to hardware reset\n"); goto fail1; } if (ef4_nic_is_dual_func(efx)) { rc = pci_save_state(nic_data->pci_dev2); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to backup PCI state of " "secondary function prior to " "hardware reset\n"); goto fail2; } } EF4_POPULATE_OWORD_2(glb_ctl_reg_ker, FRF_AB_EXT_PHY_RST_DUR, FFE_AB_EXT_PHY_RST_DUR_10240US, FRF_AB_SWRST, 1); } else { EF4_POPULATE_OWORD_7(glb_ctl_reg_ker, /* exclude PHY from "invisible" reset */ FRF_AB_EXT_PHY_RST_CTL, method == RESET_TYPE_INVISIBLE, /* exclude EEPROM/flash and PCIe */ FRF_AB_PCIE_CORE_RST_CTL, 1, FRF_AB_PCIE_NSTKY_RST_CTL, 1, FRF_AB_PCIE_SD_RST_CTL, 1, FRF_AB_EE_RST_CTL, 1, FRF_AB_EXT_PHY_RST_DUR, FFE_AB_EXT_PHY_RST_DUR_10240US, FRF_AB_SWRST, 1); } ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n"); schedule_timeout_uninterruptible(HZ / 20); /* Restore PCI configuration if needed */ if (method == RESET_TYPE_WORLD) { if (ef4_nic_is_dual_func(efx)) pci_restore_state(nic_data->pci_dev2); pci_restore_state(efx->pci_dev); netif_dbg(efx, drv, efx->net_dev, "successfully restored PCI config\n"); } /* Assert that reset complete */ ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { rc = -ETIMEDOUT; netif_err(efx, hw, efx->net_dev, "timed out waiting for hardware reset\n"); goto fail3; } netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n"); return 0; /* pci_save_state() and pci_restore_state() MUST be called in pairs */ fail2: pci_restore_state(efx->pci_dev); fail1: fail3: return rc; } static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method) { struct falcon_nic_data *nic_data = efx->nic_data; int rc; mutex_lock(&nic_data->spi_lock); rc = __falcon_reset_hw(efx, method); mutex_unlock(&nic_data->spi_lock); return rc; } static void falcon_monitor(struct ef4_nic *efx) { bool link_changed; int rc; BUG_ON(!mutex_is_locked(&efx->mac_lock)); rc = falcon_board(efx)->type->monitor(efx); if (rc) { netif_err(efx, hw, efx->net_dev, "Board sensor %s; shutting down PHY\n", (rc == -ERANGE) ? "reported fault" : "failed"); efx->phy_mode |= PHY_MODE_LOW_POWER; rc = __ef4_reconfigure_port(efx); WARN_ON(rc); } if (LOOPBACK_INTERNAL(efx)) link_changed = falcon_loopback_link_poll(efx); else link_changed = efx->phy_op->poll(efx); if (link_changed) { falcon_stop_nic_stats(efx); falcon_deconfigure_mac_wrapper(efx); falcon_reset_macs(efx); rc = falcon_reconfigure_xmac(efx); BUG_ON(rc); falcon_start_nic_stats(efx); ef4_link_status_changed(efx); } falcon_poll_xmac(efx); } /* Zeroes out the SRAM contents. This routine must be called in * process context and is allowed to sleep. */ static int falcon_reset_sram(struct ef4_nic *efx) { ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; int count; /* Set the SRAM wake/sleep GPIO appropriately. */ ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); /* Initiate SRAM reset */ EF4_POPULATE_OWORD_2(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN, 1, FRF_AZ_SRM_NB_SZ, 0); ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); /* Wait for SRAM reset to complete */ count = 0; do { netif_dbg(efx, hw, efx->net_dev, "waiting for SRAM reset (attempt %d)...\n", count); /* SRAM reset is slow; expect around 16ms */ schedule_timeout_uninterruptible(HZ / 50); /* Check for reset complete */ ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { netif_dbg(efx, hw, efx->net_dev, "SRAM reset complete\n"); return 0; } } while (++count < 20); /* wait up to 0.4 sec */ netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n"); return -ETIMEDOUT; } static void falcon_spi_device_init(struct ef4_nic *efx, struct falcon_spi_device *spi_device, unsigned int device_id, u32 device_type) { if (device_type != 0) { spi_device->device_id = device_id; spi_device->size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); spi_device->addr_len = SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); spi_device->munge_address = (spi_device->size == 1 << 9 && spi_device->addr_len == 1); spi_device->erase_command = SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); spi_device->erase_size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_SIZE); spi_device->block_size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_BLOCK_SIZE); } else { spi_device->size = 0; } } /* Extract non-volatile configuration */ static int falcon_probe_nvconfig(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; struct falcon_nvconfig *nvconfig; int rc; nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); if (!nvconfig) return -ENOMEM; rc = falcon_read_nvram(efx, nvconfig); if (rc) goto out; efx->phy_type = nvconfig->board_v2.port0_phy_type; efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr; if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { falcon_spi_device_init( efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH, le32_to_cpu(nvconfig->board_v3 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH])); falcon_spi_device_init( efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, le32_to_cpu(nvconfig->board_v3 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM])); } /* Read the MAC addresses */ ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]); netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad); rc = falcon_probe_board(efx, le16_to_cpu(nvconfig->board_v2.board_revision)); out: kfree(nvconfig); return rc; } static int falcon_dimension_resources(struct ef4_nic *efx) { efx->rx_dc_base = 0x20000; efx->tx_dc_base = 0x26000; return 0; } /* Probe all SPI devices on the NIC */ static void falcon_probe_spi_devices(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; int boot_dev; ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT); ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n", boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM"); } else { /* Disable VPD and set clock dividers to safe * values for initial programming. */ boot_dev = -1; netif_dbg(efx, probe, efx->net_dev, "Booted from internal ASIC settings;" " setting SPI config\n"); EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, /* 125 MHz / 7 ~= 20 MHz */ FRF_AB_EE_SF_CLOCK_DIV, 7, /* 125 MHz / 63 ~= 2 MHz */ FRF_AB_EE_EE_CLOCK_DIV, 63); ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); } mutex_init(&nic_data->spi_lock); if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) falcon_spi_device_init(efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH, default_flash_type); if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) falcon_spi_device_init(efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, large_eeprom_type); } static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx) { return 0x20000; } static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx) { /* Map everything up to and including the RSS indirection table. * The PCI core takes care of mapping the MSI-X tables. */ return FR_BZ_RX_INDIRECTION_TBL + FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS; } static int falcon_probe_nic(struct ef4_nic *efx) { struct falcon_nic_data *nic_data; struct falcon_board *board; int rc; efx->primary = efx; /* only one usable function per controller */ /* Allocate storage for hardware specific data */ nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; nic_data->efx = efx; rc = -ENODEV; if (ef4_farch_fpga_ver(efx) != 0) { netif_err(efx, probe, efx->net_dev, "Falcon FPGA not supported\n"); goto fail1; } if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) { ef4_oword_t nic_stat; struct pci_dev *dev; u8 pci_rev = efx->pci_dev->revision; if ((pci_rev == 0xff) || (pci_rev == 0)) { netif_err(efx, probe, efx->net_dev, "Falcon rev A0 not supported\n"); goto fail1; } ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT); if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) { netif_err(efx, probe, efx->net_dev, "Falcon rev A1 1G not supported\n"); goto fail1; } if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { netif_err(efx, probe, efx->net_dev, "Falcon rev A1 PCI-X not supported\n"); goto fail1; } dev = pci_dev_get(efx->pci_dev); while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1, dev))) { if (dev->bus == efx->pci_dev->bus && dev->devfn == efx->pci_dev->devfn + 1) { nic_data->pci_dev2 = dev; break; } } if (!nic_data->pci_dev2) { netif_err(efx, probe, efx->net_dev, "failed to find secondary function\n"); rc = -ENODEV; goto fail2; } } /* Now we can reset the NIC */ rc = __falcon_reset_hw(efx, RESET_TYPE_ALL); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); goto fail3; } /* Allocate memory for INT_KER */ rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t), GFP_KERNEL); if (rc) goto fail4; BUG_ON(efx->irq_status.dma_addr & 0x0f); netif_dbg(efx, probe, efx->net_dev, "INT_KER at %llx (virt %p phys %llx)\n", (u64)efx->irq_status.dma_addr, efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr)); falcon_probe_spi_devices(efx); /* Read in the non-volatile configuration */ rc = falcon_probe_nvconfig(efx); if (rc) { if (rc == -EINVAL) netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n"); goto fail5; } efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 : EF4_MAX_CHANNELS); efx->max_tx_channels = efx->max_channels; efx->timer_quantum_ns = 4968; /* 621 cycles */ efx->timer_max_ns = efx->type->timer_period_max * efx->timer_quantum_ns; /* Initialise I2C adapter */ board = falcon_board(efx); board->i2c_adap.owner = THIS_MODULE; board->i2c_data = falcon_i2c_bit_operations; board->i2c_data.data = efx; board->i2c_adap.algo_data = &board->i2c_data; board->i2c_adap.dev.parent = &efx->pci_dev->dev; strscpy(board->i2c_adap.name, "SFC4000 GPIO", sizeof(board->i2c_adap.name)); rc = i2c_bit_add_bus(&board->i2c_adap); if (rc) goto fail5; rc = falcon_board(efx)->type->init(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise board\n"); goto fail6; } nic_data->stats_disable_count = 1; timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0); return 0; fail6: i2c_del_adapter(&board->i2c_adap); memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); fail5: ef4_nic_free_buffer(efx, &efx->irq_status); fail4: fail3: if (nic_data->pci_dev2) { pci_dev_put(nic_data->pci_dev2); nic_data->pci_dev2 = NULL; } fail2: fail1: kfree(efx->nic_data); return rc; } static void falcon_init_rx_cfg(struct ef4_nic *efx) { /* RX control FIFO thresholds (32 entries) */ const unsigned ctrl_xon_thr = 20; const unsigned ctrl_xoff_thr = 25; ef4_oword_t reg; ef4_reado(efx, ®, FR_AZ_RX_CFG); if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) { /* Data FIFO size is 5.5K. The RX DMA engine only * supports scattering for user-mode queues, but will * split DMA writes at intervals of RX_USR_BUF_SIZE * (32-byte units) even for kernel-mode queues. We * set it to be so large that that never happens. */ EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, (3 * 4096) >> 5); EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8); EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8); EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); } else { /* Data FIFO size is 80K; register fields moved */ EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, EF4_RX_USR_BUF_SIZE >> 5); /* Send XON and XOFF at ~3 * max MTU away from empty/full */ EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); /* Enable hash insertion. This is broken for the * 'Falcon' hash so also select Toeplitz TCP/IPv4 and * IPv4 hashes. */ EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1); EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1); } /* Always enable XOFF signal from RX FIFO. We enable * or disable transmission of pause frames at the MAC. */ EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); ef4_writeo(efx, ®, FR_AZ_RX_CFG); } /* This call performs hardware-specific global initialisation, such as * defining the descriptor cache sizes and number of RSS channels. * It does not set up any buffers, descriptor rings or event queues. */ static int falcon_init_nic(struct ef4_nic *efx) { ef4_oword_t temp; int rc; /* Use on-chip SRAM */ ef4_reado(efx, &temp, FR_AB_NIC_STAT); EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); ef4_writeo(efx, &temp, FR_AB_NIC_STAT); rc = falcon_reset_sram(efx); if (rc) return rc; /* Clear the parity enables on the TX data fifos as * they produce false parity errors because of timing issues */ if (EF4_WORKAROUND_5129(efx)) { ef4_reado(efx, &temp, FR_AZ_CSR_SPARE); EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE); } if (EF4_WORKAROUND_7244(efx)) { ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); } /* XXX This is documented only for Falcon A0/A1 */ /* Setup RX. Wait for descriptor is broken and must * be disabled. RXDP recovery shouldn't be needed, but is. */ ef4_reado(efx, &temp, FR_AA_RX_SELF_RST); EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); if (EF4_WORKAROUND_5583(efx)) EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST); /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 * descriptors (which is bad). */ ef4_reado(efx, &temp, FR_AZ_TX_CFG); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); ef4_writeo(efx, &temp, FR_AZ_TX_CFG); falcon_init_rx_cfg(efx); if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table); /* Set destination of both TX and RX Flush events */ EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); ef4_writeo(efx, &temp, FR_BZ_DP_CTRL); } ef4_farch_init_common(efx); return 0; } static void falcon_remove_nic(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; struct falcon_board *board = falcon_board(efx); board->type->fini(efx); /* Remove I2C adapter and clear it in preparation for a retry */ i2c_del_adapter(&board->i2c_adap); memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); ef4_nic_free_buffer(efx, &efx->irq_status); __falcon_reset_hw(efx, RESET_TYPE_ALL); /* Release the second function after the reset */ if (nic_data->pci_dev2) { pci_dev_put(nic_data->pci_dev2); nic_data->pci_dev2 = NULL; } /* Tear down the private nic state */ kfree(efx->nic_data); efx->nic_data = NULL; } static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 **names) { return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT, falcon_stat_mask, names); } static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { struct falcon_nic_data *nic_data = efx->nic_data; u64 *stats = nic_data->stats; ef4_oword_t cnt; if (!nic_data->stats_disable_count) { ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); stats[FALCON_STAT_rx_nodesc_drop_cnt] += EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); if (nic_data->stats_pending && FALCON_XMAC_STATS_DMA_FLAG(efx)) { nic_data->stats_pending = false; rmb(); /* read the done flag before the stats */ ef4_nic_update_stats( falcon_stat_desc, FALCON_STAT_COUNT, falcon_stat_mask, stats, efx->stats_buffer.addr, true); } /* Update derived statistic */ ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes], stats[FALCON_STAT_rx_bytes] - stats[FALCON_STAT_rx_good_bytes] - stats[FALCON_STAT_rx_control] * 64); ef4_update_sw_stats(efx, stats); } if (full_stats) memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT); if (core_stats) { core_stats->rx_packets = stats[FALCON_STAT_rx_packets]; core_stats->tx_packets = stats[FALCON_STAT_tx_packets]; core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes]; core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes]; core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] + stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[FALCON_STAT_rx_multicast]; core_stats->rx_length_errors = stats[FALCON_STAT_rx_gtjumbo] + stats[FALCON_STAT_rx_length_error]; core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad]; core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error]; core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow]; core_stats->rx_errors = (core_stats->rx_length_errors + core_stats->rx_crc_errors + core_stats->rx_frame_errors + stats[FALCON_STAT_rx_symbol_error]); } return FALCON_STAT_COUNT; } void falcon_start_nic_stats(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; spin_lock_bh(&efx->stats_lock); if (--nic_data->stats_disable_count == 0) falcon_stats_request(efx); spin_unlock_bh(&efx->stats_lock); } /* We don't acutally pull stats on falcon. Wait 10ms so that * they arrive when we call this just after start_stats */ static void falcon_pull_nic_stats(struct ef4_nic *efx) { msleep(10); } void falcon_stop_nic_stats(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; int i; might_sleep(); spin_lock_bh(&efx->stats_lock); ++nic_data->stats_disable_count; spin_unlock_bh(&efx->stats_lock); del_timer_sync(&nic_data->stats_timer); /* Wait enough time for the most recent transfer to * complete. */ for (i = 0; i < 4 && nic_data->stats_pending; i++) { if (FALCON_XMAC_STATS_DMA_FLAG(efx)) break; msleep(1); } spin_lock_bh(&efx->stats_lock); falcon_stats_complete(efx); spin_unlock_bh(&efx->stats_lock); } static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode) { falcon_board(efx)->type->set_id_led(efx, mode); } /************************************************************************** * * Wake on LAN * ************************************************************************** */ static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol) { wol->supported = 0; wol->wolopts = 0; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int falcon_set_wol(struct ef4_nic *efx, u32 type) { if (type != 0) return -EINVAL; return 0; } /************************************************************************** * * Revision-dependent attributes used by efx.c and nic.c * ************************************************************************** */ const struct ef4_nic_type falcon_a1_nic_type = { .mem_bar = EF4_MEM_BAR, .mem_map_size = falcon_a1_mem_map_size, .probe = falcon_probe_nic, .remove = falcon_remove_nic, .init = falcon_init_nic, .dimension_resources = falcon_dimension_resources, .fini = falcon_irq_ack_a1, .monitor = falcon_monitor, .map_reset_reason = falcon_map_reset_reason, .map_reset_flags = falcon_map_reset_flags, .reset = falcon_reset_hw, .probe_port = falcon_probe_port, .remove_port = falcon_remove_port, .handle_global_event = falcon_handle_global_event, .fini_dmaq = ef4_farch_fini_dmaq, .prepare_flush = falcon_prepare_flush, .finish_flush = ef4_port_dummy_op_void, .prepare_flr = ef4_port_dummy_op_void, .finish_flr = ef4_farch_finish_flr, .describe_stats = falcon_describe_nic_stats, .update_stats = falcon_update_nic_stats, .start_stats = falcon_start_nic_stats, .pull_stats = falcon_pull_nic_stats, .stop_stats = falcon_stop_nic_stats, .set_id_led = falcon_set_id_led, .push_irq_moderation = falcon_push_irq_moderation, .reconfigure_port = falcon_reconfigure_port, .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx, .reconfigure_mac = falcon_reconfigure_xmac, .check_mac_fault = falcon_xmac_check_fault, .get_wol = falcon_get_wol, .set_wol = falcon_set_wol, .resume_wol = ef4_port_dummy_op_void, .test_nvram = falcon_test_nvram, .irq_enable_master = ef4_farch_irq_enable_master, .irq_test_generate = ef4_farch_irq_test_generate, .irq_disable_non_ev = ef4_farch_irq_disable_master, .irq_handle_msi = ef4_farch_msi_interrupt, .irq_handle_legacy = falcon_legacy_interrupt_a1, .tx_probe = ef4_farch_tx_probe, .tx_init = ef4_farch_tx_init, .tx_remove = ef4_farch_tx_remove, .tx_write = ef4_farch_tx_write, .tx_limit_len = ef4_farch_tx_limit_len, .rx_push_rss_config = dummy_rx_push_rss_config, .rx_probe = ef4_farch_rx_probe, .rx_init = ef4_farch_rx_init, .rx_remove = ef4_farch_rx_remove, .rx_write = ef4_farch_rx_write, .rx_defer_refill = ef4_farch_rx_defer_refill, .ev_probe = ef4_farch_ev_probe, .ev_init = ef4_farch_ev_init, .ev_fini = ef4_farch_ev_fini, .ev_remove = ef4_farch_ev_remove, .ev_process = ef4_farch_ev_process, .ev_read_ack = ef4_farch_ev_read_ack, .ev_test_generate = ef4_farch_ev_test_generate, /* We don't expose the filter table on Falcon A1 as it is not * mapped into function 0, but these implementations still * work with a degenerate case of all tables set to size 0. */ .filter_table_probe = ef4_farch_filter_table_probe, .filter_table_restore = ef4_farch_filter_table_restore, .filter_table_remove = ef4_farch_filter_table_remove, .filter_insert = ef4_farch_filter_insert, .filter_remove_safe = ef4_farch_filter_remove_safe, .filter_get_safe = ef4_farch_filter_get_safe, .filter_clear_rx = ef4_farch_filter_clear_rx, .filter_count_rx_used = ef4_farch_filter_count_rx_used, .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit, .filter_get_rx_ids = ef4_farch_filter_get_rx_ids, #ifdef CONFIG_SFC_FALCON_MTD .mtd_probe = falcon_mtd_probe, .mtd_rename = falcon_mtd_rename, .mtd_read = falcon_mtd_read, .mtd_erase = falcon_mtd_erase, .mtd_write = falcon_mtd_write, .mtd_sync = falcon_mtd_sync, #endif .revision = EF4_REV_FALCON_A1, .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), .rx_buffer_padding = 0x24, .can_rx_scatter = false, .max_interrupt_mode = EF4_INT_MODE_MSI, .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH, .offload_features = NETIF_F_IP_CSUM, }; const struct ef4_nic_type falcon_b0_nic_type = { .mem_bar = EF4_MEM_BAR, .mem_map_size = falcon_b0_mem_map_size, .probe = falcon_probe_nic, .remove = falcon_remove_nic, .init = falcon_init_nic, .dimension_resources = falcon_dimension_resources, .fini = ef4_port_dummy_op_void, .monitor = falcon_monitor, .map_reset_reason = falcon_map_reset_reason, .map_reset_flags = falcon_map_reset_flags, .reset = falcon_reset_hw, .probe_port = falcon_probe_port, .remove_port = falcon_remove_port, .handle_global_event = falcon_handle_global_event, .fini_dmaq = ef4_farch_fini_dmaq, .prepare_flush = falcon_prepare_flush, .finish_flush = ef4_port_dummy_op_void, .prepare_flr = ef4_port_dummy_op_void, .finish_flr = ef4_farch_finish_flr, .describe_stats = falcon_describe_nic_stats, .update_stats = falcon_update_nic_stats, .start_stats = falcon_start_nic_stats, .pull_stats = falcon_pull_nic_stats, .stop_stats = falcon_stop_nic_stats, .set_id_led = falcon_set_id_led, .push_irq_moderation = falcon_push_irq_moderation, .reconfigure_port = falcon_reconfigure_port, .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx, .reconfigure_mac = falcon_reconfigure_xmac, .check_mac_fault = falcon_xmac_check_fault, .get_wol = falcon_get_wol, .set_wol = falcon_set_wol, .resume_wol = ef4_port_dummy_op_void, .test_chip = falcon_b0_test_chip, .test_nvram = falcon_test_nvram, .irq_enable_master = ef4_farch_irq_enable_master, .irq_test_generate = ef4_farch_irq_test_generate, .irq_disable_non_ev = ef4_farch_irq_disable_master, .irq_handle_msi = ef4_farch_msi_interrupt, .irq_handle_legacy = ef4_farch_legacy_interrupt, .tx_probe = ef4_farch_tx_probe, .tx_init = ef4_farch_tx_init, .tx_remove = ef4_farch_tx_remove, .tx_write = ef4_farch_tx_write, .tx_limit_len = ef4_farch_tx_limit_len, .rx_push_rss_config = falcon_b0_rx_push_rss_config, .rx_probe = ef4_farch_rx_probe, .rx_init = ef4_farch_rx_init, .rx_remove = ef4_farch_rx_remove, .rx_write = ef4_farch_rx_write, .rx_defer_refill = ef4_farch_rx_defer_refill, .ev_probe = ef4_farch_ev_probe, .ev_init = ef4_farch_ev_init, .ev_fini = ef4_farch_ev_fini, .ev_remove = ef4_farch_ev_remove, .ev_process = ef4_farch_ev_process, .ev_read_ack = ef4_farch_ev_read_ack, .ev_test_generate = ef4_farch_ev_test_generate, .filter_table_probe = ef4_farch_filter_table_probe, .filter_table_restore = ef4_farch_filter_table_restore, .filter_table_remove = ef4_farch_filter_table_remove, .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter, .filter_insert = ef4_farch_filter_insert, .filter_remove_safe = ef4_farch_filter_remove_safe, .filter_get_safe = ef4_farch_filter_get_safe, .filter_clear_rx = ef4_farch_filter_clear_rx, .filter_count_rx_used = ef4_farch_filter_count_rx_used, .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit, .filter_get_rx_ids = ef4_farch_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_insert = ef4_farch_filter_rfs_insert, .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_FALCON_MTD .mtd_probe = falcon_mtd_probe, .mtd_rename = falcon_mtd_rename, .mtd_read = falcon_mtd_read, .mtd_erase = falcon_mtd_erase, .mtd_write = falcon_mtd_write, .mtd_sync = falcon_mtd_sync, #endif .revision = EF4_REV_FALCON_B0, .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, .buf_tbl_base = FR_BZ_BUF_FULL_TBL, .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE, .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST, .rx_buffer_padding = 0, .can_rx_scatter = true, .max_interrupt_mode = EF4_INT_MODE_MSIX, .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH, .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE, .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS, };