// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments ICSSG Ethernet Driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "icssg_prueth.h" #include "icssg_mii_rt.h" #include "icssg_switchdev.h" #include "../k3-cppi-desc-pool.h" #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver" #define DEFAULT_VID 1 #define DEFAULT_PORT_MASK 1 #define DEFAULT_UNTAG_MASK 1 #define NETIF_PRUETH_HSR_OFFLOAD_FEATURES (NETIF_F_HW_HSR_FWD | \ NETIF_F_HW_HSR_DUP | \ NETIF_F_HW_HSR_TAG_INS | \ NETIF_F_HW_HSR_TAG_RM) /* CTRLMMR_ICSSG_RGMII_CTRL register bits */ #define ICSSG_CTRL_RGMII_ID_MODE BIT(24) static int emac_get_tx_ts(struct prueth_emac *emac, struct emac_tx_ts_response *rsp) { struct prueth *prueth = emac->prueth; int slice = prueth_emac_slice(emac); int addr; addr = icssg_queue_pop(prueth, slice == 0 ? ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1); if (addr < 0) return addr; memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp)); /* return buffer back for to pool */ icssg_queue_push(prueth, slice == 0 ? ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr); return 0; } static void tx_ts_work(struct prueth_emac *emac) { struct skb_shared_hwtstamps ssh; struct emac_tx_ts_response tsr; struct sk_buff *skb; int ret = 0; u32 hi_sw; u64 ns; /* There may be more than one pending requests */ while (1) { ret = emac_get_tx_ts(emac, &tsr); if (ret) /* nothing more */ break; if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS || !emac->tx_ts_skb[tsr.cookie]) { netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n", tsr.cookie); break; } skb = emac->tx_ts_skb[tsr.cookie]; emac->tx_ts_skb[tsr.cookie] = NULL; /* free slot */ if (!skb) { netdev_err(emac->ndev, "Driver Bug! got NULL skb\n"); break; } hi_sw = readl(emac->prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET); ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts, IEP_DEFAULT_CYCLE_TIME_NS); memset(&ssh, 0, sizeof(ssh)); ssh.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &ssh); dev_consume_skb_any(skb); if (atomic_dec_and_test(&emac->tx_ts_pending)) /* no more? */ break; } } static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id) { struct prueth_emac *emac = dev_id; /* currently only TX timestamp is being returned */ tx_ts_work(emac); return IRQ_HANDLED; } static struct icssg_firmwares icssg_hsr_firmwares[] = { { .pru = "ti-pruss/am65x-sr2-pru0-pruhsr-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu0-pruhsr-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru0-pruhsr-fw.elf", }, { .pru = "ti-pruss/am65x-sr2-pru1-pruhsr-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu1-pruhsr-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru1-pruhsr-fw.elf", } }; static struct icssg_firmwares icssg_switch_firmwares[] = { { .pru = "ti-pruss/am65x-sr2-pru0-prusw-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu0-prusw-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru0-prusw-fw.elf", }, { .pru = "ti-pruss/am65x-sr2-pru1-prusw-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu1-prusw-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru1-prusw-fw.elf", } }; static struct icssg_firmwares icssg_emac_firmwares[] = { { .pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf", }, { .pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf", .rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf", .txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf", } }; static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac) { struct icssg_firmwares *firmwares; struct device *dev = prueth->dev; int slice, ret; if (prueth->is_switch_mode) firmwares = icssg_switch_firmwares; else if (prueth->is_hsr_offload_mode) firmwares = icssg_hsr_firmwares; else firmwares = icssg_emac_firmwares; slice = prueth_emac_slice(emac); if (slice < 0) { netdev_err(emac->ndev, "invalid port\n"); return -EINVAL; } ret = icssg_config(prueth, emac, slice); if (ret) return ret; ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru); ret = rproc_boot(prueth->pru[slice]); if (ret) { dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret); return -EINVAL; } ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu); ret = rproc_boot(prueth->rtu[slice]); if (ret) { dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret); goto halt_pru; } ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru); ret = rproc_boot(prueth->txpru[slice]); if (ret) { dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret); goto halt_rtu; } emac->fw_running = 1; return 0; halt_rtu: rproc_shutdown(prueth->rtu[slice]); halt_pru: rproc_shutdown(prueth->pru[slice]); return ret; } /* called back by PHY layer if there is change in link state of hw port*/ static void emac_adjust_link(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; struct prueth *prueth = emac->prueth; bool new_state = false; unsigned long flags; if (phydev->link) { /* check the mode of operation - full/half duplex */ if (phydev->duplex != emac->duplex) { new_state = true; emac->duplex = phydev->duplex; } if (phydev->speed != emac->speed) { new_state = true; emac->speed = phydev->speed; } if (!emac->link) { new_state = true; emac->link = 1; } } else if (emac->link) { new_state = true; emac->link = 0; /* f/w should support 100 & 1000 */ emac->speed = SPEED_1000; /* half duplex may not be supported by f/w */ emac->duplex = DUPLEX_FULL; } if (new_state) { phy_print_status(phydev); /* update RGMII and MII configuration based on PHY negotiated * values */ if (emac->link) { if (emac->duplex == DUPLEX_HALF) icssg_config_half_duplex(emac); /* Set the RGMII cfg for gig en and full duplex */ icssg_update_rgmii_cfg(prueth->miig_rt, emac); /* update the Tx IPG based on 100M/1G speed */ spin_lock_irqsave(&emac->lock, flags); icssg_config_ipg(emac); spin_unlock_irqrestore(&emac->lock, flags); icssg_config_set_speed(emac); icssg_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD); } else { icssg_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE); } } if (emac->link) { /* reactivate the transmit queue */ netif_tx_wake_all_queues(ndev); } else { netif_tx_stop_all_queues(ndev); prueth_cleanup_tx_ts(emac); } } static enum hrtimer_restart emac_rx_timer_callback(struct hrtimer *timer) { struct prueth_emac *emac = container_of(timer, struct prueth_emac, rx_hrtimer); int rx_flow = PRUETH_RX_FLOW_DATA; enable_irq(emac->rx_chns.irq[rx_flow]); return HRTIMER_NORESTART; } static int emac_phy_connect(struct prueth_emac *emac) { struct prueth *prueth = emac->prueth; struct net_device *ndev = emac->ndev; /* connect PHY */ ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node, &emac_adjust_link, 0, emac->phy_if); if (!ndev->phydev) { dev_err(prueth->dev, "couldn't connect to phy %s\n", emac->phy_node->full_name); return -ENODEV; } if (!emac->half_duplex) { dev_dbg(prueth->dev, "half duplex mode is not supported\n"); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); } /* remove unsupported modes */ phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT); if (emac->phy_if == PHY_INTERFACE_MODE_MII) phy_set_max_speed(ndev->phydev, SPEED_100); return 0; } static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts) { u32 hi_rollover_count, hi_rollover_count_r; struct prueth_emac *emac = clockops_data; struct prueth *prueth = emac->prueth; void __iomem *fw_hi_r_count_addr; void __iomem *fw_count_hi_addr; u32 iepcount_hi, iepcount_hi_r; unsigned long flags; u32 iepcount_lo; u64 ts = 0; fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET; fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET; local_irq_save(flags); do { iepcount_hi = icss_iep_get_count_hi(emac->iep); iepcount_hi += readl(fw_count_hi_addr); hi_rollover_count = readl(fw_hi_r_count_addr); ptp_read_system_prets(sts); iepcount_lo = icss_iep_get_count_low(emac->iep); ptp_read_system_postts(sts); iepcount_hi_r = icss_iep_get_count_hi(emac->iep); iepcount_hi_r += readl(fw_count_hi_addr); hi_rollover_count_r = readl(fw_hi_r_count_addr); } while ((iepcount_hi_r != iepcount_hi) || (hi_rollover_count != hi_rollover_count_r)); local_irq_restore(flags); ts = ((u64)hi_rollover_count) << 23 | iepcount_hi; ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo; return ts; } static void prueth_iep_settime(void *clockops_data, u64 ns) { struct icssg_setclock_desc __iomem *sc_descp; struct prueth_emac *emac = clockops_data; struct icssg_setclock_desc sc_desc; u64 cyclecount; u32 cycletime; int timeout; if (!emac->fw_running) return; sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET; cycletime = IEP_DEFAULT_CYCLE_TIME_NS; cyclecount = ns / cycletime; memset(&sc_desc, 0, sizeof(sc_desc)); sc_desc.margin = cycletime - 1000; sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0); sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32; sc_desc.iepcount_set = ns % cycletime; /* Count from 0 to (cycle time) - emac->iep->def_inc */ sc_desc.CMP0_current = cycletime - emac->iep->def_inc; memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc)); writeb(1, &sc_descp->request); timeout = 5; /* fw should take 2-3 ms */ while (timeout--) { if (readb(&sc_descp->acknowledgment)) return; usleep_range(500, 1000); } dev_err(emac->prueth->dev, "settime timeout\n"); } static int prueth_perout_enable(void *clockops_data, struct ptp_perout_request *req, int on, u64 *cmp) { struct prueth_emac *emac = clockops_data; u32 reduction_factor = 0, offset = 0; struct timespec64 ts; u64 current_cycle; u64 start_offset; u64 ns_period; if (!on) return 0; /* Any firmware specific stuff for PPS/PEROUT handling */ ts.tv_sec = req->period.sec; ts.tv_nsec = req->period.nsec; ns_period = timespec64_to_ns(&ts); /* f/w doesn't support period less than cycle time */ if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS) return -ENXIO; reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS; offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS; /* f/w requires at least 1uS within a cycle so CMP * can trigger after SYNC is enabled */ if (offset < 5 * NSEC_PER_USEC) offset = 5 * NSEC_PER_USEC; /* if offset is close to cycle time then we will miss * the CMP event for last tick when IEP rolls over. * In normal mode, IEP tick is 4ns. * In slow compensation it could be 0ns or 8ns at * every slow compensation cycle. */ if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8) offset = IEP_DEFAULT_CYCLE_TIME_NS - 8; /* we're in shadow mode so need to set upper 32-bits */ *cmp = (u64)offset << 32; writel(reduction_factor, emac->prueth->shram.va + TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET); current_cycle = icssg_read_time(emac->prueth->shram.va + TIMESYNC_FW_WC_CYCLECOUNT_OFFSET); /* Rounding of current_cycle count to next second */ start_offset = roundup(current_cycle, MSEC_PER_SEC); hi_lo_writeq(start_offset, emac->prueth->shram.va + TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET); return 0; } const struct icss_iep_clockops prueth_iep_clockops = { .settime = prueth_iep_settime, .gettime = prueth_iep_gettime, .perout_enable = prueth_perout_enable, }; static int icssg_prueth_add_mcast(struct net_device *ndev, const u8 *addr) { struct prueth_emac *emac = netdev_priv(ndev); int port_mask = BIT(emac->port_id); port_mask |= icssg_fdb_lookup(emac, addr, 0); icssg_fdb_add_del(emac, addr, 0, port_mask, true); icssg_vtbl_modify(emac, 0, port_mask, port_mask, true); return 0; } static int icssg_prueth_del_mcast(struct net_device *ndev, const u8 *addr) { struct prueth_emac *emac = netdev_priv(ndev); int port_mask = BIT(emac->port_id); int other_port_mask; other_port_mask = port_mask ^ icssg_fdb_lookup(emac, addr, 0); icssg_fdb_add_del(emac, addr, 0, port_mask, false); icssg_vtbl_modify(emac, 0, port_mask, port_mask, false); if (other_port_mask) { icssg_fdb_add_del(emac, addr, 0, other_port_mask, true); icssg_vtbl_modify(emac, 0, other_port_mask, other_port_mask, true); } return 0; } static int icssg_prueth_hsr_add_mcast(struct net_device *ndev, const u8 *addr) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; icssg_fdb_add_del(emac, addr, prueth->default_vlan, ICSSG_FDB_ENTRY_P0_MEMBERSHIP | ICSSG_FDB_ENTRY_P1_MEMBERSHIP | ICSSG_FDB_ENTRY_P2_MEMBERSHIP | ICSSG_FDB_ENTRY_BLOCK, true); icssg_vtbl_modify(emac, emac->port_vlan, BIT(emac->port_id), BIT(emac->port_id), true); return 0; } static int icssg_prueth_hsr_del_mcast(struct net_device *ndev, const u8 *addr) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; icssg_fdb_add_del(emac, addr, prueth->default_vlan, ICSSG_FDB_ENTRY_P0_MEMBERSHIP | ICSSG_FDB_ENTRY_P1_MEMBERSHIP | ICSSG_FDB_ENTRY_P2_MEMBERSHIP | ICSSG_FDB_ENTRY_BLOCK, false); return 0; } /** * emac_ndo_open - EMAC device open * @ndev: network adapter device * * Called when system wants to start the interface. * * Return: 0 for a successful open, or appropriate error code */ static int emac_ndo_open(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); int ret, i, num_data_chn = emac->tx_ch_num; struct prueth *prueth = emac->prueth; int slice = prueth_emac_slice(emac); struct device *dev = prueth->dev; int max_rx_flows; int rx_flow; /* clear SMEM and MSMC settings for all slices */ if (!prueth->emacs_initialized) { memset_io(prueth->msmcram.va, 0, prueth->msmcram.size); memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS); } /* set h/w MAC as user might have re-configured */ ether_addr_copy(emac->mac_addr, ndev->dev_addr); icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr); icssg_class_default(prueth->miig_rt, slice, 0, false); icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr); /* Notify the stack of the actual queue counts. */ ret = netif_set_real_num_tx_queues(ndev, num_data_chn); if (ret) { dev_err(dev, "cannot set real number of tx queues\n"); return ret; } init_completion(&emac->cmd_complete); ret = prueth_init_tx_chns(emac); if (ret) { dev_err(dev, "failed to init tx channel: %d\n", ret); return ret; } max_rx_flows = PRUETH_MAX_RX_FLOWS; ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx", max_rx_flows, PRUETH_MAX_RX_DESC); if (ret) { dev_err(dev, "failed to init rx channel: %d\n", ret); goto cleanup_tx; } ret = prueth_ndev_add_tx_napi(emac); if (ret) goto cleanup_rx; /* we use only the highest priority flow for now i.e. @irq[3] */ rx_flow = PRUETH_RX_FLOW_DATA; ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq, IRQF_TRIGGER_HIGH, dev_name(dev), emac); if (ret) { dev_err(dev, "unable to request RX IRQ\n"); goto cleanup_napi; } /* reset and start PRU firmware */ ret = prueth_emac_start(prueth, emac); if (ret) goto free_rx_irq; icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu); if (!prueth->emacs_initialized) { ret = icss_iep_init(emac->iep, &prueth_iep_clockops, emac, IEP_DEFAULT_CYCLE_TIME_NS); } ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq, IRQF_ONESHOT, dev_name(dev), emac); if (ret) goto stop; /* Prepare RX */ ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE); if (ret) goto free_tx_ts_irq; ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn); if (ret) goto reset_rx_chn; for (i = 0; i < emac->tx_ch_num; i++) { ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn); if (ret) goto reset_tx_chan; } /* Enable NAPI in Tx and Rx direction */ for (i = 0; i < emac->tx_ch_num; i++) napi_enable(&emac->tx_chns[i].napi_tx); napi_enable(&emac->napi_rx); /* start PHY */ phy_start(ndev->phydev); prueth->emacs_initialized++; queue_work(system_long_wq, &emac->stats_work.work); return 0; reset_tx_chan: /* Since interface is not yet up, there is wouldn't be * any SKB for completion. So set false to free_skb */ prueth_reset_tx_chan(emac, i, false); reset_rx_chn: prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false); free_tx_ts_irq: free_irq(emac->tx_ts_irq, emac); stop: prueth_emac_stop(emac); free_rx_irq: free_irq(emac->rx_chns.irq[rx_flow], emac); cleanup_napi: prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); cleanup_rx: prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); cleanup_tx: prueth_cleanup_tx_chns(emac); return ret; } /** * emac_ndo_stop - EMAC device stop * @ndev: network adapter device * * Called when system wants to stop or down the interface. * * Return: Always 0 (Success) */ static int emac_ndo_stop(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; int rx_flow = PRUETH_RX_FLOW_DATA; int max_rx_flows; int ret, i; /* inform the upper layers. */ netif_tx_stop_all_queues(ndev); /* block packets from wire */ if (ndev->phydev) phy_stop(ndev->phydev); icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac)); if (emac->prueth->is_hsr_offload_mode) __dev_mc_unsync(ndev, icssg_prueth_hsr_del_mcast); else __dev_mc_unsync(ndev, icssg_prueth_del_mcast); atomic_set(&emac->tdown_cnt, emac->tx_ch_num); /* ensure new tdown_cnt value is visible */ smp_mb__after_atomic(); /* tear down and disable UDMA channels */ reinit_completion(&emac->tdown_complete); for (i = 0; i < emac->tx_ch_num; i++) k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false); ret = wait_for_completion_timeout(&emac->tdown_complete, msecs_to_jiffies(1000)); if (!ret) netdev_err(ndev, "tx teardown timeout\n"); prueth_reset_tx_chan(emac, emac->tx_ch_num, true); for (i = 0; i < emac->tx_ch_num; i++) { napi_disable(&emac->tx_chns[i].napi_tx); hrtimer_cancel(&emac->tx_chns[i].tx_hrtimer); } max_rx_flows = PRUETH_MAX_RX_FLOWS; k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true); prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true); napi_disable(&emac->napi_rx); hrtimer_cancel(&emac->rx_hrtimer); cancel_work_sync(&emac->rx_mode_work); /* Destroying the queued work in ndo_stop() */ cancel_delayed_work_sync(&emac->stats_work); if (prueth->emacs_initialized == 1) icss_iep_exit(emac->iep); /* stop PRUs */ prueth_emac_stop(emac); free_irq(emac->tx_ts_irq, emac); free_irq(emac->rx_chns.irq[rx_flow], emac); prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); prueth_cleanup_tx_chns(emac); prueth->emacs_initialized--; return 0; } static void emac_ndo_set_rx_mode_work(struct work_struct *work) { struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work); struct net_device *ndev = emac->ndev; bool promisc, allmulti; if (!netif_running(ndev)) return; promisc = ndev->flags & IFF_PROMISC; allmulti = ndev->flags & IFF_ALLMULTI; icssg_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE); icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE); if (promisc) { icssg_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE); icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE); return; } if (allmulti) { icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE); return; } if (emac->prueth->is_hsr_offload_mode) __dev_mc_sync(ndev, icssg_prueth_hsr_add_mcast, icssg_prueth_hsr_del_mcast); else __dev_mc_sync(ndev, icssg_prueth_add_mcast, icssg_prueth_del_mcast); } /** * emac_ndo_set_rx_mode - EMAC set receive mode function * @ndev: The EMAC network adapter * * Called when system wants to set the receive mode of the device. * */ static void emac_ndo_set_rx_mode(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); queue_work(emac->cmd_wq, &emac->rx_mode_work); } static netdev_features_t emac_ndo_fix_features(struct net_device *ndev, netdev_features_t features) { /* hsr tag insertion offload and hsr dup offload are tightly coupled in * firmware implementation. Both these features need to be enabled / * disabled together. */ if (!(ndev->features & (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_TAG_INS))) if ((features & NETIF_F_HW_HSR_DUP) || (features & NETIF_F_HW_HSR_TAG_INS)) features |= NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_TAG_INS; if ((ndev->features & NETIF_F_HW_HSR_DUP) || (ndev->features & NETIF_F_HW_HSR_TAG_INS)) if (!(features & NETIF_F_HW_HSR_DUP) || !(features & NETIF_F_HW_HSR_TAG_INS)) features &= ~(NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_TAG_INS); return features; } static int emac_ndo_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; int untag_mask = 0; int port_mask; if (prueth->is_hsr_offload_mode) { port_mask = BIT(PRUETH_PORT_HOST) | BIT(emac->port_id); untag_mask = 0; netdev_dbg(emac->ndev, "VID add vid:%u port_mask:%X untag_mask %X\n", vid, port_mask, untag_mask); icssg_vtbl_modify(emac, vid, port_mask, untag_mask, true); icssg_set_pvid(emac->prueth, vid, emac->port_id); } return 0; } static int emac_ndo_vlan_rx_del_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; int untag_mask = 0; int port_mask; if (prueth->is_hsr_offload_mode) { port_mask = BIT(PRUETH_PORT_HOST); untag_mask = 0; netdev_dbg(emac->ndev, "VID del vid:%u port_mask:%X untag_mask %X\n", vid, port_mask, untag_mask); icssg_vtbl_modify(emac, vid, port_mask, untag_mask, false); } return 0; } static const struct net_device_ops emac_netdev_ops = { .ndo_open = emac_ndo_open, .ndo_stop = emac_ndo_stop, .ndo_start_xmit = icssg_ndo_start_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = icssg_ndo_tx_timeout, .ndo_set_rx_mode = emac_ndo_set_rx_mode, .ndo_eth_ioctl = icssg_ndo_ioctl, .ndo_get_stats64 = icssg_ndo_get_stats64, .ndo_get_phys_port_name = icssg_ndo_get_phys_port_name, .ndo_fix_features = emac_ndo_fix_features, .ndo_vlan_rx_add_vid = emac_ndo_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = emac_ndo_vlan_rx_del_vid, }; static int prueth_netdev_init(struct prueth *prueth, struct device_node *eth_node) { int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES; struct prueth_emac *emac; struct net_device *ndev; enum prueth_port port; const char *irq_name; enum prueth_mac mac; port = prueth_node_port(eth_node); if (port == PRUETH_PORT_INVALID) return -EINVAL; mac = prueth_node_mac(eth_node); if (mac == PRUETH_MAC_INVALID) return -EINVAL; ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn); if (!ndev) return -ENOMEM; emac = netdev_priv(ndev); emac->prueth = prueth; emac->ndev = ndev; emac->port_id = port; emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq"); if (!emac->cmd_wq) { ret = -ENOMEM; goto free_ndev; } INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work); INIT_DELAYED_WORK(&emac->stats_work, icssg_stats_work_handler); ret = pruss_request_mem_region(prueth->pruss, port == PRUETH_PORT_MII0 ? PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1, &emac->dram); if (ret) { dev_err(prueth->dev, "unable to get DRAM: %d\n", ret); ret = -ENOMEM; goto free_wq; } emac->tx_ch_num = 1; irq_name = "tx_ts0"; if (emac->port_id == PRUETH_PORT_MII1) irq_name = "tx_ts1"; emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name); if (emac->tx_ts_irq < 0) { ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n"); goto free; } SET_NETDEV_DEV(ndev, prueth->dev); spin_lock_init(&emac->lock); mutex_init(&emac->cmd_lock); emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0); if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) { dev_err(prueth->dev, "couldn't find phy-handle\n"); ret = -ENODEV; goto free; } else if (of_phy_is_fixed_link(eth_node)) { ret = of_phy_register_fixed_link(eth_node); if (ret) { ret = dev_err_probe(prueth->dev, ret, "failed to register fixed-link phy\n"); goto free; } emac->phy_node = eth_node; } ret = of_get_phy_mode(eth_node, &emac->phy_if); if (ret) { dev_err(prueth->dev, "could not get phy-mode property\n"); goto free; } if (emac->phy_if != PHY_INTERFACE_MODE_MII && !phy_interface_mode_is_rgmii(emac->phy_if)) { dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if)); ret = -EINVAL; goto free; } /* AM65 SR2.0 has TX Internal delay always enabled by hardware * and it is not possible to disable TX Internal delay. The below * switch case block describes how we handle different phy modes * based on hardware restriction. */ switch (emac->phy_if) { case PHY_INTERFACE_MODE_RGMII_ID: emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID; break; case PHY_INTERFACE_MODE_RGMII_TXID: emac->phy_if = PHY_INTERFACE_MODE_RGMII; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_RXID: dev_err(prueth->dev, "RGMII mode without TX delay is not supported"); ret = -EINVAL; goto free; default: break; } /* get mac address from DT and set private and netdev addr */ ret = of_get_ethdev_address(eth_node, ndev); if (!is_valid_ether_addr(ndev->dev_addr)) { eth_hw_addr_random(ndev); dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n", port, ndev->dev_addr); } ether_addr_copy(emac->mac_addr, ndev->dev_addr); ndev->dev.of_node = eth_node; ndev->min_mtu = PRUETH_MIN_PKT_SIZE; ndev->max_mtu = PRUETH_MAX_MTU; ndev->netdev_ops = &emac_netdev_ops; ndev->ethtool_ops = &icssg_ethtool_ops; ndev->hw_features = NETIF_F_SG; ndev->features = ndev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; ndev->hw_features |= NETIF_PRUETH_HSR_OFFLOAD_FEATURES; netif_napi_add(ndev, &emac->napi_rx, icssg_napi_rx_poll); hrtimer_init(&emac->rx_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); emac->rx_hrtimer.function = &emac_rx_timer_callback; prueth->emac[mac] = emac; return 0; free: pruss_release_mem_region(prueth->pruss, &emac->dram); free_wq: destroy_workqueue(emac->cmd_wq); free_ndev: emac->ndev = NULL; prueth->emac[mac] = NULL; free_netdev(ndev); return ret; } bool prueth_dev_check(const struct net_device *ndev) { if (ndev->netdev_ops == &emac_netdev_ops && netif_running(ndev)) { struct prueth_emac *emac = netdev_priv(ndev); return emac->prueth->is_switch_mode; } return false; } static void prueth_offload_fwd_mark_update(struct prueth *prueth) { int set_val = 0; int i; if (prueth->br_members == (BIT(PRUETH_PORT_MII0) | BIT(PRUETH_PORT_MII1))) set_val = 1; dev_dbg(prueth->dev, "set offload_fwd_mark %d\n", set_val); for (i = PRUETH_MAC0; i < PRUETH_NUM_MACS; i++) { struct prueth_emac *emac = prueth->emac[i]; if (!emac || !emac->ndev) continue; emac->offload_fwd_mark = set_val; } } static void prueth_emac_restart(struct prueth *prueth) { struct prueth_emac *emac0 = prueth->emac[PRUETH_MAC0]; struct prueth_emac *emac1 = prueth->emac[PRUETH_MAC1]; /* Detach the net_device for both PRUeth ports*/ if (netif_running(emac0->ndev)) netif_device_detach(emac0->ndev); if (netif_running(emac1->ndev)) netif_device_detach(emac1->ndev); /* Disable both PRUeth ports */ icssg_set_port_state(emac0, ICSSG_EMAC_PORT_DISABLE); icssg_set_port_state(emac1, ICSSG_EMAC_PORT_DISABLE); /* Stop both pru cores for both PRUeth ports*/ prueth_emac_stop(emac0); prueth->emacs_initialized--; prueth_emac_stop(emac1); prueth->emacs_initialized--; /* Start both pru cores for both PRUeth ports */ prueth_emac_start(prueth, emac0); prueth->emacs_initialized++; prueth_emac_start(prueth, emac1); prueth->emacs_initialized++; /* Enable forwarding for both PRUeth ports */ icssg_set_port_state(emac0, ICSSG_EMAC_PORT_FORWARD); icssg_set_port_state(emac1, ICSSG_EMAC_PORT_FORWARD); /* Attache net_device for both PRUeth ports */ netif_device_attach(emac0->ndev); netif_device_attach(emac1->ndev); } static void icssg_change_mode(struct prueth *prueth) { struct prueth_emac *emac; int mac; prueth_emac_restart(prueth); for (mac = PRUETH_MAC0; mac < PRUETH_NUM_MACS; mac++) { emac = prueth->emac[mac]; if (prueth->is_hsr_offload_mode) { if (emac->ndev->features & NETIF_F_HW_HSR_TAG_RM) icssg_set_port_state(emac, ICSSG_EMAC_HSR_RX_OFFLOAD_ENABLE); else icssg_set_port_state(emac, ICSSG_EMAC_HSR_RX_OFFLOAD_DISABLE); } if (netif_running(emac->ndev)) { icssg_fdb_add_del(emac, eth_stp_addr, prueth->default_vlan, ICSSG_FDB_ENTRY_P0_MEMBERSHIP | ICSSG_FDB_ENTRY_P1_MEMBERSHIP | ICSSG_FDB_ENTRY_P2_MEMBERSHIP | ICSSG_FDB_ENTRY_BLOCK, true); icssg_vtbl_modify(emac, emac->port_vlan | DEFAULT_VID, BIT(emac->port_id) | DEFAULT_PORT_MASK, BIT(emac->port_id) | DEFAULT_UNTAG_MASK, true); if (prueth->is_hsr_offload_mode) icssg_vtbl_modify(emac, DEFAULT_VID, DEFAULT_PORT_MASK, DEFAULT_UNTAG_MASK, true); icssg_set_pvid(prueth, emac->port_vlan, emac->port_id); if (prueth->is_switch_mode) icssg_set_port_state(emac, ICSSG_EMAC_PORT_VLAN_AWARE_ENABLE); } } } static int prueth_netdevice_port_link(struct net_device *ndev, struct net_device *br_ndev, struct netlink_ext_ack *extack) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; int err; if (!prueth->br_members) { prueth->hw_bridge_dev = br_ndev; } else { /* This is adding the port to a second bridge, this is * unsupported */ if (prueth->hw_bridge_dev != br_ndev) return -EOPNOTSUPP; } err = switchdev_bridge_port_offload(br_ndev, ndev, emac, &prueth->prueth_switchdev_nb, &prueth->prueth_switchdev_bl_nb, false, extack); if (err) return err; prueth->br_members |= BIT(emac->port_id); if (!prueth->is_switch_mode) { if (prueth->br_members & BIT(PRUETH_PORT_MII0) && prueth->br_members & BIT(PRUETH_PORT_MII1)) { prueth->is_switch_mode = true; prueth->default_vlan = 1; emac->port_vlan = prueth->default_vlan; icssg_change_mode(prueth); } } prueth_offload_fwd_mark_update(prueth); return NOTIFY_DONE; } static void prueth_netdevice_port_unlink(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; prueth->br_members &= ~BIT(emac->port_id); if (prueth->is_switch_mode) { prueth->is_switch_mode = false; emac->port_vlan = 0; prueth_emac_restart(prueth); } prueth_offload_fwd_mark_update(prueth); if (!prueth->br_members) prueth->hw_bridge_dev = NULL; } static int prueth_hsr_port_link(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; struct prueth_emac *emac0; struct prueth_emac *emac1; emac0 = prueth->emac[PRUETH_MAC0]; emac1 = prueth->emac[PRUETH_MAC1]; if (prueth->is_switch_mode) return -EOPNOTSUPP; prueth->hsr_members |= BIT(emac->port_id); if (!prueth->is_hsr_offload_mode) { if (prueth->hsr_members & BIT(PRUETH_PORT_MII0) && prueth->hsr_members & BIT(PRUETH_PORT_MII1)) { if (!(emac0->ndev->features & NETIF_PRUETH_HSR_OFFLOAD_FEATURES) && !(emac1->ndev->features & NETIF_PRUETH_HSR_OFFLOAD_FEATURES)) return -EOPNOTSUPP; prueth->is_hsr_offload_mode = true; prueth->default_vlan = 1; emac0->port_vlan = prueth->default_vlan; emac1->port_vlan = prueth->default_vlan; icssg_change_mode(prueth); netdev_dbg(ndev, "Enabling HSR offload mode\n"); } } return 0; } static void prueth_hsr_port_unlink(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; struct prueth_emac *emac0; struct prueth_emac *emac1; emac0 = prueth->emac[PRUETH_MAC0]; emac1 = prueth->emac[PRUETH_MAC1]; prueth->hsr_members &= ~BIT(emac->port_id); if (prueth->is_hsr_offload_mode) { prueth->is_hsr_offload_mode = false; emac0->port_vlan = 0; emac1->port_vlan = 0; prueth->hsr_dev = NULL; prueth_emac_restart(prueth); netdev_dbg(ndev, "Disabling HSR Offload mode\n"); } } /* netdev notifier */ static int prueth_netdevice_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr); struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_changeupper_info *info; struct prueth_emac *emac = netdev_priv(ndev); struct prueth *prueth = emac->prueth; int ret = NOTIFY_DONE; if (ndev->netdev_ops != &emac_netdev_ops) return NOTIFY_DONE; switch (event) { case NETDEV_CHANGEUPPER: info = ptr; if ((ndev->features & NETIF_PRUETH_HSR_OFFLOAD_FEATURES) && is_hsr_master(info->upper_dev)) { if (info->linking) { if (!prueth->hsr_dev) { prueth->hsr_dev = info->upper_dev; icssg_class_set_host_mac_addr(prueth->miig_rt, prueth->hsr_dev->dev_addr); } else { if (prueth->hsr_dev != info->upper_dev) { netdev_dbg(ndev, "Both interfaces must be linked to same upper device\n"); return -EOPNOTSUPP; } } prueth_hsr_port_link(ndev); } else { prueth_hsr_port_unlink(ndev); } } if (netif_is_bridge_master(info->upper_dev)) { if (info->linking) ret = prueth_netdevice_port_link(ndev, info->upper_dev, extack); else prueth_netdevice_port_unlink(ndev); } break; default: return NOTIFY_DONE; } return notifier_from_errno(ret); } static int prueth_register_notifiers(struct prueth *prueth) { int ret = 0; prueth->prueth_netdevice_nb.notifier_call = &prueth_netdevice_event; ret = register_netdevice_notifier(&prueth->prueth_netdevice_nb); if (ret) { dev_err(prueth->dev, "can't register netdevice notifier\n"); return ret; } ret = prueth_switchdev_register_notifiers(prueth); if (ret) unregister_netdevice_notifier(&prueth->prueth_netdevice_nb); return ret; } static void prueth_unregister_notifiers(struct prueth *prueth) { prueth_switchdev_unregister_notifiers(prueth); unregister_netdevice_notifier(&prueth->prueth_netdevice_nb); } static int prueth_probe(struct platform_device *pdev) { struct device_node *eth_node, *eth_ports_node; struct device_node *eth0_node = NULL; struct device_node *eth1_node = NULL; struct genpool_data_align gp_data = { .align = SZ_64K, }; struct device *dev = &pdev->dev; struct device_node *np; struct prueth *prueth; struct pruss *pruss; u32 msmc_ram_size; int i, ret; np = dev->of_node; prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL); if (!prueth) return -ENOMEM; dev_set_drvdata(dev, prueth); prueth->pdev = pdev; prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev); prueth->dev = dev; eth_ports_node = of_get_child_by_name(np, "ethernet-ports"); if (!eth_ports_node) return -ENOENT; for_each_child_of_node(eth_ports_node, eth_node) { u32 reg; if (strcmp(eth_node->name, "port")) continue; ret = of_property_read_u32(eth_node, "reg", ®); if (ret < 0) { dev_err(dev, "%pOF error reading port_id %d\n", eth_node, ret); } of_node_get(eth_node); if (reg == 0) { eth0_node = eth_node; if (!of_device_is_available(eth0_node)) { of_node_put(eth0_node); eth0_node = NULL; } } else if (reg == 1) { eth1_node = eth_node; if (!of_device_is_available(eth1_node)) { of_node_put(eth1_node); eth1_node = NULL; } } else { dev_err(dev, "port reg should be 0 or 1\n"); } } of_node_put(eth_ports_node); /* At least one node must be present and available else we fail */ if (!eth0_node && !eth1_node) { dev_err(dev, "neither port0 nor port1 node available\n"); return -ENODEV; } if (eth0_node == eth1_node) { dev_err(dev, "port0 and port1 can't have same reg\n"); of_node_put(eth0_node); return -ENODEV; } prueth->eth_node[PRUETH_MAC0] = eth0_node; prueth->eth_node[PRUETH_MAC1] = eth1_node; prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt"); if (IS_ERR(prueth->miig_rt)) { dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n"); return -ENODEV; } prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt"); if (IS_ERR(prueth->mii_rt)) { dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n"); return -ENODEV; } prueth->pa_stats = syscon_regmap_lookup_by_phandle(np, "ti,pa-stats"); if (IS_ERR(prueth->pa_stats)) { dev_err(dev, "couldn't get ti,pa-stats syscon regmap\n"); prueth->pa_stats = NULL; } if (eth0_node) { ret = prueth_get_cores(prueth, ICSS_SLICE0, false); if (ret) goto put_cores; } if (eth1_node) { ret = prueth_get_cores(prueth, ICSS_SLICE1, false); if (ret) goto put_cores; } pruss = pruss_get(eth0_node ? prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]); if (IS_ERR(pruss)) { ret = PTR_ERR(pruss); dev_err(dev, "unable to get pruss handle\n"); goto put_cores; } prueth->pruss = pruss; ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2, &prueth->shram); if (ret) { dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret); goto put_pruss; } prueth->sram_pool = of_gen_pool_get(np, "sram", 0); if (!prueth->sram_pool) { dev_err(dev, "unable to get SRAM pool\n"); ret = -ENODEV; goto put_mem; } msmc_ram_size = MSMC_RAM_SIZE; prueth->is_switchmode_supported = prueth->pdata.switch_mode; if (prueth->is_switchmode_supported) msmc_ram_size = MSMC_RAM_SIZE_SWITCH_MODE; /* NOTE: FW bug needs buffer base to be 64KB aligned */ prueth->msmcram.va = (void __iomem *)gen_pool_alloc_algo(prueth->sram_pool, msmc_ram_size, gen_pool_first_fit_align, &gp_data); if (!prueth->msmcram.va) { ret = -ENOMEM; dev_err(dev, "unable to allocate MSMC resource\n"); goto put_mem; } prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool, (unsigned long)prueth->msmcram.va); prueth->msmcram.size = msmc_ram_size; memset_io(prueth->msmcram.va, 0, msmc_ram_size); dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa, prueth->msmcram.va, prueth->msmcram.size); prueth->iep0 = icss_iep_get_idx(np, 0); if (IS_ERR(prueth->iep0)) { ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n"); prueth->iep0 = NULL; goto free_pool; } prueth->iep1 = icss_iep_get_idx(np, 1); if (IS_ERR(prueth->iep1)) { ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n"); goto put_iep0; } if (prueth->pdata.quirk_10m_link_issue) { /* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX * traffic. */ icss_iep_init_fw(prueth->iep1); } spin_lock_init(&prueth->vtbl_lock); /* setup netdev interfaces */ if (eth0_node) { ret = prueth_netdev_init(prueth, eth0_node); if (ret) { dev_err_probe(dev, ret, "netdev init %s failed\n", eth0_node->name); goto exit_iep; } prueth->emac[PRUETH_MAC0]->half_duplex = of_property_read_bool(eth0_node, "ti,half-duplex-capable"); prueth->emac[PRUETH_MAC0]->iep = prueth->iep0; } if (eth1_node) { ret = prueth_netdev_init(prueth, eth1_node); if (ret) { dev_err_probe(dev, ret, "netdev init %s failed\n", eth1_node->name); goto netdev_exit; } prueth->emac[PRUETH_MAC1]->half_duplex = of_property_read_bool(eth1_node, "ti,half-duplex-capable"); prueth->emac[PRUETH_MAC1]->iep = prueth->iep0; } /* register the network devices */ if (eth0_node) { ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev); if (ret) { dev_err(dev, "can't register netdev for port MII0"); goto netdev_exit; } prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev; ret = emac_phy_connect(prueth->emac[PRUETH_MAC0]); if (ret) { dev_err(dev, "can't connect to MII0 PHY, error -%d", ret); goto netdev_unregister; } phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev); } if (eth1_node) { ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev); if (ret) { dev_err(dev, "can't register netdev for port MII1"); goto netdev_unregister; } prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev; ret = emac_phy_connect(prueth->emac[PRUETH_MAC1]); if (ret) { dev_err(dev, "can't connect to MII1 PHY, error %d", ret); goto netdev_unregister; } phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev); } if (prueth->is_switchmode_supported) { ret = prueth_register_notifiers(prueth); if (ret) goto netdev_unregister; sprintf(prueth->switch_id, "%s", dev_name(dev)); } dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n", (!eth0_node || !eth1_node) ? "single" : "dual"); if (eth1_node) of_node_put(eth1_node); if (eth0_node) of_node_put(eth0_node); return 0; netdev_unregister: for (i = 0; i < PRUETH_NUM_MACS; i++) { if (!prueth->registered_netdevs[i]) continue; if (prueth->emac[i]->ndev->phydev) { phy_disconnect(prueth->emac[i]->ndev->phydev); prueth->emac[i]->ndev->phydev = NULL; } unregister_netdev(prueth->registered_netdevs[i]); } netdev_exit: for (i = 0; i < PRUETH_NUM_MACS; i++) { eth_node = prueth->eth_node[i]; if (!eth_node) continue; prueth_netdev_exit(prueth, eth_node); } exit_iep: if (prueth->pdata.quirk_10m_link_issue) icss_iep_exit_fw(prueth->iep1); icss_iep_put(prueth->iep1); put_iep0: icss_iep_put(prueth->iep0); prueth->iep0 = NULL; prueth->iep1 = NULL; free_pool: gen_pool_free(prueth->sram_pool, (unsigned long)prueth->msmcram.va, msmc_ram_size); put_mem: pruss_release_mem_region(prueth->pruss, &prueth->shram); put_pruss: pruss_put(prueth->pruss); put_cores: if (eth1_node) { prueth_put_cores(prueth, ICSS_SLICE1); of_node_put(eth1_node); } if (eth0_node) { prueth_put_cores(prueth, ICSS_SLICE0); of_node_put(eth0_node); } return ret; } static void prueth_remove(struct platform_device *pdev) { struct prueth *prueth = platform_get_drvdata(pdev); struct device_node *eth_node; int i; prueth_unregister_notifiers(prueth); for (i = 0; i < PRUETH_NUM_MACS; i++) { if (!prueth->registered_netdevs[i]) continue; phy_stop(prueth->emac[i]->ndev->phydev); phy_disconnect(prueth->emac[i]->ndev->phydev); prueth->emac[i]->ndev->phydev = NULL; unregister_netdev(prueth->registered_netdevs[i]); } for (i = 0; i < PRUETH_NUM_MACS; i++) { eth_node = prueth->eth_node[i]; if (!eth_node) continue; prueth_netdev_exit(prueth, eth_node); } if (prueth->pdata.quirk_10m_link_issue) icss_iep_exit_fw(prueth->iep1); icss_iep_put(prueth->iep1); icss_iep_put(prueth->iep0); gen_pool_free(prueth->sram_pool, (unsigned long)prueth->msmcram.va, MSMC_RAM_SIZE); pruss_release_mem_region(prueth->pruss, &prueth->shram); pruss_put(prueth->pruss); if (prueth->eth_node[PRUETH_MAC1]) prueth_put_cores(prueth, ICSS_SLICE1); if (prueth->eth_node[PRUETH_MAC0]) prueth_put_cores(prueth, ICSS_SLICE0); } static const struct prueth_pdata am654_icssg_pdata = { .fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE, .quirk_10m_link_issue = 1, .switch_mode = 1, }; static const struct prueth_pdata am64x_icssg_pdata = { .fdqring_mode = K3_RINGACC_RING_MODE_RING, .quirk_10m_link_issue = 1, .switch_mode = 1, }; static const struct of_device_id prueth_dt_match[] = { { .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata }, { .compatible = "ti,am642-icssg-prueth", .data = &am64x_icssg_pdata }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, prueth_dt_match); static struct platform_driver prueth_driver = { .probe = prueth_probe, .remove = prueth_remove, .driver = { .name = "icssg-prueth", .of_match_table = prueth_dt_match, .pm = &prueth_dev_pm_ops, }, }; module_platform_driver(prueth_driver); MODULE_AUTHOR("Roger Quadros "); MODULE_AUTHOR("Md Danish Anwar "); MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver"); MODULE_LICENSE("GPL");