// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments ICSSG Ethernet Driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * Copyright (C) Siemens AG, 2024 * */ #include #include #include #include #include #include #include #include #include #include #include #include "icssg_prueth.h" #include "../k3-cppi-desc-pool.h" /* Netif debug messages possible */ #define PRUETH_EMAC_DEBUG (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR | \ NETIF_MSG_TX_QUEUED | \ NETIF_MSG_INTR | \ NETIF_MSG_TX_DONE | \ NETIF_MSG_RX_STATUS | \ NETIF_MSG_PKTDATA | \ NETIF_MSG_HW | \ NETIF_MSG_WOL) #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx) void prueth_cleanup_rx_chns(struct prueth_emac *emac, struct prueth_rx_chn *rx_chn, int max_rflows) { if (rx_chn->desc_pool) k3_cppi_desc_pool_destroy(rx_chn->desc_pool); if (rx_chn->rx_chn) k3_udma_glue_release_rx_chn(rx_chn->rx_chn); } EXPORT_SYMBOL_GPL(prueth_cleanup_rx_chns); void prueth_cleanup_tx_chns(struct prueth_emac *emac) { int i; for (i = 0; i < emac->tx_ch_num; i++) { struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; if (tx_chn->desc_pool) k3_cppi_desc_pool_destroy(tx_chn->desc_pool); if (tx_chn->tx_chn) k3_udma_glue_release_tx_chn(tx_chn->tx_chn); /* Assume prueth_cleanup_tx_chns() is called at the * end after all channel resources are freed */ memset(tx_chn, 0, sizeof(*tx_chn)); } } EXPORT_SYMBOL_GPL(prueth_cleanup_tx_chns); void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num) { int i; for (i = 0; i < num; i++) { struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; if (tx_chn->irq) free_irq(tx_chn->irq, tx_chn); netif_napi_del(&tx_chn->napi_tx); } } EXPORT_SYMBOL_GPL(prueth_ndev_del_tx_napi); void prueth_xmit_free(struct prueth_tx_chn *tx_chn, struct cppi5_host_desc_t *desc) { struct cppi5_host_desc_t *first_desc, *next_desc; dma_addr_t buf_dma, next_desc_dma; u32 buf_dma_len; first_desc = desc; next_desc = first_desc; cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len); k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma); dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len, DMA_TO_DEVICE); next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc); k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma); while (next_desc_dma) { next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, next_desc_dma); cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len); k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma); dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len, DMA_TO_DEVICE); next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc); k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma); k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc); } k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc); } EXPORT_SYMBOL_GPL(prueth_xmit_free); int emac_tx_complete_packets(struct prueth_emac *emac, int chn, int budget, bool *tdown) { struct net_device *ndev = emac->ndev; struct cppi5_host_desc_t *desc_tx; struct netdev_queue *netif_txq; struct prueth_tx_chn *tx_chn; unsigned int total_bytes = 0; struct sk_buff *skb; dma_addr_t desc_dma; int res, num_tx = 0; void **swdata; tx_chn = &emac->tx_chns[chn]; while (true) { res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma); if (res == -ENODATA) break; /* teardown completion */ if (cppi5_desc_is_tdcm(desc_dma)) { if (atomic_dec_and_test(&emac->tdown_cnt)) complete(&emac->tdown_complete); *tdown = true; break; } desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma); swdata = cppi5_hdesc_get_swdata(desc_tx); /* was this command's TX complete? */ if (emac->is_sr1 && *(swdata) == emac->cmd_data) { prueth_xmit_free(tx_chn, desc_tx); continue; } skb = *(swdata); prueth_xmit_free(tx_chn, desc_tx); ndev = skb->dev; ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; total_bytes += skb->len; napi_consume_skb(skb, budget); num_tx++; } if (!num_tx) return 0; netif_txq = netdev_get_tx_queue(ndev, chn); netdev_tx_completed_queue(netif_txq, num_tx, total_bytes); if (netif_tx_queue_stopped(netif_txq)) { /* If the TX queue was stopped, wake it now * if we have enough room. */ __netif_tx_lock(netif_txq, smp_processor_id()); if (netif_running(ndev) && (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >= MAX_SKB_FRAGS)) netif_tx_wake_queue(netif_txq); __netif_tx_unlock(netif_txq); } return num_tx; } static enum hrtimer_restart emac_tx_timer_callback(struct hrtimer *timer) { struct prueth_tx_chn *tx_chns = container_of(timer, struct prueth_tx_chn, tx_hrtimer); enable_irq(tx_chns->irq); return HRTIMER_NORESTART; } static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget) { struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx); struct prueth_emac *emac = tx_chn->emac; bool tdown = false; int num_tx_packets; num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget, &tdown); if (num_tx_packets >= budget) return budget; if (napi_complete_done(napi_tx, num_tx_packets)) { if (unlikely(tx_chn->tx_pace_timeout_ns && !tdown)) { hrtimer_start(&tx_chn->tx_hrtimer, ns_to_ktime(tx_chn->tx_pace_timeout_ns), HRTIMER_MODE_REL_PINNED); } else { enable_irq(tx_chn->irq); } } return num_tx_packets; } static irqreturn_t prueth_tx_irq(int irq, void *dev_id) { struct prueth_tx_chn *tx_chn = dev_id; disable_irq_nosync(irq); napi_schedule(&tx_chn->napi_tx); return IRQ_HANDLED; } int prueth_ndev_add_tx_napi(struct prueth_emac *emac) { struct prueth *prueth = emac->prueth; int i, ret; for (i = 0; i < emac->tx_ch_num; i++) { struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll); hrtimer_init(&tx_chn->tx_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); tx_chn->tx_hrtimer.function = &emac_tx_timer_callback; ret = request_irq(tx_chn->irq, prueth_tx_irq, IRQF_TRIGGER_HIGH, tx_chn->name, tx_chn); if (ret) { netif_napi_del(&tx_chn->napi_tx); dev_err(prueth->dev, "unable to request TX IRQ %d\n", tx_chn->irq); goto fail; } } return 0; fail: prueth_ndev_del_tx_napi(emac, i); return ret; } EXPORT_SYMBOL_GPL(prueth_ndev_add_tx_napi); int prueth_init_tx_chns(struct prueth_emac *emac) { static const struct k3_ring_cfg ring_cfg = { .elm_size = K3_RINGACC_RING_ELSIZE_8, .mode = K3_RINGACC_RING_MODE_RING, .flags = 0, .size = PRUETH_MAX_TX_DESC, }; struct k3_udma_glue_tx_channel_cfg tx_cfg; struct device *dev = emac->prueth->dev; struct net_device *ndev = emac->ndev; int ret, slice, i; u32 hdesc_size; slice = prueth_emac_slice(emac); if (slice < 0) return slice; init_completion(&emac->tdown_complete); hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE, PRUETH_NAV_SW_DATA_SIZE); memset(&tx_cfg, 0, sizeof(tx_cfg)); tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE; tx_cfg.tx_cfg = ring_cfg; tx_cfg.txcq_cfg = ring_cfg; for (i = 0; i < emac->tx_ch_num; i++) { struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; /* To differentiate channels for SLICE0 vs SLICE1 */ snprintf(tx_chn->name, sizeof(tx_chn->name), "tx%d-%d", slice, i); tx_chn->emac = emac; tx_chn->id = i; tx_chn->descs_num = PRUETH_MAX_TX_DESC; tx_chn->tx_chn = k3_udma_glue_request_tx_chn(dev, tx_chn->name, &tx_cfg); if (IS_ERR(tx_chn->tx_chn)) { ret = PTR_ERR(tx_chn->tx_chn); tx_chn->tx_chn = NULL; netdev_err(ndev, "Failed to request tx dma ch: %d\n", ret); goto fail; } tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn); tx_chn->desc_pool = k3_cppi_desc_pool_create_name(tx_chn->dma_dev, tx_chn->descs_num, hdesc_size, tx_chn->name); if (IS_ERR(tx_chn->desc_pool)) { ret = PTR_ERR(tx_chn->desc_pool); tx_chn->desc_pool = NULL; netdev_err(ndev, "Failed to create tx pool: %d\n", ret); goto fail; } ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn); if (ret < 0) { netdev_err(ndev, "failed to get tx irq\n"); goto fail; } tx_chn->irq = ret; snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d", dev_name(dev), tx_chn->id); } return 0; fail: prueth_cleanup_tx_chns(emac); return ret; } EXPORT_SYMBOL_GPL(prueth_init_tx_chns); int prueth_init_rx_chns(struct prueth_emac *emac, struct prueth_rx_chn *rx_chn, char *name, u32 max_rflows, u32 max_desc_num) { struct k3_udma_glue_rx_channel_cfg rx_cfg; struct device *dev = emac->prueth->dev; struct net_device *ndev = emac->ndev; u32 fdqring_id, hdesc_size; int i, ret = 0, slice; int flow_id_base; slice = prueth_emac_slice(emac); if (slice < 0) return slice; /* To differentiate channels for SLICE0 vs SLICE1 */ snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice); hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE, PRUETH_NAV_SW_DATA_SIZE); memset(&rx_cfg, 0, sizeof(rx_cfg)); rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE; rx_cfg.flow_id_num = max_rflows; rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */ /* init all flows */ rx_chn->dev = dev; rx_chn->descs_num = max_desc_num; rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name, &rx_cfg); if (IS_ERR(rx_chn->rx_chn)) { ret = PTR_ERR(rx_chn->rx_chn); rx_chn->rx_chn = NULL; netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret); goto fail; } rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn); rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev, rx_chn->descs_num, hdesc_size, rx_chn->name); if (IS_ERR(rx_chn->desc_pool)) { ret = PTR_ERR(rx_chn->desc_pool); rx_chn->desc_pool = NULL; netdev_err(ndev, "Failed to create rx pool: %d\n", ret); goto fail; } flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn); if (emac->is_sr1 && !strcmp(name, "rxmgm")) { emac->rx_mgm_flow_id_base = flow_id_base; netdev_dbg(ndev, "mgm flow id base = %d\n", flow_id_base); } else { emac->rx_flow_id_base = flow_id_base; netdev_dbg(ndev, "flow id base = %d\n", flow_id_base); } fdqring_id = K3_RINGACC_RING_ID_ANY; for (i = 0; i < rx_cfg.flow_id_num; i++) { struct k3_ring_cfg rxring_cfg = { .elm_size = K3_RINGACC_RING_ELSIZE_8, .mode = K3_RINGACC_RING_MODE_RING, .flags = 0, }; struct k3_ring_cfg fdqring_cfg = { .elm_size = K3_RINGACC_RING_ELSIZE_8, .flags = K3_RINGACC_RING_SHARED, }; struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = { .rx_cfg = rxring_cfg, .rxfdq_cfg = fdqring_cfg, .ring_rxq_id = K3_RINGACC_RING_ID_ANY, .src_tag_lo_sel = K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG, }; rx_flow_cfg.ring_rxfdq0_id = fdqring_id; rx_flow_cfg.rx_cfg.size = max_desc_num; rx_flow_cfg.rxfdq_cfg.size = max_desc_num; rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode; ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn, i, &rx_flow_cfg); if (ret) { netdev_err(ndev, "Failed to init rx flow%d %d\n", i, ret); goto fail; } if (!i) fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn, i); ret = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i); if (ret < 0) { netdev_err(ndev, "Failed to get rx dma irq"); goto fail; } rx_chn->irq[i] = ret; } return 0; fail: prueth_cleanup_rx_chns(emac, rx_chn, max_rflows); return ret; } EXPORT_SYMBOL_GPL(prueth_init_rx_chns); int prueth_dma_rx_push(struct prueth_emac *emac, struct sk_buff *skb, struct prueth_rx_chn *rx_chn) { struct net_device *ndev = emac->ndev; struct cppi5_host_desc_t *desc_rx; u32 pkt_len = skb_tailroom(skb); dma_addr_t desc_dma; dma_addr_t buf_dma; void **swdata; desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool); if (!desc_rx) { netdev_err(ndev, "rx push: failed to allocate descriptor\n"); return -ENOMEM; } desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx); buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) { k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); netdev_err(ndev, "rx push: failed to map rx pkt buffer\n"); return -EINVAL; } cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT, PRUETH_NAV_PS_DATA_SIZE); k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma); cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb)); swdata = cppi5_hdesc_get_swdata(desc_rx); *swdata = skb; return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0, desc_rx, desc_dma); } EXPORT_SYMBOL_GPL(prueth_dma_rx_push); u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns) { u32 iepcount_lo, iepcount_hi, hi_rollover_count; u64 ns; iepcount_lo = lo & GENMASK(19, 0); iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20; hi_rollover_count = hi >> 11; ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw); ns = ns * cycle_time_ns + iepcount_lo; return ns; } EXPORT_SYMBOL_GPL(icssg_ts_to_ns); void emac_rx_timestamp(struct prueth_emac *emac, struct sk_buff *skb, u32 *psdata) { struct skb_shared_hwtstamps *ssh; u64 ns; if (emac->is_sr1) { ns = (u64)psdata[1] << 32 | psdata[0]; } else { u32 hi_sw = readl(emac->prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET); ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0], IEP_DEFAULT_CYCLE_TIME_NS); } ssh = skb_hwtstamps(skb); memset(ssh, 0, sizeof(*ssh)); ssh->hwtstamp = ns_to_ktime(ns); } static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id) { struct prueth_rx_chn *rx_chn = &emac->rx_chns; u32 buf_dma_len, pkt_len, port_id = 0; struct net_device *ndev = emac->ndev; struct cppi5_host_desc_t *desc_rx; struct sk_buff *skb, *new_skb; dma_addr_t desc_dma, buf_dma; void **swdata; u32 *psdata; int ret; ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma); if (ret) { if (ret != -ENODATA) netdev_err(ndev, "rx pop: failed: %d\n", ret); return ret; } if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */ return 0; desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma); swdata = cppi5_hdesc_get_swdata(desc_rx); skb = *swdata; psdata = cppi5_hdesc_get_psdata(desc_rx); /* RX HW timestamp */ if (emac->rx_ts_enabled) emac_rx_timestamp(emac, skb, psdata); cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len); k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma); pkt_len = cppi5_hdesc_get_pktlen(desc_rx); /* firmware adds 4 CRC bytes, strip them */ pkt_len -= 4; cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL); dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE); k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); skb->dev = ndev; new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE); /* if allocation fails we drop the packet but push the * descriptor back to the ring with old skb to prevent a stall */ if (!new_skb) { ndev->stats.rx_dropped++; new_skb = skb; } else { /* send the filled skb up the n/w stack */ skb_put(skb, pkt_len); if (emac->prueth->is_switch_mode) skb->offload_fwd_mark = emac->offload_fwd_mark; skb->protocol = eth_type_trans(skb, ndev); napi_gro_receive(&emac->napi_rx, skb); ndev->stats.rx_bytes += pkt_len; ndev->stats.rx_packets++; } /* queue another RX DMA */ ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns); if (WARN_ON(ret < 0)) { dev_kfree_skb_any(new_skb); ndev->stats.rx_errors++; ndev->stats.rx_dropped++; } return ret; } static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma) { struct prueth_rx_chn *rx_chn = data; struct cppi5_host_desc_t *desc_rx; struct sk_buff *skb; dma_addr_t buf_dma; u32 buf_dma_len; void **swdata; desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma); swdata = cppi5_hdesc_get_swdata(desc_rx); skb = *swdata; cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len); k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma); dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE); k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); dev_kfree_skb_any(skb); } static int prueth_tx_ts_cookie_get(struct prueth_emac *emac) { int i; /* search and get the next free slot */ for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) { if (!emac->tx_ts_skb[i]) { emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */ return i; } } return -EBUSY; } /** * icssg_ndo_start_xmit - EMAC Transmit function * @skb: SKB pointer * @ndev: EMAC network adapter * * Called by the system to transmit a packet - we queue the packet in * EMAC hardware transmit queue * Doesn't wait for completion we'll check for TX completion in * emac_tx_complete_packets(). * * Return: enum netdev_tx */ enum netdev_tx icssg_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc; struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; struct netdev_queue *netif_txq; struct prueth_tx_chn *tx_chn; dma_addr_t desc_dma, buf_dma; u32 pkt_len, dst_tag_id; int i, ret = 0, q_idx; bool in_tx_ts = 0; int tx_ts_cookie; void **swdata; u32 *epib; pkt_len = skb_headlen(skb); q_idx = skb_get_queue_mapping(skb); tx_chn = &emac->tx_chns[q_idx]; netif_txq = netdev_get_tx_queue(ndev, q_idx); /* Map the linear buffer */ buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE); if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) { netdev_err(ndev, "tx: failed to map skb buffer\n"); ret = NETDEV_TX_OK; goto drop_free_skb; } first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool); if (!first_desc) { netdev_dbg(ndev, "tx: failed to allocate descriptor\n"); dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE); goto drop_stop_q_busy; } cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT, PRUETH_NAV_PS_DATA_SIZE); cppi5_hdesc_set_pkttype(first_desc, 0); epib = first_desc->epib; epib[0] = 0; epib[1] = 0; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && emac->tx_ts_enabled) { tx_ts_cookie = prueth_tx_ts_cookie_get(emac); if (tx_ts_cookie >= 0) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; /* Request TX timestamp */ epib[0] = (u32)tx_ts_cookie; epib[1] = 0x80000000; /* TX TS request */ emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb); in_tx_ts = 1; } } /* set dst tag to indicate internal qid at the firmware which is at * bit8..bit15. bit0..bit7 indicates port num for directed * packets in case of switch mode operation and port num 0 * for undirected packets in case of HSR offload mode */ dst_tag_id = emac->port_id | (q_idx << 8); if (prueth->is_hsr_offload_mode && (ndev->features & NETIF_F_HW_HSR_DUP)) dst_tag_id = PRUETH_UNDIRECTED_PKT_DST_TAG; if (prueth->is_hsr_offload_mode && (ndev->features & NETIF_F_HW_HSR_TAG_INS)) epib[1] |= PRUETH_UNDIRECTED_PKT_TAG_INS; cppi5_desc_set_tags_ids(&first_desc->hdr, 0, dst_tag_id); k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma); cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len); swdata = cppi5_hdesc_get_swdata(first_desc); *swdata = skb; /* Handle the case where skb is fragmented in pages */ cur_desc = first_desc; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 frag_size = skb_frag_size(frag); next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool); if (!next_desc) { netdev_err(ndev, "tx: failed to allocate frag. descriptor\n"); goto free_desc_stop_q_busy_cleanup_tx_ts; } buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size, DMA_TO_DEVICE); if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) { netdev_err(ndev, "tx: Failed to map skb page\n"); k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc); ret = NETDEV_TX_OK; goto cleanup_tx_ts; } cppi5_hdesc_reset_hbdesc(next_desc); k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma); cppi5_hdesc_attach_buf(next_desc, buf_dma, frag_size, buf_dma, frag_size); desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, next_desc); k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma); cppi5_hdesc_link_hbdesc(cur_desc, desc_dma); pkt_len += frag_size; cur_desc = next_desc; } WARN_ON_ONCE(pkt_len != skb->len); /* report bql before sending packet */ netdev_tx_sent_queue(netif_txq, pkt_len); cppi5_hdesc_set_pktlen(first_desc, pkt_len); desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc); /* cppi5_desc_dump(first_desc, 64); */ skb_tx_timestamp(skb); /* SW timestamp if SKBTX_IN_PROGRESS not set */ ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma); if (ret) { netdev_err(ndev, "tx: push failed: %d\n", ret); goto drop_free_descs; } if (in_tx_ts) atomic_inc(&emac->tx_ts_pending); if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) { netif_tx_stop_queue(netif_txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb__after_atomic(); if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >= MAX_SKB_FRAGS) netif_tx_wake_queue(netif_txq); } return NETDEV_TX_OK; cleanup_tx_ts: if (in_tx_ts) { dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]); emac->tx_ts_skb[tx_ts_cookie] = NULL; } drop_free_descs: prueth_xmit_free(tx_chn, first_desc); drop_free_skb: dev_kfree_skb_any(skb); /* error */ ndev->stats.tx_dropped++; netdev_err(ndev, "tx: error: %d\n", ret); return ret; free_desc_stop_q_busy_cleanup_tx_ts: if (in_tx_ts) { dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]); emac->tx_ts_skb[tx_ts_cookie] = NULL; } prueth_xmit_free(tx_chn, first_desc); drop_stop_q_busy: netif_tx_stop_queue(netif_txq); return NETDEV_TX_BUSY; } EXPORT_SYMBOL_GPL(icssg_ndo_start_xmit); static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma) { struct prueth_tx_chn *tx_chn = data; struct cppi5_host_desc_t *desc_tx; struct sk_buff *skb; void **swdata; desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma); swdata = cppi5_hdesc_get_swdata(desc_tx); skb = *(swdata); prueth_xmit_free(tx_chn, desc_tx); dev_kfree_skb_any(skb); } irqreturn_t prueth_rx_irq(int irq, void *dev_id) { struct prueth_emac *emac = dev_id; disable_irq_nosync(irq); napi_schedule(&emac->napi_rx); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(prueth_rx_irq); void prueth_cleanup_tx_ts(struct prueth_emac *emac) { int i; for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) { if (emac->tx_ts_skb[i]) { dev_kfree_skb_any(emac->tx_ts_skb[i]); emac->tx_ts_skb[i] = NULL; } } } EXPORT_SYMBOL_GPL(prueth_cleanup_tx_ts); int icssg_napi_rx_poll(struct napi_struct *napi_rx, int budget) { struct prueth_emac *emac = prueth_napi_to_emac(napi_rx); int rx_flow = emac->is_sr1 ? PRUETH_RX_FLOW_DATA_SR1 : PRUETH_RX_FLOW_DATA; int flow = emac->is_sr1 ? PRUETH_MAX_RX_FLOWS_SR1 : PRUETH_MAX_RX_FLOWS; int num_rx = 0; int cur_budget; int ret; while (flow--) { cur_budget = budget - num_rx; while (cur_budget--) { ret = emac_rx_packet(emac, flow); if (ret) break; num_rx++; } if (num_rx >= budget) break; } if (num_rx < budget && napi_complete_done(napi_rx, num_rx)) { if (unlikely(emac->rx_pace_timeout_ns)) { hrtimer_start(&emac->rx_hrtimer, ns_to_ktime(emac->rx_pace_timeout_ns), HRTIMER_MODE_REL_PINNED); } else { enable_irq(emac->rx_chns.irq[rx_flow]); } } return num_rx; } EXPORT_SYMBOL_GPL(icssg_napi_rx_poll); int prueth_prepare_rx_chan(struct prueth_emac *emac, struct prueth_rx_chn *chn, int buf_size) { struct sk_buff *skb; int i, ret; for (i = 0; i < chn->descs_num; i++) { skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL); if (!skb) return -ENOMEM; ret = prueth_dma_rx_push(emac, skb, chn); if (ret < 0) { netdev_err(emac->ndev, "cannot submit skb for rx chan %s ret %d\n", chn->name, ret); kfree_skb(skb); return ret; } } return 0; } EXPORT_SYMBOL_GPL(prueth_prepare_rx_chan); void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num, bool free_skb) { int i; for (i = 0; i < ch_num; i++) { if (free_skb) k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn, &emac->tx_chns[i], prueth_tx_cleanup); k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn); } } EXPORT_SYMBOL_GPL(prueth_reset_tx_chan); void prueth_reset_rx_chan(struct prueth_rx_chn *chn, int num_flows, bool disable) { int i; for (i = 0; i < num_flows; i++) k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn, prueth_rx_cleanup, !!i); if (disable) k3_udma_glue_disable_rx_chn(chn->rx_chn); } EXPORT_SYMBOL_GPL(prueth_reset_rx_chan); void icssg_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) { ndev->stats.tx_errors++; } EXPORT_SYMBOL_GPL(icssg_ndo_tx_timeout); static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr) { struct prueth_emac *emac = netdev_priv(ndev); struct hwtstamp_config config; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; switch (config.tx_type) { case HWTSTAMP_TX_OFF: emac->tx_ts_enabled = 0; break; case HWTSTAMP_TX_ON: emac->tx_ts_enabled = 1; break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: emac->rx_ts_enabled = 0; break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: emac->rx_ts_enabled = 1; config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr) { struct prueth_emac *emac = netdev_priv(ndev); struct hwtstamp_config config; config.flags = 0; config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } int icssg_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGHWTSTAMP: return emac_get_ts_config(ndev, ifr); case SIOCSHWTSTAMP: return emac_set_ts_config(ndev, ifr); default: break; } return phy_do_ioctl(ndev, ifr, cmd); } EXPORT_SYMBOL_GPL(icssg_ndo_ioctl); void icssg_ndo_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *stats) { struct prueth_emac *emac = netdev_priv(ndev); emac_update_hardware_stats(emac); stats->rx_packets = emac_get_stat_by_name(emac, "rx_packets"); stats->rx_bytes = emac_get_stat_by_name(emac, "rx_bytes"); stats->tx_packets = emac_get_stat_by_name(emac, "tx_packets"); stats->tx_bytes = emac_get_stat_by_name(emac, "tx_bytes"); stats->rx_crc_errors = emac_get_stat_by_name(emac, "rx_crc_errors"); stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors"); stats->multicast = emac_get_stat_by_name(emac, "rx_multicast_frames"); stats->rx_errors = ndev->stats.rx_errors; stats->rx_dropped = ndev->stats.rx_dropped; stats->tx_errors = ndev->stats.tx_errors; stats->tx_dropped = ndev->stats.tx_dropped; } EXPORT_SYMBOL_GPL(icssg_ndo_get_stats64); int icssg_ndo_get_phys_port_name(struct net_device *ndev, char *name, size_t len) { struct prueth_emac *emac = netdev_priv(ndev); int ret; ret = snprintf(name, len, "p%d", emac->port_id); if (ret >= len) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(icssg_ndo_get_phys_port_name); /* get emac_port corresponding to eth_node name */ int prueth_node_port(struct device_node *eth_node) { u32 port_id; int ret; ret = of_property_read_u32(eth_node, "reg", &port_id); if (ret) return ret; if (port_id == 0) return PRUETH_PORT_MII0; else if (port_id == 1) return PRUETH_PORT_MII1; else return PRUETH_PORT_INVALID; } EXPORT_SYMBOL_GPL(prueth_node_port); /* get MAC instance corresponding to eth_node name */ int prueth_node_mac(struct device_node *eth_node) { u32 port_id; int ret; ret = of_property_read_u32(eth_node, "reg", &port_id); if (ret) return ret; if (port_id == 0) return PRUETH_MAC0; else if (port_id == 1) return PRUETH_MAC1; else return PRUETH_MAC_INVALID; } EXPORT_SYMBOL_GPL(prueth_node_mac); void prueth_netdev_exit(struct prueth *prueth, struct device_node *eth_node) { struct prueth_emac *emac; enum prueth_mac mac; mac = prueth_node_mac(eth_node); if (mac == PRUETH_MAC_INVALID) return; emac = prueth->emac[mac]; if (!emac) return; if (of_phy_is_fixed_link(emac->phy_node)) of_phy_deregister_fixed_link(emac->phy_node); netif_napi_del(&emac->napi_rx); pruss_release_mem_region(prueth->pruss, &emac->dram); destroy_workqueue(emac->cmd_wq); free_netdev(emac->ndev); prueth->emac[mac] = NULL; } EXPORT_SYMBOL_GPL(prueth_netdev_exit); int prueth_get_cores(struct prueth *prueth, int slice, bool is_sr1) { struct device *dev = prueth->dev; enum pruss_pru_id pruss_id; struct device_node *np; int idx = -1, ret; np = dev->of_node; switch (slice) { case ICSS_SLICE0: idx = 0; break; case ICSS_SLICE1: idx = is_sr1 ? 2 : 3; break; default: return -EINVAL; } prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id); if (IS_ERR(prueth->pru[slice])) { ret = PTR_ERR(prueth->pru[slice]); prueth->pru[slice] = NULL; return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice); } prueth->pru_id[slice] = pruss_id; idx++; prueth->rtu[slice] = pru_rproc_get(np, idx, NULL); if (IS_ERR(prueth->rtu[slice])) { ret = PTR_ERR(prueth->rtu[slice]); prueth->rtu[slice] = NULL; return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice); } if (is_sr1) return 0; idx++; prueth->txpru[slice] = pru_rproc_get(np, idx, NULL); if (IS_ERR(prueth->txpru[slice])) { ret = PTR_ERR(prueth->txpru[slice]); prueth->txpru[slice] = NULL; return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice); } return 0; } EXPORT_SYMBOL_GPL(prueth_get_cores); void prueth_put_cores(struct prueth *prueth, int slice) { if (prueth->txpru[slice]) pru_rproc_put(prueth->txpru[slice]); if (prueth->rtu[slice]) pru_rproc_put(prueth->rtu[slice]); if (prueth->pru[slice]) pru_rproc_put(prueth->pru[slice]); } EXPORT_SYMBOL_GPL(prueth_put_cores); #ifdef CONFIG_PM_SLEEP static int prueth_suspend(struct device *dev) { struct prueth *prueth = dev_get_drvdata(dev); struct net_device *ndev; int i, ret; for (i = 0; i < PRUETH_NUM_MACS; i++) { ndev = prueth->registered_netdevs[i]; if (!ndev) continue; if (netif_running(ndev)) { netif_device_detach(ndev); ret = ndev->netdev_ops->ndo_stop(ndev); if (ret < 0) { netdev_err(ndev, "failed to stop: %d", ret); return ret; } } } return 0; } static int prueth_resume(struct device *dev) { struct prueth *prueth = dev_get_drvdata(dev); struct net_device *ndev; int i, ret; for (i = 0; i < PRUETH_NUM_MACS; i++) { ndev = prueth->registered_netdevs[i]; if (!ndev) continue; if (netif_running(ndev)) { ret = ndev->netdev_ops->ndo_open(ndev); if (ret < 0) { netdev_err(ndev, "failed to start: %d", ret); return ret; } netif_device_attach(ndev); } } return 0; } #endif /* CONFIG_PM_SLEEP */ const struct dev_pm_ops prueth_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume) }; EXPORT_SYMBOL_GPL(prueth_dev_pm_ops); MODULE_AUTHOR("Roger Quadros "); MODULE_AUTHOR("Md Danish Anwar "); MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver Common Module"); MODULE_LICENSE("GPL");