// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* Copyright (C) 2013 Vayavya Labs Pvt Ltd This implements all the API for managing HW timestamp & PTP. Author: Rayagond Kokatanur Author: Giuseppe Cavallaro *******************************************************************************/ #include #include #include #include #include "common.h" #include "stmmac_ptp.h" #include "dwmac4.h" #include "stmmac.h" #define STMMAC_HWTS_CFG_MASK (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ PTP_TCR_TSINIT | PTP_TCR_TSUPDT | \ PTP_TCR_TSCTRLSSR | PTP_TCR_SNAPTYPSEL_1 | \ PTP_TCR_TSIPV4ENA | PTP_TCR_TSIPV6ENA | \ PTP_TCR_TSEVNTENA | PTP_TCR_TSMSTRENA | \ PTP_TCR_TSVER2ENA | PTP_TCR_TSIPENA | \ PTP_TCR_TSTRIG | PTP_TCR_TSENALL) static void config_hw_tstamping(void __iomem *ioaddr, u32 data) { u32 regval = readl(ioaddr + PTP_TCR); regval &= ~STMMAC_HWTS_CFG_MASK; regval |= data; writel(regval, ioaddr + PTP_TCR); } static void config_sub_second_increment(void __iomem *ioaddr, u32 ptp_clock, int gmac4, u32 *ssinc) { u32 value = readl(ioaddr + PTP_TCR); unsigned long data; u32 reg_value; /* For GMAC3.x, 4.x versions, in "fine adjustement mode" set sub-second * increment to twice the number of nanoseconds of a clock cycle. * The calculation of the default_addend value by the caller will set it * to mid-range = 2^31 when the remainder of this division is zero, * which will make the accumulator overflow once every 2 ptp_clock * cycles, adding twice the number of nanoseconds of a clock cycle : * 2000000000ULL / ptp_clock. */ if (value & PTP_TCR_TSCFUPDT) data = (2000000000ULL / ptp_clock); else data = (1000000000ULL / ptp_clock); /* 0.465ns accuracy */ if (!(value & PTP_TCR_TSCTRLSSR)) data = (data * 1000) / 465; if (data > PTP_SSIR_SSINC_MAX) data = PTP_SSIR_SSINC_MAX; reg_value = data; if (gmac4) reg_value <<= GMAC4_PTP_SSIR_SSINC_SHIFT; writel(reg_value, ioaddr + PTP_SSIR); if (ssinc) *ssinc = data; } static void hwtstamp_correct_latency(struct stmmac_priv *priv) { void __iomem *ioaddr = priv->ptpaddr; u32 reg_tsic, reg_tsicsns; u32 reg_tsec, reg_tsecsns; u64 scaled_ns; u32 val; /* MAC-internal ingress latency */ scaled_ns = readl(ioaddr + PTP_TS_INGR_LAT); /* See section 11.7.2.5.3.1 "Ingress Correction" on page 4001 of * i.MX8MP Applications Processor Reference Manual Rev. 1, 06/2021 */ val = readl(ioaddr + PTP_TCR); if (val & PTP_TCR_TSCTRLSSR) /* nanoseconds field is in decimal format with granularity of 1ns/bit */ scaled_ns = ((u64)NSEC_PER_SEC << 16) - scaled_ns; else /* nanoseconds field is in binary format with granularity of ~0.466ns/bit */ scaled_ns = ((1ULL << 31) << 16) - DIV_U64_ROUND_CLOSEST(scaled_ns * PSEC_PER_NSEC, 466U); reg_tsic = scaled_ns >> 16; reg_tsicsns = scaled_ns & 0xff00; /* set bit 31 for 2's compliment */ reg_tsic |= BIT(31); writel(reg_tsic, ioaddr + PTP_TS_INGR_CORR_NS); writel(reg_tsicsns, ioaddr + PTP_TS_INGR_CORR_SNS); /* MAC-internal egress latency */ scaled_ns = readl(ioaddr + PTP_TS_EGR_LAT); reg_tsec = scaled_ns >> 16; reg_tsecsns = scaled_ns & 0xff00; writel(reg_tsec, ioaddr + PTP_TS_EGR_CORR_NS); writel(reg_tsecsns, ioaddr + PTP_TS_EGR_CORR_SNS); } static int init_systime(void __iomem *ioaddr, u32 sec, u32 nsec) { u32 value; writel(sec, ioaddr + PTP_STSUR); writel(nsec, ioaddr + PTP_STNSUR); /* issue command to initialize the system time value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSINIT; writel(value, ioaddr + PTP_TCR); /* wait for present system time initialize to complete */ return readl_poll_timeout_atomic(ioaddr + PTP_TCR, value, !(value & PTP_TCR_TSINIT), 10, 100000); } static int config_addend(void __iomem *ioaddr, u32 addend) { u32 value; int limit; writel(addend, ioaddr + PTP_TAR); /* issue command to update the addend value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSADDREG; writel(value, ioaddr + PTP_TCR); /* wait for present addend update to complete */ limit = 10; while (limit--) { if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSADDREG)) break; mdelay(10); } if (limit < 0) return -EBUSY; return 0; } static int adjust_systime(void __iomem *ioaddr, u32 sec, u32 nsec, int add_sub, int gmac4) { u32 value; int limit; if (add_sub) { /* If the new sec value needs to be subtracted with * the system time, then MAC_STSUR reg should be * programmed with (2^32 – ) */ if (gmac4) sec = -sec; value = readl(ioaddr + PTP_TCR); if (value & PTP_TCR_TSCTRLSSR) nsec = (PTP_DIGITAL_ROLLOVER_MODE - nsec); else nsec = (PTP_BINARY_ROLLOVER_MODE - nsec); } writel(sec, ioaddr + PTP_STSUR); value = (add_sub << PTP_STNSUR_ADDSUB_SHIFT) | nsec; writel(value, ioaddr + PTP_STNSUR); /* issue command to initialize the system time value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSUPDT; writel(value, ioaddr + PTP_TCR); /* wait for present system time adjust/update to complete */ limit = 10; while (limit--) { if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSUPDT)) break; mdelay(10); } if (limit < 0) return -EBUSY; return 0; } static void get_systime(void __iomem *ioaddr, u64 *systime) { u64 ns, sec0, sec1; /* Get the TSS value */ sec1 = readl_relaxed(ioaddr + PTP_STSR); do { sec0 = sec1; /* Get the TSSS value */ ns = readl_relaxed(ioaddr + PTP_STNSR); /* Get the TSS value */ sec1 = readl_relaxed(ioaddr + PTP_STSR); } while (sec0 != sec1); if (systime) *systime = ns + (sec1 * 1000000000ULL); } static void get_ptptime(void __iomem *ptpaddr, u64 *ptp_time) { u64 ns; ns = readl(ptpaddr + PTP_ATNR); ns += readl(ptpaddr + PTP_ATSR) * NSEC_PER_SEC; *ptp_time = ns; } static void timestamp_interrupt(struct stmmac_priv *priv) { u32 num_snapshot, ts_status, tsync_int; struct ptp_clock_event event; u32 acr_value, channel; unsigned long flags; u64 ptp_time; int i; if (priv->plat->flags & STMMAC_FLAG_INT_SNAPSHOT_EN) { wake_up(&priv->tstamp_busy_wait); return; } tsync_int = readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE; if (!tsync_int) return; /* Read timestamp status to clear interrupt from either external * timestamp or start/end of PPS. */ ts_status = readl(priv->ioaddr + GMAC_TIMESTAMP_STATUS); if (!(priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN)) return; num_snapshot = (ts_status & GMAC_TIMESTAMP_ATSNS_MASK) >> GMAC_TIMESTAMP_ATSNS_SHIFT; acr_value = readl(priv->ptpaddr + PTP_ACR); channel = ilog2(FIELD_GET(PTP_ACR_MASK, acr_value)); for (i = 0; i < num_snapshot; i++) { read_lock_irqsave(&priv->ptp_lock, flags); get_ptptime(priv->ptpaddr, &ptp_time); read_unlock_irqrestore(&priv->ptp_lock, flags); event.type = PTP_CLOCK_EXTTS; event.index = channel; event.timestamp = ptp_time; ptp_clock_event(priv->ptp_clock, &event); } } const struct stmmac_hwtimestamp stmmac_ptp = { .config_hw_tstamping = config_hw_tstamping, .init_systime = init_systime, .config_sub_second_increment = config_sub_second_increment, .config_addend = config_addend, .adjust_systime = adjust_systime, .get_systime = get_systime, .get_ptptime = get_ptptime, .timestamp_interrupt = timestamp_interrupt, .hwtstamp_correct_latency = hwtstamp_correct_latency, }; const struct stmmac_hwtimestamp dwmac1000_ptp = { .config_hw_tstamping = config_hw_tstamping, .init_systime = init_systime, .config_sub_second_increment = config_sub_second_increment, .config_addend = config_addend, .adjust_systime = adjust_systime, .get_systime = get_systime, .get_ptptime = dwmac1000_get_ptptime, .timestamp_interrupt = dwmac1000_timestamp_interrupt, };