// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Analog Devices Industrial Ethernet PHYs * * Copyright 2019 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #define PHY_ID_ADIN1200 0x0283bc20 #define PHY_ID_ADIN1300 0x0283bc30 #define ADIN1300_MII_EXT_REG_PTR 0x0010 #define ADIN1300_MII_EXT_REG_DATA 0x0011 #define ADIN1300_PHY_CTRL1 0x0012 #define ADIN1300_AUTO_MDI_EN BIT(10) #define ADIN1300_MAN_MDIX_EN BIT(9) #define ADIN1300_DIAG_CLK_EN BIT(2) #define ADIN1300_RX_ERR_CNT 0x0014 #define ADIN1300_PHY_CTRL_STATUS2 0x0015 #define ADIN1300_NRG_PD_EN BIT(3) #define ADIN1300_NRG_PD_TX_EN BIT(2) #define ADIN1300_NRG_PD_STATUS BIT(1) #define ADIN1300_PHY_CTRL2 0x0016 #define ADIN1300_DOWNSPEED_AN_100_EN BIT(11) #define ADIN1300_DOWNSPEED_AN_10_EN BIT(10) #define ADIN1300_GROUP_MDIO_EN BIT(6) #define ADIN1300_DOWNSPEEDS_EN \ (ADIN1300_DOWNSPEED_AN_100_EN | ADIN1300_DOWNSPEED_AN_10_EN) #define ADIN1300_PHY_CTRL3 0x0017 #define ADIN1300_LINKING_EN BIT(13) #define ADIN1300_DOWNSPEED_RETRIES_MSK GENMASK(12, 10) #define ADIN1300_INT_MASK_REG 0x0018 #define ADIN1300_INT_MDIO_SYNC_EN BIT(9) #define ADIN1300_INT_ANEG_STAT_CHNG_EN BIT(8) #define ADIN1300_INT_ANEG_PAGE_RX_EN BIT(6) #define ADIN1300_INT_IDLE_ERR_CNT_EN BIT(5) #define ADIN1300_INT_MAC_FIFO_OU_EN BIT(4) #define ADIN1300_INT_RX_STAT_CHNG_EN BIT(3) #define ADIN1300_INT_LINK_STAT_CHNG_EN BIT(2) #define ADIN1300_INT_SPEED_CHNG_EN BIT(1) #define ADIN1300_INT_HW_IRQ_EN BIT(0) #define ADIN1300_INT_MASK_EN \ (ADIN1300_INT_LINK_STAT_CHNG_EN | ADIN1300_INT_HW_IRQ_EN) #define ADIN1300_INT_STATUS_REG 0x0019 #define ADIN1300_PHY_STATUS1 0x001a #define ADIN1300_PAIR_01_SWAP BIT(11) /* EEE register addresses, accessible via Clause 22 access using * ADIN1300_MII_EXT_REG_PTR & ADIN1300_MII_EXT_REG_DATA. * The bit-fields are the same as specified by IEEE for EEE. */ #define ADIN1300_EEE_CAP_REG 0x8000 #define ADIN1300_EEE_ADV_REG 0x8001 #define ADIN1300_EEE_LPABLE_REG 0x8002 #define ADIN1300_FLD_EN_REG 0x8E27 #define ADIN1300_FLD_PCS_ERR_100_EN BIT(7) #define ADIN1300_FLD_PCS_ERR_1000_EN BIT(6) #define ADIN1300_FLD_SLCR_OUT_STUCK_100_EN BIT(5) #define ADIN1300_FLD_SLCR_OUT_STUCK_1000_EN BIT(4) #define ADIN1300_FLD_SLCR_IN_ZDET_100_EN BIT(3) #define ADIN1300_FLD_SLCR_IN_ZDET_1000_EN BIT(2) #define ADIN1300_FLD_SLCR_IN_INVLD_100_EN BIT(1) #define ADIN1300_FLD_SLCR_IN_INVLD_1000_EN BIT(0) /* These bits are the ones which are enabled by default. */ #define ADIN1300_FLD_EN_ON \ (ADIN1300_FLD_SLCR_OUT_STUCK_100_EN | \ ADIN1300_FLD_SLCR_OUT_STUCK_1000_EN | \ ADIN1300_FLD_SLCR_IN_ZDET_100_EN | \ ADIN1300_FLD_SLCR_IN_ZDET_1000_EN | \ ADIN1300_FLD_SLCR_IN_INVLD_1000_EN) #define ADIN1300_CLOCK_STOP_REG 0x9400 #define ADIN1300_LPI_WAKE_ERR_CNT_REG 0xa000 #define ADIN1300_CDIAG_RUN 0xba1b #define ADIN1300_CDIAG_RUN_EN BIT(0) /* * The XSIM3/2/1 and XSHRT3/2/1 are actually relative. * For CDIAG_DTLD_RSLTS(0) it's ADIN1300_CDIAG_RSLT_XSIM3/2/1 * For CDIAG_DTLD_RSLTS(1) it's ADIN1300_CDIAG_RSLT_XSIM3/2/0 * For CDIAG_DTLD_RSLTS(2) it's ADIN1300_CDIAG_RSLT_XSIM3/1/0 * For CDIAG_DTLD_RSLTS(3) it's ADIN1300_CDIAG_RSLT_XSIM2/1/0 */ #define ADIN1300_CDIAG_DTLD_RSLTS(x) (0xba1d + (x)) #define ADIN1300_CDIAG_RSLT_BUSY BIT(10) #define ADIN1300_CDIAG_RSLT_XSIM3 BIT(9) #define ADIN1300_CDIAG_RSLT_XSIM2 BIT(8) #define ADIN1300_CDIAG_RSLT_XSIM1 BIT(7) #define ADIN1300_CDIAG_RSLT_SIM BIT(6) #define ADIN1300_CDIAG_RSLT_XSHRT3 BIT(5) #define ADIN1300_CDIAG_RSLT_XSHRT2 BIT(4) #define ADIN1300_CDIAG_RSLT_XSHRT1 BIT(3) #define ADIN1300_CDIAG_RSLT_SHRT BIT(2) #define ADIN1300_CDIAG_RSLT_OPEN BIT(1) #define ADIN1300_CDIAG_RSLT_GOOD BIT(0) #define ADIN1300_CDIAG_FLT_DIST(x) (0xba21 + (x)) #define ADIN1300_GE_SOFT_RESET_REG 0xff0c #define ADIN1300_GE_SOFT_RESET BIT(0) #define ADIN1300_GE_CLK_CFG_REG 0xff1f #define ADIN1300_GE_CLK_CFG_MASK GENMASK(5, 0) #define ADIN1300_GE_CLK_CFG_RCVR_125 BIT(5) #define ADIN1300_GE_CLK_CFG_FREE_125 BIT(4) #define ADIN1300_GE_CLK_CFG_REF_EN BIT(3) #define ADIN1300_GE_CLK_CFG_HRT_RCVR BIT(2) #define ADIN1300_GE_CLK_CFG_HRT_FREE BIT(1) #define ADIN1300_GE_CLK_CFG_25 BIT(0) #define ADIN1300_GE_RGMII_CFG_REG 0xff23 #define ADIN1300_GE_RGMII_RX_MSK GENMASK(8, 6) #define ADIN1300_GE_RGMII_RX_SEL(x) \ FIELD_PREP(ADIN1300_GE_RGMII_RX_MSK, x) #define ADIN1300_GE_RGMII_GTX_MSK GENMASK(5, 3) #define ADIN1300_GE_RGMII_GTX_SEL(x) \ FIELD_PREP(ADIN1300_GE_RGMII_GTX_MSK, x) #define ADIN1300_GE_RGMII_RXID_EN BIT(2) #define ADIN1300_GE_RGMII_TXID_EN BIT(1) #define ADIN1300_GE_RGMII_EN BIT(0) /* RGMII internal delay settings for rx and tx for ADIN1300 */ #define ADIN1300_RGMII_1_60_NS 0x0001 #define ADIN1300_RGMII_1_80_NS 0x0002 #define ADIN1300_RGMII_2_00_NS 0x0000 #define ADIN1300_RGMII_2_20_NS 0x0006 #define ADIN1300_RGMII_2_40_NS 0x0007 #define ADIN1300_GE_RMII_CFG_REG 0xff24 #define ADIN1300_GE_RMII_FIFO_DEPTH_MSK GENMASK(6, 4) #define ADIN1300_GE_RMII_FIFO_DEPTH_SEL(x) \ FIELD_PREP(ADIN1300_GE_RMII_FIFO_DEPTH_MSK, x) #define ADIN1300_GE_RMII_EN BIT(0) /* RMII fifo depth values */ #define ADIN1300_RMII_4_BITS 0x0000 #define ADIN1300_RMII_8_BITS 0x0001 #define ADIN1300_RMII_12_BITS 0x0002 #define ADIN1300_RMII_16_BITS 0x0003 #define ADIN1300_RMII_20_BITS 0x0004 #define ADIN1300_RMII_24_BITS 0x0005 /** * struct adin_cfg_reg_map - map a config value to aregister value * @cfg: value in device configuration * @reg: value in the register */ struct adin_cfg_reg_map { int cfg; int reg; }; static const struct adin_cfg_reg_map adin_rgmii_delays[] = { { 1600, ADIN1300_RGMII_1_60_NS }, { 1800, ADIN1300_RGMII_1_80_NS }, { 2000, ADIN1300_RGMII_2_00_NS }, { 2200, ADIN1300_RGMII_2_20_NS }, { 2400, ADIN1300_RGMII_2_40_NS }, { }, }; static const struct adin_cfg_reg_map adin_rmii_fifo_depths[] = { { 4, ADIN1300_RMII_4_BITS }, { 8, ADIN1300_RMII_8_BITS }, { 12, ADIN1300_RMII_12_BITS }, { 16, ADIN1300_RMII_16_BITS }, { 20, ADIN1300_RMII_20_BITS }, { 24, ADIN1300_RMII_24_BITS }, { }, }; /** * struct adin_clause45_mmd_map - map to convert Clause 45 regs to Clause 22 * @devad: device address used in Clause 45 access * @cl45_regnum: register address defined by Clause 45 * @adin_regnum: equivalent register address accessible via Clause 22 */ struct adin_clause45_mmd_map { int devad; u16 cl45_regnum; u16 adin_regnum; }; static const struct adin_clause45_mmd_map adin_clause45_mmd_map[] = { { MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE, ADIN1300_EEE_CAP_REG }, { MDIO_MMD_AN, MDIO_AN_EEE_LPABLE, ADIN1300_EEE_LPABLE_REG }, { MDIO_MMD_AN, MDIO_AN_EEE_ADV, ADIN1300_EEE_ADV_REG }, { MDIO_MMD_PCS, MDIO_CTRL1, ADIN1300_CLOCK_STOP_REG }, { MDIO_MMD_PCS, MDIO_PCS_EEE_WK_ERR, ADIN1300_LPI_WAKE_ERR_CNT_REG }, }; struct adin_hw_stat { const char *string; u16 reg1; u16 reg2; }; static const struct adin_hw_stat adin_hw_stats[] = { { "total_frames_checked_count", 0x940A, 0x940B }, /* hi + lo */ { "length_error_frames_count", 0x940C }, { "alignment_error_frames_count", 0x940D }, { "symbol_error_count", 0x940E }, { "oversized_frames_count", 0x940F }, { "undersized_frames_count", 0x9410 }, { "odd_nibble_frames_count", 0x9411 }, { "odd_preamble_packet_count", 0x9412 }, { "dribble_bits_frames_count", 0x9413 }, { "false_carrier_events_count", 0x9414 }, }; /** * struct adin_priv - ADIN PHY driver private data * @stats: statistic counters for the PHY */ struct adin_priv { u64 stats[ARRAY_SIZE(adin_hw_stats)]; }; static int adin_lookup_reg_value(const struct adin_cfg_reg_map *tbl, int cfg) { size_t i; for (i = 0; tbl[i].cfg; i++) { if (tbl[i].cfg == cfg) return tbl[i].reg; } return -EINVAL; } static u32 adin_get_reg_value(struct phy_device *phydev, const char *prop_name, const struct adin_cfg_reg_map *tbl, u32 dflt) { struct device *dev = &phydev->mdio.dev; u32 val; int rc; if (device_property_read_u32(dev, prop_name, &val)) return dflt; rc = adin_lookup_reg_value(tbl, val); if (rc < 0) { phydev_warn(phydev, "Unsupported value %u for %s using default (%u)\n", val, prop_name, dflt); return dflt; } return rc; } static int adin_config_rgmii_mode(struct phy_device *phydev) { u32 val; int reg; if (!phy_interface_is_rgmii(phydev)) return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RGMII_CFG_REG, ADIN1300_GE_RGMII_EN); reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RGMII_CFG_REG); if (reg < 0) return reg; reg |= ADIN1300_GE_RGMII_EN; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) { reg |= ADIN1300_GE_RGMII_RXID_EN; val = adin_get_reg_value(phydev, "adi,rx-internal-delay-ps", adin_rgmii_delays, ADIN1300_RGMII_2_00_NS); reg &= ~ADIN1300_GE_RGMII_RX_MSK; reg |= ADIN1300_GE_RGMII_RX_SEL(val); } else { reg &= ~ADIN1300_GE_RGMII_RXID_EN; } if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) { reg |= ADIN1300_GE_RGMII_TXID_EN; val = adin_get_reg_value(phydev, "adi,tx-internal-delay-ps", adin_rgmii_delays, ADIN1300_RGMII_2_00_NS); reg &= ~ADIN1300_GE_RGMII_GTX_MSK; reg |= ADIN1300_GE_RGMII_GTX_SEL(val); } else { reg &= ~ADIN1300_GE_RGMII_TXID_EN; } return phy_write_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RGMII_CFG_REG, reg); } static int adin_config_rmii_mode(struct phy_device *phydev) { u32 val; int reg; if (phydev->interface != PHY_INTERFACE_MODE_RMII) return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RMII_CFG_REG, ADIN1300_GE_RMII_EN); reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RMII_CFG_REG); if (reg < 0) return reg; reg |= ADIN1300_GE_RMII_EN; val = adin_get_reg_value(phydev, "adi,fifo-depth-bits", adin_rmii_fifo_depths, ADIN1300_RMII_8_BITS); reg &= ~ADIN1300_GE_RMII_FIFO_DEPTH_MSK; reg |= ADIN1300_GE_RMII_FIFO_DEPTH_SEL(val); return phy_write_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_RMII_CFG_REG, reg); } static int adin_get_downshift(struct phy_device *phydev, u8 *data) { int val, cnt, enable; val = phy_read(phydev, ADIN1300_PHY_CTRL2); if (val < 0) return val; cnt = phy_read(phydev, ADIN1300_PHY_CTRL3); if (cnt < 0) return cnt; enable = FIELD_GET(ADIN1300_DOWNSPEEDS_EN, val); cnt = FIELD_GET(ADIN1300_DOWNSPEED_RETRIES_MSK, cnt); *data = (enable && cnt) ? cnt : DOWNSHIFT_DEV_DISABLE; return 0; } static int adin_set_downshift(struct phy_device *phydev, u8 cnt) { u16 val; int rc; if (cnt == DOWNSHIFT_DEV_DISABLE) return phy_clear_bits(phydev, ADIN1300_PHY_CTRL2, ADIN1300_DOWNSPEEDS_EN); if (cnt > 7) return -E2BIG; val = FIELD_PREP(ADIN1300_DOWNSPEED_RETRIES_MSK, cnt); rc = phy_modify(phydev, ADIN1300_PHY_CTRL3, ADIN1300_DOWNSPEED_RETRIES_MSK, val); if (rc < 0) return rc; return phy_set_bits(phydev, ADIN1300_PHY_CTRL2, ADIN1300_DOWNSPEEDS_EN); } static int adin_get_edpd(struct phy_device *phydev, u16 *tx_interval) { int val; val = phy_read(phydev, ADIN1300_PHY_CTRL_STATUS2); if (val < 0) return val; if (ADIN1300_NRG_PD_EN & val) { if (val & ADIN1300_NRG_PD_TX_EN) /* default is 1 second */ *tx_interval = ETHTOOL_PHY_EDPD_DFLT_TX_MSECS; else *tx_interval = ETHTOOL_PHY_EDPD_NO_TX; } else { *tx_interval = ETHTOOL_PHY_EDPD_DISABLE; } return 0; } static int adin_set_edpd(struct phy_device *phydev, u16 tx_interval) { u16 val; if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE) return phy_clear_bits(phydev, ADIN1300_PHY_CTRL_STATUS2, (ADIN1300_NRG_PD_EN | ADIN1300_NRG_PD_TX_EN)); val = ADIN1300_NRG_PD_EN; switch (tx_interval) { case 1000: /* 1 second */ fallthrough; case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS: val |= ADIN1300_NRG_PD_TX_EN; fallthrough; case ETHTOOL_PHY_EDPD_NO_TX: break; default: return -EINVAL; } return phy_modify(phydev, ADIN1300_PHY_CTRL_STATUS2, (ADIN1300_NRG_PD_EN | ADIN1300_NRG_PD_TX_EN), val); } static int adin_get_fast_down(struct phy_device *phydev, u8 *msecs) { int reg; reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_FLD_EN_REG); if (reg < 0) return reg; if (reg & ADIN1300_FLD_EN_ON) *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; else *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; return 0; } static int adin_set_fast_down(struct phy_device *phydev, const u8 *msecs) { if (*msecs == ETHTOOL_PHY_FAST_LINK_DOWN_ON) return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_FLD_EN_REG, ADIN1300_FLD_EN_ON); if (*msecs == ETHTOOL_PHY_FAST_LINK_DOWN_OFF) return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_FLD_EN_REG, ADIN1300_FLD_EN_ON); return -EINVAL; } static int adin_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return adin_get_downshift(phydev, data); case ETHTOOL_PHY_EDPD: return adin_get_edpd(phydev, data); case ETHTOOL_PHY_FAST_LINK_DOWN: return adin_get_fast_down(phydev, data); default: return -EOPNOTSUPP; } } static int adin_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return adin_set_downshift(phydev, *(const u8 *)data); case ETHTOOL_PHY_EDPD: return adin_set_edpd(phydev, *(const u16 *)data); case ETHTOOL_PHY_FAST_LINK_DOWN: return adin_set_fast_down(phydev, data); default: return -EOPNOTSUPP; } } static int adin_config_clk_out(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; const char *val = NULL; u8 sel = 0; device_property_read_string(dev, "adi,phy-output-clock", &val); if (!val) { /* property not present, do not enable GP_CLK pin */ } else if (strcmp(val, "25mhz-reference") == 0) { sel |= ADIN1300_GE_CLK_CFG_25; } else if (strcmp(val, "125mhz-free-running") == 0) { sel |= ADIN1300_GE_CLK_CFG_FREE_125; } else if (strcmp(val, "adaptive-free-running") == 0) { sel |= ADIN1300_GE_CLK_CFG_HRT_FREE; } else { phydev_err(phydev, "invalid adi,phy-output-clock\n"); return -EINVAL; } if (device_property_read_bool(dev, "adi,phy-output-reference-clock")) sel |= ADIN1300_GE_CLK_CFG_REF_EN; return phy_modify_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_CLK_CFG_REG, ADIN1300_GE_CLK_CFG_MASK, sel); } static int adin_config_init(struct phy_device *phydev) { int rc; phydev->mdix_ctrl = ETH_TP_MDI_AUTO; rc = adin_config_rgmii_mode(phydev); if (rc < 0) return rc; rc = adin_config_rmii_mode(phydev); if (rc < 0) return rc; rc = adin_set_downshift(phydev, 4); if (rc < 0) return rc; rc = adin_set_edpd(phydev, ETHTOOL_PHY_EDPD_DFLT_TX_MSECS); if (rc < 0) return rc; rc = adin_config_clk_out(phydev); if (rc < 0) return rc; phydev_dbg(phydev, "PHY is using mode '%s'\n", phy_modes(phydev->interface)); return 0; } static int adin_phy_ack_intr(struct phy_device *phydev) { /* Clear pending interrupts */ int rc = phy_read(phydev, ADIN1300_INT_STATUS_REG); return rc < 0 ? rc : 0; } static int adin_phy_config_intr(struct phy_device *phydev) { int err; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = adin_phy_ack_intr(phydev); if (err) return err; err = phy_set_bits(phydev, ADIN1300_INT_MASK_REG, ADIN1300_INT_MASK_EN); } else { err = phy_clear_bits(phydev, ADIN1300_INT_MASK_REG, ADIN1300_INT_MASK_EN); if (err) return err; err = adin_phy_ack_intr(phydev); } return err; } static irqreturn_t adin_phy_handle_interrupt(struct phy_device *phydev) { int irq_status; irq_status = phy_read(phydev, ADIN1300_INT_STATUS_REG); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } if (!(irq_status & ADIN1300_INT_LINK_STAT_CHNG_EN)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int adin_cl45_to_adin_reg(struct phy_device *phydev, int devad, u16 cl45_regnum) { const struct adin_clause45_mmd_map *m; int i; if (devad == MDIO_MMD_VEND1) return cl45_regnum; for (i = 0; i < ARRAY_SIZE(adin_clause45_mmd_map); i++) { m = &adin_clause45_mmd_map[i]; if (m->devad == devad && m->cl45_regnum == cl45_regnum) return m->adin_regnum; } phydev_err(phydev, "No translation available for devad: %d reg: %04x\n", devad, cl45_regnum); return -EINVAL; } static int adin_read_mmd(struct phy_device *phydev, int devad, u16 regnum) { struct mii_bus *bus = phydev->mdio.bus; int phy_addr = phydev->mdio.addr; int adin_regnum; int err; adin_regnum = adin_cl45_to_adin_reg(phydev, devad, regnum); if (adin_regnum < 0) return adin_regnum; err = __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_PTR, adin_regnum); if (err) return err; return __mdiobus_read(bus, phy_addr, ADIN1300_MII_EXT_REG_DATA); } static int adin_write_mmd(struct phy_device *phydev, int devad, u16 regnum, u16 val) { struct mii_bus *bus = phydev->mdio.bus; int phy_addr = phydev->mdio.addr; int adin_regnum; int err; adin_regnum = adin_cl45_to_adin_reg(phydev, devad, regnum); if (adin_regnum < 0) return adin_regnum; err = __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_PTR, adin_regnum); if (err) return err; return __mdiobus_write(bus, phy_addr, ADIN1300_MII_EXT_REG_DATA, val); } static int adin_config_mdix(struct phy_device *phydev) { bool auto_en, mdix_en; int reg; mdix_en = false; auto_en = false; switch (phydev->mdix_ctrl) { case ETH_TP_MDI: break; case ETH_TP_MDI_X: mdix_en = true; break; case ETH_TP_MDI_AUTO: auto_en = true; break; default: return -EINVAL; } reg = phy_read(phydev, ADIN1300_PHY_CTRL1); if (reg < 0) return reg; if (mdix_en) reg |= ADIN1300_MAN_MDIX_EN; else reg &= ~ADIN1300_MAN_MDIX_EN; if (auto_en) reg |= ADIN1300_AUTO_MDI_EN; else reg &= ~ADIN1300_AUTO_MDI_EN; return phy_write(phydev, ADIN1300_PHY_CTRL1, reg); } static int adin_config_aneg(struct phy_device *phydev) { int ret; ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL1, ADIN1300_DIAG_CLK_EN); if (ret < 0) return ret; ret = phy_set_bits(phydev, ADIN1300_PHY_CTRL3, ADIN1300_LINKING_EN); if (ret < 0) return ret; ret = adin_config_mdix(phydev); if (ret) return ret; return genphy_config_aneg(phydev); } static int adin_mdix_update(struct phy_device *phydev) { bool auto_en, mdix_en; bool swapped; int reg; reg = phy_read(phydev, ADIN1300_PHY_CTRL1); if (reg < 0) return reg; auto_en = !!(reg & ADIN1300_AUTO_MDI_EN); mdix_en = !!(reg & ADIN1300_MAN_MDIX_EN); /* If MDI/MDIX is forced, just read it from the control reg */ if (!auto_en) { if (mdix_en) phydev->mdix = ETH_TP_MDI_X; else phydev->mdix = ETH_TP_MDI; return 0; } /** * Otherwise, we need to deduce it from the PHY status2 reg. * When Auto-MDI is enabled, the ADIN1300_MAN_MDIX_EN bit implies * a preference for MDIX when it is set. */ reg = phy_read(phydev, ADIN1300_PHY_STATUS1); if (reg < 0) return reg; swapped = !!(reg & ADIN1300_PAIR_01_SWAP); if (mdix_en != swapped) phydev->mdix = ETH_TP_MDI_X; else phydev->mdix = ETH_TP_MDI; return 0; } static int adin_read_status(struct phy_device *phydev) { int ret; ret = adin_mdix_update(phydev); if (ret < 0) return ret; return genphy_read_status(phydev); } static int adin_soft_reset(struct phy_device *phydev) { int rc; /* The reset bit is self-clearing, set it and wait */ rc = phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_SOFT_RESET_REG, ADIN1300_GE_SOFT_RESET); if (rc < 0) return rc; msleep(20); /* If we get a read error something may be wrong */ rc = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_GE_SOFT_RESET_REG); return rc < 0 ? rc : 0; } static int adin_get_sset_count(struct phy_device *phydev) { return ARRAY_SIZE(adin_hw_stats); } static void adin_get_strings(struct phy_device *phydev, u8 *data) { int i; for (i = 0; i < ARRAY_SIZE(adin_hw_stats); i++) ethtool_puts(&data, adin_hw_stats[i].string); } static int adin_read_mmd_stat_regs(struct phy_device *phydev, const struct adin_hw_stat *stat, u32 *val) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, stat->reg1); if (ret < 0) return ret; *val = (ret & 0xffff); if (stat->reg2 == 0) return 0; ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, stat->reg2); if (ret < 0) return ret; *val <<= 16; *val |= (ret & 0xffff); return 0; } static u64 adin_get_stat(struct phy_device *phydev, int i) { const struct adin_hw_stat *stat = &adin_hw_stats[i]; struct adin_priv *priv = phydev->priv; u32 val; int ret; if (stat->reg1 > 0x1f) { ret = adin_read_mmd_stat_regs(phydev, stat, &val); if (ret < 0) return (u64)(~0); } else { ret = phy_read(phydev, stat->reg1); if (ret < 0) return (u64)(~0); val = (ret & 0xffff); } priv->stats[i] += val; return priv->stats[i]; } static void adin_get_stats(struct phy_device *phydev, struct ethtool_stats *stats, u64 *data) { int i, rc; /* latch copies of all the frame-checker counters */ rc = phy_read(phydev, ADIN1300_RX_ERR_CNT); if (rc < 0) return; for (i = 0; i < ARRAY_SIZE(adin_hw_stats); i++) data[i] = adin_get_stat(phydev, i); } static int adin_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct adin_priv *priv; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; return 0; } static int adin_cable_test_start(struct phy_device *phydev) { int ret; ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL3, ADIN1300_LINKING_EN); if (ret < 0) return ret; ret = phy_clear_bits(phydev, ADIN1300_PHY_CTRL1, ADIN1300_DIAG_CLK_EN); if (ret < 0) return ret; /* wait a bit for the clock to stabilize */ msleep(50); return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_RUN, ADIN1300_CDIAG_RUN_EN); } static int adin_cable_test_report_trans(int result) { int mask; if (result & ADIN1300_CDIAG_RSLT_GOOD) return ETHTOOL_A_CABLE_RESULT_CODE_OK; if (result & ADIN1300_CDIAG_RSLT_OPEN) return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; /* short with other pairs */ mask = ADIN1300_CDIAG_RSLT_XSHRT3 | ADIN1300_CDIAG_RSLT_XSHRT2 | ADIN1300_CDIAG_RSLT_XSHRT1; if (result & mask) return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT; if (result & ADIN1300_CDIAG_RSLT_SHRT) return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; } static int adin_cable_test_report_pair(struct phy_device *phydev, unsigned int pair) { int fault_rslt; int ret; ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_DTLD_RSLTS(pair)); if (ret < 0) return ret; fault_rslt = adin_cable_test_report_trans(ret); ret = ethnl_cable_test_result(phydev, pair, fault_rslt); if (ret < 0) return ret; ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_FLT_DIST(pair)); if (ret < 0) return ret; switch (fault_rslt) { case ETHTOOL_A_CABLE_RESULT_CODE_OPEN: case ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT: case ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT: return ethnl_cable_test_fault_length(phydev, pair, ret * 100); default: return 0; } } static int adin_cable_test_report(struct phy_device *phydev) { unsigned int pair; int ret; for (pair = ETHTOOL_A_CABLE_PAIR_A; pair <= ETHTOOL_A_CABLE_PAIR_D; pair++) { ret = adin_cable_test_report_pair(phydev, pair); if (ret < 0) return ret; } return 0; } static int adin_cable_test_get_status(struct phy_device *phydev, bool *finished) { int ret; *finished = false; ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, ADIN1300_CDIAG_RUN); if (ret < 0) return ret; if (ret & ADIN1300_CDIAG_RUN_EN) return 0; *finished = true; return adin_cable_test_report(phydev); } static struct phy_driver adin_driver[] = { { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1200), .name = "ADIN1200", .flags = PHY_POLL_CABLE_TEST, .probe = adin_probe, .config_init = adin_config_init, .soft_reset = adin_soft_reset, .config_aneg = adin_config_aneg, .read_status = adin_read_status, .get_tunable = adin_get_tunable, .set_tunable = adin_set_tunable, .config_intr = adin_phy_config_intr, .handle_interrupt = adin_phy_handle_interrupt, .get_sset_count = adin_get_sset_count, .get_strings = adin_get_strings, .get_stats = adin_get_stats, .resume = genphy_resume, .suspend = genphy_suspend, .read_mmd = adin_read_mmd, .write_mmd = adin_write_mmd, .cable_test_start = adin_cable_test_start, .cable_test_get_status = adin_cable_test_get_status, }, { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1300), .name = "ADIN1300", .flags = PHY_POLL_CABLE_TEST, .probe = adin_probe, .config_init = adin_config_init, .soft_reset = adin_soft_reset, .config_aneg = adin_config_aneg, .read_status = adin_read_status, .get_tunable = adin_get_tunable, .set_tunable = adin_set_tunable, .config_intr = adin_phy_config_intr, .handle_interrupt = adin_phy_handle_interrupt, .get_sset_count = adin_get_sset_count, .get_strings = adin_get_strings, .get_stats = adin_get_stats, .resume = genphy_resume, .suspend = genphy_suspend, .read_mmd = adin_read_mmd, .write_mmd = adin_write_mmd, .cable_test_start = adin_cable_test_start, .cable_test_get_status = adin_cable_test_get_status, }, }; module_phy_driver(adin_driver); static const struct mdio_device_id __maybe_unused adin_tbl[] = { { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1200) }, { PHY_ID_MATCH_MODEL(PHY_ID_ADIN1300) }, { } }; MODULE_DEVICE_TABLE(mdio, adin_tbl); MODULE_DESCRIPTION("Analog Devices Industrial Ethernet PHY driver"); MODULE_LICENSE("GPL");