// SPDX-License-Identifier: GPL-2.0 /* * Marvell 88Q2XXX automotive 100BASE-T1/1000BASE-T1 PHY driver * * Derived from Marvell Q222x API * * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH */ #include #include #include #include #define PHY_ID_88Q2220_REVB0 (MARVELL_PHY_ID_88Q2220 | 0x1) #define PHY_ID_88Q2220_REVB1 (MARVELL_PHY_ID_88Q2220 | 0x2) #define PHY_ID_88Q2220_REVB2 (MARVELL_PHY_ID_88Q2220 | 0x3) #define MDIO_MMD_AN_MV_STAT 32769 #define MDIO_MMD_AN_MV_STAT_ANEG 0x0100 #define MDIO_MMD_AN_MV_STAT_LOCAL_RX 0x1000 #define MDIO_MMD_AN_MV_STAT_REMOTE_RX 0x2000 #define MDIO_MMD_AN_MV_STAT_LOCAL_MASTER 0x4000 #define MDIO_MMD_AN_MV_STAT_MS_CONF_FAULT 0x8000 #define MDIO_MMD_AN_MV_STAT2 32794 #define MDIO_MMD_AN_MV_STAT2_AN_RESOLVED 0x0800 #define MDIO_MMD_AN_MV_STAT2_100BT1 0x2000 #define MDIO_MMD_AN_MV_STAT2_1000BT1 0x4000 #define MDIO_MMD_PCS_MV_INT_EN 32784 #define MDIO_MMD_PCS_MV_INT_EN_LINK_UP 0x0040 #define MDIO_MMD_PCS_MV_INT_EN_LINK_DOWN 0x0080 #define MDIO_MMD_PCS_MV_INT_EN_100BT1 0x1000 #define MDIO_MMD_PCS_MV_GPIO_INT_STAT 32785 #define MDIO_MMD_PCS_MV_GPIO_INT_STAT_LINK_UP 0x0040 #define MDIO_MMD_PCS_MV_GPIO_INT_STAT_LINK_DOWN 0x0080 #define MDIO_MMD_PCS_MV_GPIO_INT_STAT_100BT1_GEN 0x1000 #define MDIO_MMD_PCS_MV_GPIO_INT_CTRL 32787 #define MDIO_MMD_PCS_MV_GPIO_INT_CTRL_TRI_DIS 0x0800 #define MDIO_MMD_PCS_MV_TEMP_SENSOR1 32833 #define MDIO_MMD_PCS_MV_TEMP_SENSOR1_RAW_INT 0x0001 #define MDIO_MMD_PCS_MV_TEMP_SENSOR1_INT 0x0040 #define MDIO_MMD_PCS_MV_TEMP_SENSOR1_INT_EN 0x0080 #define MDIO_MMD_PCS_MV_TEMP_SENSOR2 32834 #define MDIO_MMD_PCS_MV_TEMP_SENSOR2_DIS_MASK 0xc000 #define MDIO_MMD_PCS_MV_TEMP_SENSOR3 32835 #define MDIO_MMD_PCS_MV_TEMP_SENSOR3_INT_THRESH_MASK 0xff00 #define MDIO_MMD_PCS_MV_TEMP_SENSOR3_MASK 0x00ff #define MDIO_MMD_PCS_MV_100BT1_STAT1 33032 #define MDIO_MMD_PCS_MV_100BT1_STAT1_IDLE_ERROR 0x00ff #define MDIO_MMD_PCS_MV_100BT1_STAT1_JABBER 0x0100 #define MDIO_MMD_PCS_MV_100BT1_STAT1_LINK 0x0200 #define MDIO_MMD_PCS_MV_100BT1_STAT1_LOCAL_RX 0x1000 #define MDIO_MMD_PCS_MV_100BT1_STAT1_REMOTE_RX 0x2000 #define MDIO_MMD_PCS_MV_100BT1_STAT1_LOCAL_MASTER 0x4000 #define MDIO_MMD_PCS_MV_100BT1_STAT2 33033 #define MDIO_MMD_PCS_MV_100BT1_STAT2_JABBER 0x0001 #define MDIO_MMD_PCS_MV_100BT1_STAT2_POL 0x0002 #define MDIO_MMD_PCS_MV_100BT1_STAT2_LINK 0x0004 #define MDIO_MMD_PCS_MV_100BT1_STAT2_ANGE 0x0008 #define MDIO_MMD_PCS_MV_100BT1_INT_EN 33042 #define MDIO_MMD_PCS_MV_100BT1_INT_EN_LINKEVENT 0x0400 #define MDIO_MMD_PCS_MV_COPPER_INT_STAT 33043 #define MDIO_MMD_PCS_MV_COPPER_INT_STAT_LINKEVENT 0x0400 #define MDIO_MMD_PCS_MV_RX_STAT 33328 #define MDIO_MMD_PCS_MV_TDR_RESET 65226 #define MDIO_MMD_PCS_MV_TDR_RESET_TDR_RST 0x1000 #define MDIO_MMD_PCS_MV_TDR_OFF_SHORT_CABLE 65241 #define MDIO_MMD_PCS_MV_TDR_OFF_LONG_CABLE 65242 #define MDIO_MMD_PCS_MV_TDR_STATUS 65245 #define MDIO_MMD_PCS_MV_TDR_STATUS_MASK 0x0003 #define MDIO_MMD_PCS_MV_TDR_STATUS_OFF 0x0001 #define MDIO_MMD_PCS_MV_TDR_STATUS_ON 0x0002 #define MDIO_MMD_PCS_MV_TDR_STATUS_DIST_MASK 0xff00 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_MASK 0x00f0 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_SHORT 0x0030 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_OPEN 0x00e0 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_OK 0x0070 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_IN_PROGR 0x0080 #define MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_NOISE 0x0050 #define MDIO_MMD_PCS_MV_TDR_OFF_CUTOFF 65246 struct mmd_val { int devad; u32 regnum; u16 val; }; static const struct mmd_val mv88q2110_init_seq0[] = { { MDIO_MMD_PCS, 0xffe4, 0x07b5 }, { MDIO_MMD_PCS, 0xffe4, 0x06b6 }, }; static const struct mmd_val mv88q2110_init_seq1[] = { { MDIO_MMD_PCS, 0xffde, 0x402f }, { MDIO_MMD_PCS, 0xfe34, 0x4040 }, { MDIO_MMD_PCS, 0xfe2a, 0x3c1d }, { MDIO_MMD_PCS, 0xfe34, 0x0040 }, { MDIO_MMD_AN, 0x8032, 0x0064 }, { MDIO_MMD_AN, 0x8031, 0x0a01 }, { MDIO_MMD_AN, 0x8031, 0x0c01 }, { MDIO_MMD_PCS, 0xffdb, 0x0010 }, }; static const struct mmd_val mv88q222x_revb0_init_seq0[] = { { MDIO_MMD_PCS, 0x8033, 0x6801 }, { MDIO_MMD_AN, MDIO_AN_T1_CTRL, 0x0 }, { MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_CTRL1_LPOWER | MDIO_PMA_CTRL1_SPEED1000 }, { MDIO_MMD_PCS, 0xfe1b, 0x48 }, { MDIO_MMD_PCS, 0xffe4, 0x6b6 }, { MDIO_MMD_PMAPMD, MDIO_CTRL1, 0x0 }, { MDIO_MMD_PCS, MDIO_CTRL1, 0x0 }, }; static const struct mmd_val mv88q222x_revb0_init_seq1[] = { { MDIO_MMD_PCS, 0xfe79, 0x0 }, { MDIO_MMD_PCS, 0xfe07, 0x125a }, { MDIO_MMD_PCS, 0xfe09, 0x1288 }, { MDIO_MMD_PCS, 0xfe08, 0x2588 }, { MDIO_MMD_PCS, 0xfe11, 0x1105 }, { MDIO_MMD_PCS, 0xfe72, 0x042c }, { MDIO_MMD_PCS, 0xfbba, 0xcb2 }, { MDIO_MMD_PCS, 0xfbbb, 0xc4a }, { MDIO_MMD_AN, 0x8032, 0x2020 }, { MDIO_MMD_AN, 0x8031, 0xa28 }, { MDIO_MMD_AN, 0x8031, 0xc28 }, { MDIO_MMD_PCS, 0xffdb, 0xfc10 }, { MDIO_MMD_PCS, 0xfe1b, 0x58 }, { MDIO_MMD_PCS, 0xfe79, 0x4 }, { MDIO_MMD_PCS, 0xfe5f, 0xe8 }, { MDIO_MMD_PCS, 0xfe05, 0x755c }, }; static const struct mmd_val mv88q222x_revb1_init_seq0[] = { { MDIO_MMD_PCS, 0xffe4, 0x0007 }, { MDIO_MMD_AN, MDIO_AN_T1_CTRL, 0x0 }, { MDIO_MMD_PCS, 0xffe3, 0x7000 }, { MDIO_MMD_PMAPMD, MDIO_CTRL1, 0x0840 }, }; static const struct mmd_val mv88q222x_revb2_init_seq0[] = { { MDIO_MMD_PCS, 0xffe4, 0x0007 }, { MDIO_MMD_AN, MDIO_AN_T1_CTRL, 0x0 }, { MDIO_MMD_PMAPMD, MDIO_CTRL1, 0x0840 }, }; static const struct mmd_val mv88q222x_revb1_revb2_init_seq1[] = { { MDIO_MMD_PCS, 0xfe07, 0x125a }, { MDIO_MMD_PCS, 0xfe09, 0x1288 }, { MDIO_MMD_PCS, 0xfe08, 0x2588 }, { MDIO_MMD_PCS, 0xfe72, 0x042c }, { MDIO_MMD_PCS, 0xffe4, 0x0071 }, { MDIO_MMD_PCS, 0xffe4, 0x0001 }, { MDIO_MMD_PCS, 0xfe1b, 0x0048 }, { MDIO_MMD_PMAPMD, 0x0000, 0x0000 }, { MDIO_MMD_PCS, 0x0000, 0x0000 }, { MDIO_MMD_PCS, 0xffdb, 0xfc10 }, { MDIO_MMD_PCS, 0xfe1b, 0x58 }, { MDIO_MMD_PCS, 0xfcad, 0x030c }, { MDIO_MMD_PCS, 0x8032, 0x6001 }, { MDIO_MMD_PCS, 0xfdff, 0x05a5 }, { MDIO_MMD_PCS, 0xfdec, 0xdbaf }, { MDIO_MMD_PCS, 0xfcab, 0x1054 }, { MDIO_MMD_PCS, 0xfcac, 0x1483 }, { MDIO_MMD_PCS, 0x8033, 0xc801 }, { MDIO_MMD_AN, 0x8032, 0x2020 }, { MDIO_MMD_AN, 0x8031, 0xa28 }, { MDIO_MMD_AN, 0x8031, 0xc28 }, { MDIO_MMD_PCS, 0xfbba, 0x0cb2 }, { MDIO_MMD_PCS, 0xfbbb, 0x0c4a }, { MDIO_MMD_PCS, 0xfe5f, 0xe8 }, { MDIO_MMD_PCS, 0xfe05, 0x755c }, { MDIO_MMD_PCS, 0xfa20, 0x002a }, { MDIO_MMD_PCS, 0xfe11, 0x1105 }, }; static int mv88q2xxx_write_mmd_vals(struct phy_device *phydev, const struct mmd_val *vals, size_t len) { int ret; for (; len; vals++, len--) { ret = phy_write_mmd(phydev, vals->devad, vals->regnum, vals->val); if (ret < 0) return ret; } return 0; } static int mv88q2xxx_soft_reset(struct phy_device *phydev) { int ret; int val; /* Enable RESET of DCL */ if (phydev->autoneg == AUTONEG_ENABLE || phydev->speed == SPEED_1000) { ret = phy_write_mmd(phydev, MDIO_MMD_PCS, 0xfe1b, 0x48); if (ret < 0) return ret; } ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_1000BT1_CTRL, MDIO_PCS_1000BT1_CTRL_RESET); if (ret < 0) return ret; ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_PCS, MDIO_PCS_1000BT1_CTRL, val, !(val & MDIO_PCS_1000BT1_CTRL_RESET), 50000, 600000, true); if (ret < 0) return ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, 0xffe4, 0xc); if (ret < 0) return ret; /* Disable RESET of DCL */ if (phydev->autoneg == AUTONEG_ENABLE || phydev->speed == SPEED_1000) return phy_write_mmd(phydev, MDIO_MMD_PCS, 0xfe1b, 0x58); return 0; } static int mv88q2xxx_read_link_gbit(struct phy_device *phydev) { int ret; bool link = false; /* Read vendor specific Auto-Negotiation status register to get local * and remote receiver status according to software initialization * guide. However, when not in polling mode the local and remote * receiver status are not evaluated due to the Marvell 88Q2xxx APIs. */ ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_MMD_AN_MV_STAT); if (ret < 0) { return ret; } else if (((ret & MDIO_MMD_AN_MV_STAT_LOCAL_RX) && (ret & MDIO_MMD_AN_MV_STAT_REMOTE_RX)) || !phy_polling_mode(phydev)) { /* The link state is latched low so that momentary link * drops can be detected. Do not double-read the status * in polling mode to detect such short link drops except * the link was already down. */ if (!phy_polling_mode(phydev) || !phydev->link) { ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_1000BT1_STAT); if (ret < 0) return ret; else if (ret & MDIO_PCS_1000BT1_STAT_LINK) link = true; } if (!link) { ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_1000BT1_STAT); if (ret < 0) return ret; else if (ret & MDIO_PCS_1000BT1_STAT_LINK) link = true; } } phydev->link = link; return 0; } static int mv88q2xxx_read_link_100m(struct phy_device *phydev) { int ret; /* The link state is latched low so that momentary link * drops can be detected. Do not double-read the status * in polling mode to detect such short link drops except * the link was already down. In case we are not polling, * we always read the realtime status. */ if (!phy_polling_mode(phydev)) { phydev->link = false; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_100BT1_STAT2); if (ret < 0) return ret; if (ret & MDIO_MMD_PCS_MV_100BT1_STAT2_LINK) phydev->link = true; return 0; } else if (!phydev->link) { ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_100BT1_STAT1); if (ret < 0) return ret; else if (ret & MDIO_MMD_PCS_MV_100BT1_STAT1_LINK) goto out; } ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_100BT1_STAT1); if (ret < 0) return ret; out: /* Check if we have link and if the remote and local receiver are ok */ if ((ret & MDIO_MMD_PCS_MV_100BT1_STAT1_LINK) && (ret & MDIO_MMD_PCS_MV_100BT1_STAT1_LOCAL_RX) && (ret & MDIO_MMD_PCS_MV_100BT1_STAT1_REMOTE_RX)) phydev->link = true; else phydev->link = false; return 0; } static int mv88q2xxx_read_link(struct phy_device *phydev) { /* The 88Q2XXX PHYs do not have the PMA/PMD status register available, * therefore we need to read the link status from the vendor specific * registers depending on the speed. */ if (phydev->speed == SPEED_1000) return mv88q2xxx_read_link_gbit(phydev); else if (phydev->speed == SPEED_100) return mv88q2xxx_read_link_100m(phydev); phydev->link = false; return 0; } static int mv88q2xxx_read_master_slave_state(struct phy_device *phydev) { int ret; phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_MMD_AN_MV_STAT); if (ret < 0) return ret; if (ret & MDIO_MMD_AN_MV_STAT_LOCAL_MASTER) phydev->master_slave_state = MASTER_SLAVE_STATE_MASTER; else phydev->master_slave_state = MASTER_SLAVE_STATE_SLAVE; return 0; } static int mv88q2xxx_read_aneg_speed(struct phy_device *phydev) { int ret; phydev->speed = SPEED_UNKNOWN; ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_MMD_AN_MV_STAT2); if (ret < 0) return ret; if (!(ret & MDIO_MMD_AN_MV_STAT2_AN_RESOLVED)) return 0; if (ret & MDIO_MMD_AN_MV_STAT2_100BT1) phydev->speed = SPEED_100; else if (ret & MDIO_MMD_AN_MV_STAT2_1000BT1) phydev->speed = SPEED_1000; return 0; } static int mv88q2xxx_read_status(struct phy_device *phydev) { int ret; if (phydev->autoneg == AUTONEG_ENABLE) { /* We have to get the negotiated speed first, otherwise we are * not able to read the link. */ ret = mv88q2xxx_read_aneg_speed(phydev); if (ret < 0) return ret; ret = mv88q2xxx_read_link(phydev); if (ret < 0) return ret; ret = genphy_c45_read_lpa(phydev); if (ret < 0) return ret; ret = genphy_c45_baset1_read_status(phydev); if (ret < 0) return ret; ret = mv88q2xxx_read_master_slave_state(phydev); if (ret < 0) return ret; phy_resolve_aneg_linkmode(phydev); return 0; } ret = mv88q2xxx_read_link(phydev); if (ret < 0) return ret; return genphy_c45_read_pma(phydev); } static int mv88q2xxx_get_features(struct phy_device *phydev) { int ret; ret = genphy_c45_pma_read_abilities(phydev); if (ret) return ret; /* We need to read the baset1 extended abilities manually because the * PHY does not signalize it has the extended abilities register * available. */ ret = genphy_c45_pma_baset1_read_abilities(phydev); if (ret) return ret; return 0; } static int mv88q2xxx_config_aneg(struct phy_device *phydev) { int ret; ret = genphy_c45_config_aneg(phydev); if (ret) return ret; return phydev->drv->soft_reset(phydev); } static int mv88q2xxx_config_init(struct phy_device *phydev) { /* The 88Q2XXX PHYs do have the extended ability register available, but * register MDIO_PMA_EXTABLE where they should signalize it does not * work according to specification. Therefore, we force it here. */ phydev->pma_extable = MDIO_PMA_EXTABLE_BT1; /* Configure interrupt with default settings, output is driven low for * active interrupt and high for inactive. */ if (phy_interrupt_is_valid(phydev)) return phy_set_bits_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_GPIO_INT_CTRL, MDIO_MMD_PCS_MV_GPIO_INT_CTRL_TRI_DIS); return 0; } static int mv88q2xxx_get_sqi(struct phy_device *phydev) { int ret; if (phydev->speed == SPEED_100) { /* Read the SQI from the vendor specific receiver status * register */ ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_RX_STAT); if (ret < 0) return ret; ret = ret >> 12; } else { /* Read from vendor specific registers, they are not documented * but can be found in the Software Initialization Guide. Only * revisions >= A0 are supported. */ ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, 0xfc5d, 0xff, 0xac); if (ret < 0) return ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, 0xfc88); if (ret < 0) return ret; } return ret & 0x0f; } static int mv88q2xxx_get_sqi_max(struct phy_device *phydev) { return 15; } static int mv88q2xxx_config_intr(struct phy_device *phydev) { int ret; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { /* Enable interrupts for 1000BASE-T1 link up and down events * and enable general interrupts for 100BASE-T1. */ ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_INT_EN, MDIO_MMD_PCS_MV_INT_EN_LINK_UP | MDIO_MMD_PCS_MV_INT_EN_LINK_DOWN | MDIO_MMD_PCS_MV_INT_EN_100BT1); if (ret < 0) return ret; /* Enable interrupts for 100BASE-T1 link events */ return phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_100BT1_INT_EN, MDIO_MMD_PCS_MV_100BT1_INT_EN_LINKEVENT); } else { ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_INT_EN, 0); if (ret < 0) return ret; return phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_100BT1_INT_EN, 0); } } static irqreturn_t mv88q2xxx_handle_interrupt(struct phy_device *phydev) { bool trigger_machine = false; int irq; /* Before we can acknowledge the 100BT1 general interrupt, that is in * the 1000BT1 interrupt status register, we have to acknowledge any * interrupts that are related to it. Therefore we read first the 100BT1 * interrupt status register, followed by reading the 1000BT1 interrupt * status register. */ irq = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_COPPER_INT_STAT); if (irq < 0) { phy_error(phydev); return IRQ_NONE; } /* Check link status for 100BT1 */ if (irq & MDIO_MMD_PCS_MV_COPPER_INT_STAT_LINKEVENT) trigger_machine = true; irq = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_GPIO_INT_STAT); if (irq < 0) { phy_error(phydev); return IRQ_NONE; } /* Check link status for 1000BT1 */ if ((irq & MDIO_MMD_PCS_MV_GPIO_INT_STAT_LINK_UP) || (irq & MDIO_MMD_PCS_MV_GPIO_INT_STAT_LINK_DOWN)) trigger_machine = true; if (!trigger_machine) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int mv88q2xxx_suspend(struct phy_device *phydev) { int ret; /* Disable PHY interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_DISABLED; ret = mv88q2xxx_config_intr(phydev); if (ret) return ret; } return phy_set_bits_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_CTRL1_LPOWER); } static int mv88q2xxx_resume(struct phy_device *phydev) { int ret; /* Enable PHY interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_ENABLED; ret = mv88q2xxx_config_intr(phydev); if (ret) return ret; } return phy_clear_bits_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_CTRL1_LPOWER); } #if IS_ENABLED(CONFIG_HWMON) static const struct hwmon_channel_info * const mv88q2xxx_hwmon_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_ALARM), NULL }; static umode_t mv88q2xxx_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (attr) { case hwmon_temp_input: return 0444; case hwmon_temp_max: return 0644; case hwmon_temp_alarm: return 0444; default: return 0; } } static int mv88q2xxx_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct phy_device *phydev = dev_get_drvdata(dev); int ret; switch (attr) { case hwmon_temp_input: ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TEMP_SENSOR3); if (ret < 0) return ret; ret = FIELD_GET(MDIO_MMD_PCS_MV_TEMP_SENSOR3_MASK, ret); *val = (ret - 75) * 1000; return 0; case hwmon_temp_max: ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TEMP_SENSOR3); if (ret < 0) return ret; ret = FIELD_GET(MDIO_MMD_PCS_MV_TEMP_SENSOR3_INT_THRESH_MASK, ret); *val = (ret - 75) * 1000; return 0; case hwmon_temp_alarm: ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TEMP_SENSOR1); if (ret < 0) return ret; *val = !!(ret & MDIO_MMD_PCS_MV_TEMP_SENSOR1_RAW_INT); return 0; default: return -EOPNOTSUPP; } } static int mv88q2xxx_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct phy_device *phydev = dev_get_drvdata(dev); switch (attr) { case hwmon_temp_max: clamp_val(val, -75000, 180000); val = (val / 1000) + 75; val = FIELD_PREP(MDIO_MMD_PCS_MV_TEMP_SENSOR3_INT_THRESH_MASK, val); return phy_modify_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TEMP_SENSOR3, MDIO_MMD_PCS_MV_TEMP_SENSOR3_INT_THRESH_MASK, val); default: return -EOPNOTSUPP; } } static const struct hwmon_ops mv88q2xxx_hwmon_hwmon_ops = { .is_visible = mv88q2xxx_hwmon_is_visible, .read = mv88q2xxx_hwmon_read, .write = mv88q2xxx_hwmon_write, }; static const struct hwmon_chip_info mv88q2xxx_hwmon_chip_info = { .ops = &mv88q2xxx_hwmon_hwmon_ops, .info = mv88q2xxx_hwmon_info, }; static int mv88q2xxx_hwmon_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct device *hwmon; char *hwmon_name; int ret; /* Enable temperature sense */ ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TEMP_SENSOR2, MDIO_MMD_PCS_MV_TEMP_SENSOR2_DIS_MASK, 0); if (ret < 0) return ret; hwmon_name = devm_hwmon_sanitize_name(dev, dev_name(dev)); if (IS_ERR(hwmon_name)) return PTR_ERR(hwmon_name); hwmon = devm_hwmon_device_register_with_info(dev, hwmon_name, phydev, &mv88q2xxx_hwmon_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon); } #else static int mv88q2xxx_hwmon_probe(struct phy_device *phydev) { return 0; } #endif static int mv88q2xxx_probe(struct phy_device *phydev) { return mv88q2xxx_hwmon_probe(phydev); } static int mv88q2110_config_init(struct phy_device *phydev) { int ret; ret = mv88q2xxx_write_mmd_vals(phydev, mv88q2110_init_seq0, ARRAY_SIZE(mv88q2110_init_seq0)); if (ret < 0) return ret; usleep_range(5000, 10000); ret = mv88q2xxx_write_mmd_vals(phydev, mv88q2110_init_seq1, ARRAY_SIZE(mv88q2110_init_seq1)); if (ret < 0) return ret; return mv88q2xxx_config_init(phydev); } static int mv88q222x_revb0_config_init(struct phy_device *phydev) { int ret; ret = mv88q2xxx_write_mmd_vals(phydev, mv88q222x_revb0_init_seq0, ARRAY_SIZE(mv88q222x_revb0_init_seq0)); if (ret < 0) return ret; usleep_range(5000, 10000); ret = mv88q2xxx_write_mmd_vals(phydev, mv88q222x_revb0_init_seq1, ARRAY_SIZE(mv88q222x_revb0_init_seq1)); if (ret < 0) return ret; return mv88q2xxx_config_init(phydev); } static int mv88q222x_revb1_revb2_config_init(struct phy_device *phydev) { bool is_rev_b1 = phydev->c45_ids.device_ids[MDIO_MMD_PMAPMD] == PHY_ID_88Q2220_REVB1; int ret; if (is_rev_b1) ret = mv88q2xxx_write_mmd_vals(phydev, mv88q222x_revb1_init_seq0, ARRAY_SIZE(mv88q222x_revb1_init_seq0)); else ret = mv88q2xxx_write_mmd_vals(phydev, mv88q222x_revb2_init_seq0, ARRAY_SIZE(mv88q222x_revb2_init_seq0)); if (ret < 0) return ret; usleep_range(3000, 5000); ret = mv88q2xxx_write_mmd_vals(phydev, mv88q222x_revb1_revb2_init_seq1, ARRAY_SIZE(mv88q222x_revb1_revb2_init_seq1)); if (ret < 0) return ret; return mv88q2xxx_config_init(phydev); } static int mv88q222x_config_init(struct phy_device *phydev) { if (phydev->c45_ids.device_ids[MDIO_MMD_PMAPMD] == PHY_ID_88Q2220_REVB0) return mv88q222x_revb0_config_init(phydev); else return mv88q222x_revb1_revb2_config_init(phydev); } static int mv88q222x_cable_test_start(struct phy_device *phydev) { int ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_OFF_CUTOFF, 0x0058); if (ret < 0) return ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_OFF_LONG_CABLE, 0x00eb); if (ret < 0) return ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_OFF_SHORT_CABLE, 0x010e); if (ret < 0) return ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_RESET, 0x0d90); if (ret < 0) return ret; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_STATUS, MDIO_MMD_PCS_MV_TDR_STATUS_ON); if (ret < 0) return ret; /* According to the Marvell API the test is finished within 500 ms */ msleep(500); return 0; } static int mv88q222x_cable_test_get_status(struct phy_device *phydev, bool *finished) { int ret, status; u32 dist; status = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_STATUS); if (status < 0) return status; ret = phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_MMD_PCS_MV_TDR_RESET, MDIO_MMD_PCS_MV_TDR_RESET_TDR_RST | 0xd90); if (ret < 0) return ret; /* Test could not be finished */ if (FIELD_GET(MDIO_MMD_PCS_MV_TDR_STATUS_MASK, status) != MDIO_MMD_PCS_MV_TDR_STATUS_OFF) return -ETIMEDOUT; *finished = true; /* Fault length reported in meters, convert to centimeters */ dist = FIELD_GET(MDIO_MMD_PCS_MV_TDR_STATUS_DIST_MASK, status) * 100; switch (status & MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_MASK) { case MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_OPEN: ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_RESULT_CODE_OPEN); ethnl_cable_test_fault_length(phydev, ETHTOOL_A_CABLE_PAIR_A, dist); break; case MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_SHORT: ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT); ethnl_cable_test_fault_length(phydev, ETHTOOL_A_CABLE_PAIR_A, dist); break; case MDIO_MMD_PCS_MV_TDR_STATUS_VCT_STAT_OK: ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_RESULT_CODE_OK); break; default: ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); } return 0; } static struct phy_driver mv88q2xxx_driver[] = { { .phy_id = MARVELL_PHY_ID_88Q2110, .phy_id_mask = MARVELL_PHY_ID_MASK, .name = "mv88q2110", .get_features = mv88q2xxx_get_features, .config_aneg = mv88q2xxx_config_aneg, .config_init = mv88q2110_config_init, .read_status = mv88q2xxx_read_status, .soft_reset = mv88q2xxx_soft_reset, .set_loopback = genphy_c45_loopback, .get_sqi = mv88q2xxx_get_sqi, .get_sqi_max = mv88q2xxx_get_sqi_max, }, { .phy_id = MARVELL_PHY_ID_88Q2220, .phy_id_mask = MARVELL_PHY_ID_MASK, .name = "mv88q2220", .flags = PHY_POLL_CABLE_TEST, .probe = mv88q2xxx_probe, .get_features = mv88q2xxx_get_features, .config_aneg = mv88q2xxx_config_aneg, .aneg_done = genphy_c45_aneg_done, .config_init = mv88q222x_config_init, .read_status = mv88q2xxx_read_status, .soft_reset = mv88q2xxx_soft_reset, .config_intr = mv88q2xxx_config_intr, .handle_interrupt = mv88q2xxx_handle_interrupt, .set_loopback = genphy_c45_loopback, .cable_test_start = mv88q222x_cable_test_start, .cable_test_get_status = mv88q222x_cable_test_get_status, .get_sqi = mv88q2xxx_get_sqi, .get_sqi_max = mv88q2xxx_get_sqi_max, .suspend = mv88q2xxx_suspend, .resume = mv88q2xxx_resume, }, }; module_phy_driver(mv88q2xxx_driver); static const struct mdio_device_id __maybe_unused mv88q2xxx_tbl[] = { { MARVELL_PHY_ID_88Q2110, MARVELL_PHY_ID_MASK }, { MARVELL_PHY_ID_88Q2220, MARVELL_PHY_ID_MASK }, { /*sentinel*/ } }; MODULE_DEVICE_TABLE(mdio, mv88q2xxx_tbl); MODULE_DESCRIPTION("Marvell 88Q2XXX 100/1000BASE-T1 Automotive Ethernet PHY driver"); MODULE_LICENSE("GPL");