// SPDX-License-Identifier: GPL-2.0-or-later /* * vrf.c: device driver to encapsulate a VRF space * * Copyright (c) 2015 Cumulus Networks. All rights reserved. * Copyright (c) 2015 Shrijeet Mukherjee * Copyright (c) 2015 David Ahern * * Based on dummy, team and ipvlan drivers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "vrf" #define DRV_VERSION "1.1" #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ #define HT_MAP_BITS 4 #define HASH_INITVAL ((u32)0xcafef00d) struct vrf_map { DECLARE_HASHTABLE(ht, HT_MAP_BITS); spinlock_t vmap_lock; /* shared_tables: * count how many distinct tables do not comply with the strict mode * requirement. * shared_tables value must be 0 in order to enable the strict mode. * * example of the evolution of shared_tables: * | time * add vrf0 --> table 100 shared_tables = 0 | t0 * add vrf1 --> table 101 shared_tables = 0 | t1 * add vrf2 --> table 100 shared_tables = 1 | t2 * add vrf3 --> table 100 shared_tables = 1 | t3 * add vrf4 --> table 101 shared_tables = 2 v t4 * * shared_tables is a "step function" (or "staircase function") * and it is increased by one when the second vrf is associated to a * table. * * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. * * at t3, another dev (vrf3) is bound to the same table 100 but the * value of shared_tables is still 1. * This means that no matter how many new vrfs will register on the * table 100, the shared_tables will not increase (considering only * table 100). * * at t4, vrf4 is bound to table 101, and shared_tables = 2. * * Looking at the value of shared_tables we can immediately know if * the strict_mode can or cannot be enforced. Indeed, strict_mode * can be enforced iff shared_tables = 0. * * Conversely, shared_tables is decreased when a vrf is de-associated * from a table with exactly two associated vrfs. */ u32 shared_tables; bool strict_mode; }; struct vrf_map_elem { struct hlist_node hnode; struct list_head vrf_list; /* VRFs registered to this table */ u32 table_id; int users; int ifindex; }; static unsigned int vrf_net_id; /* per netns vrf data */ struct netns_vrf { /* protected by rtnl lock */ bool add_fib_rules; struct vrf_map vmap; struct ctl_table_header *ctl_hdr; }; struct net_vrf { struct rtable __rcu *rth; struct rt6_info __rcu *rt6; #if IS_ENABLED(CONFIG_IPV6) struct fib6_table *fib6_table; #endif u32 tb_id; struct list_head me_list; /* entry in vrf_map_elem */ int ifindex; }; static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) { vrf_dev->stats.tx_errors++; kfree_skb(skb); } static struct vrf_map *netns_vrf_map(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); return &nn_vrf->vmap; } static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) { return netns_vrf_map(dev_net(dev)); } static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) { struct list_head *me_head = &me->vrf_list; struct net_vrf *vrf; if (list_empty(me_head)) return -ENODEV; vrf = list_first_entry(me_head, struct net_vrf, me_list); return vrf->ifindex; } static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) { struct vrf_map_elem *me; me = kmalloc(sizeof(*me), flags); if (!me) return NULL; return me; } static void vrf_map_elem_free(struct vrf_map_elem *me) { kfree(me); } static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, int ifindex, int users) { me->table_id = table_id; me->ifindex = ifindex; me->users = users; INIT_LIST_HEAD(&me->vrf_list); } static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, u32 table_id) { struct vrf_map_elem *me; u32 key; key = jhash_1word(table_id, HASH_INITVAL); hash_for_each_possible(vmap->ht, me, hnode, key) { if (me->table_id == table_id) return me; } return NULL; } static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) { u32 table_id = me->table_id; u32 key; key = jhash_1word(table_id, HASH_INITVAL); hash_add(vmap->ht, &me->hnode, key); } static void vrf_map_del_elem(struct vrf_map_elem *me) { hash_del(&me->hnode); } static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) { spin_lock(&vmap->vmap_lock); } static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) { spin_unlock(&vmap->vmap_lock); } /* called with rtnl lock held */ static int vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) { struct vrf_map *vmap = netns_vrf_map_by_dev(dev); struct net_vrf *vrf = netdev_priv(dev); struct vrf_map_elem *new_me, *me; u32 table_id = vrf->tb_id; bool free_new_me = false; int users; int res; /* we pre-allocate elements used in the spin-locked section (so that we * keep the spinlock as short as possible). */ new_me = vrf_map_elem_alloc(GFP_KERNEL); if (!new_me) return -ENOMEM; vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); vrf_map_lock(vmap); me = vrf_map_lookup_elem(vmap, table_id); if (!me) { me = new_me; vrf_map_add_elem(vmap, me); goto link_vrf; } /* we already have an entry in the vrf_map, so it means there is (at * least) a vrf registered on the specific table. */ free_new_me = true; if (vmap->strict_mode) { /* vrfs cannot share the same table */ NL_SET_ERR_MSG(extack, "Table is used by another VRF"); res = -EBUSY; goto unlock; } link_vrf: users = ++me->users; if (users == 2) ++vmap->shared_tables; list_add(&vrf->me_list, &me->vrf_list); res = 0; unlock: vrf_map_unlock(vmap); /* clean-up, if needed */ if (free_new_me) vrf_map_elem_free(new_me); return res; } /* called with rtnl lock held */ static void vrf_map_unregister_dev(struct net_device *dev) { struct vrf_map *vmap = netns_vrf_map_by_dev(dev); struct net_vrf *vrf = netdev_priv(dev); u32 table_id = vrf->tb_id; struct vrf_map_elem *me; int users; vrf_map_lock(vmap); me = vrf_map_lookup_elem(vmap, table_id); if (!me) goto unlock; list_del(&vrf->me_list); users = --me->users; if (users == 1) { --vmap->shared_tables; } else if (users == 0) { vrf_map_del_elem(me); /* no one will refer to this element anymore */ vrf_map_elem_free(me); } unlock: vrf_map_unlock(vmap); } /* return the vrf device index associated with the table_id */ static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) { struct vrf_map *vmap = netns_vrf_map(net); struct vrf_map_elem *me; int ifindex; vrf_map_lock(vmap); if (!vmap->strict_mode) { ifindex = -EPERM; goto unlock; } me = vrf_map_lookup_elem(vmap, table_id); if (!me) { ifindex = -ENODEV; goto unlock; } ifindex = vrf_map_elem_get_vrf_ifindex(me); unlock: vrf_map_unlock(vmap); return ifindex; } /* by default VRF devices do not have a qdisc and are expected * to be created with only a single queue. */ static bool qdisc_tx_is_default(const struct net_device *dev) { struct netdev_queue *txq; struct Qdisc *qdisc; if (dev->num_tx_queues > 1) return false; txq = netdev_get_tx_queue(dev, 0); qdisc = rcu_access_pointer(txq->qdisc); return !qdisc->enqueue; } /* Local traffic destined to local address. Reinsert the packet to rx * path, similar to loopback handling. */ static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, struct dst_entry *dst) { unsigned int len = skb->len; skb_orphan(skb); skb_dst_set(skb, dst); /* set pkt_type to avoid skb hitting packet taps twice - * once on Tx and again in Rx processing */ skb->pkt_type = PACKET_LOOPBACK; skb->protocol = eth_type_trans(skb, dev); if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) dev_dstats_rx_add(dev, len); else dev_dstats_rx_dropped(dev); return NETDEV_TX_OK; } static void vrf_nf_set_untracked(struct sk_buff *skb) { if (skb_get_nfct(skb) == 0) nf_ct_set(skb, NULL, IP_CT_UNTRACKED); } static void vrf_nf_reset_ct(struct sk_buff *skb) { if (skb_get_nfct(skb) == IP_CT_UNTRACKED) nf_reset_ct(skb); } #if IS_ENABLED(CONFIG_IPV6) static int vrf_ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; vrf_nf_reset_ct(skb); err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, struct net_device *dev) { const struct ipv6hdr *iph; struct net *net = dev_net(skb->dev); struct flowi6 fl6; int ret = NET_XMIT_DROP; struct dst_entry *dst; struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) goto err; iph = ipv6_hdr(skb); memset(&fl6, 0, sizeof(fl6)); /* needed to match OIF rule */ fl6.flowi6_l3mdev = dev->ifindex; fl6.flowi6_iif = LOOPBACK_IFINDEX; fl6.daddr = iph->daddr; fl6.saddr = iph->saddr; fl6.flowlabel = ip6_flowinfo(iph); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = iph->nexthdr; dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); if (IS_ERR(dst) || dst == dst_null) goto err; skb_dst_drop(skb); /* if dst.dev is the VRF device again this is locally originated traffic * destined to a local address. Short circuit to Rx path. */ if (dst->dev == dev) return vrf_local_xmit(skb, dev, dst); skb_dst_set(skb, dst); /* strip the ethernet header added for pass through VRF device */ __skb_pull(skb, skb_network_offset(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); ret = vrf_ip6_local_out(net, skb->sk, skb); if (unlikely(net_xmit_eval(ret))) dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; return ret; err: vrf_tx_error(dev, skb); return NET_XMIT_DROP; } #else static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, struct net_device *dev) { vrf_tx_error(dev, skb); return NET_XMIT_DROP; } #endif /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; vrf_nf_reset_ct(skb); err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, struct net_device *vrf_dev) { struct iphdr *ip4h; int ret = NET_XMIT_DROP; struct flowi4 fl4; struct net *net = dev_net(vrf_dev); struct rtable *rt; if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) goto err; ip4h = ip_hdr(skb); memset(&fl4, 0, sizeof(fl4)); /* needed to match OIF rule */ fl4.flowi4_l3mdev = vrf_dev->ifindex; fl4.flowi4_iif = LOOPBACK_IFINDEX; fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h)); fl4.flowi4_flags = FLOWI_FLAG_ANYSRC; fl4.flowi4_proto = ip4h->protocol; fl4.daddr = ip4h->daddr; fl4.saddr = ip4h->saddr; rt = ip_route_output_flow(net, &fl4, NULL); if (IS_ERR(rt)) goto err; skb_dst_drop(skb); /* if dst.dev is the VRF device again this is locally originated traffic * destined to a local address. Short circuit to Rx path. */ if (rt->dst.dev == vrf_dev) return vrf_local_xmit(skb, vrf_dev, &rt->dst); skb_dst_set(skb, &rt->dst); /* strip the ethernet header added for pass through VRF device */ __skb_pull(skb, skb_network_offset(skb)); if (!ip4h->saddr) { ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, RT_SCOPE_LINK); } memset(IPCB(skb), 0, sizeof(*IPCB(skb))); ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); if (unlikely(net_xmit_eval(ret))) vrf_dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; out: return ret; err: vrf_tx_error(vrf_dev, skb); goto out; } static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) { switch (skb->protocol) { case htons(ETH_P_IP): return vrf_process_v4_outbound(skb, dev); case htons(ETH_P_IPV6): return vrf_process_v6_outbound(skb, dev); default: vrf_tx_error(dev, skb); return NET_XMIT_DROP; } } static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned int len = skb->len; netdev_tx_t ret; ret = is_ip_tx_frame(skb, dev); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) dev_dstats_tx_add(dev, len); else dev_dstats_tx_dropped(dev); return ret; } static void vrf_finish_direct(struct sk_buff *skb) { struct net_device *vrf_dev = skb->dev; if (!list_empty(&vrf_dev->ptype_all) && likely(skb_headroom(skb) >= ETH_HLEN)) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); ether_addr_copy(eth->h_source, vrf_dev->dev_addr); eth_zero_addr(eth->h_dest); eth->h_proto = skb->protocol; rcu_read_lock_bh(); dev_queue_xmit_nit(skb, vrf_dev); rcu_read_unlock_bh(); skb_pull(skb, ETH_HLEN); } vrf_nf_reset_ct(skb); } #if IS_ENABLED(CONFIG_IPV6) /* modelled after ip6_finish_output2 */ static int vrf_finish_output6(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; const struct in6_addr *nexthop; struct neighbour *neigh; int ret; vrf_nf_reset_ct(skb); skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; rcu_read_lock(); nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr); neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); if (!IS_ERR(neigh)) { sock_confirm_neigh(skb, neigh); ret = neigh_output(neigh, skb, false); rcu_read_unlock(); return ret; } rcu_read_unlock(); IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EINVAL; } /* modelled after ip6_output */ static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) { return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb_dst(skb)->dev, vrf_finish_output6, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } /* set dst on skb to send packet to us via dev_xmit path. Allows * packet to go through device based features such as qdisc, netfilter * hooks and packet sockets with skb->dev set to vrf device. */ static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_vrf *vrf = netdev_priv(vrf_dev); struct dst_entry *dst = NULL; struct rt6_info *rt6; rcu_read_lock(); rt6 = rcu_dereference(vrf->rt6); if (likely(rt6)) { dst = &rt6->dst; dst_hold(dst); } rcu_read_unlock(); if (unlikely(!dst)) { vrf_tx_error(vrf_dev, skb); return NULL; } skb_dst_drop(skb); skb_dst_set(skb, dst); return skb; } static int vrf_output6_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { vrf_finish_direct(skb); return vrf_ip6_local_out(net, sk, skb); } static int vrf_output6_direct(struct net *net, struct sock *sk, struct sk_buff *skb) { int err = 1; skb->protocol = htons(ETH_P_IPV6); if (!(IPCB(skb)->flags & IPSKB_REROUTED)) err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, vrf_output6_direct_finish); if (likely(err == 1)) vrf_finish_direct(skb); return err; } static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = vrf_output6_direct(net, sk, skb); if (likely(err == 1)) err = vrf_ip6_local_out(net, sk, skb); return err; } static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { struct net *net = dev_net(vrf_dev); int err; skb->dev = vrf_dev; err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); if (likely(err == 1)) err = vrf_output6_direct(net, sk, skb); if (likely(err == 1)) return skb; return NULL; } static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { /* don't divert link scope packets */ if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) return skb; vrf_nf_set_untracked(skb); if (qdisc_tx_is_default(vrf_dev) || IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) return vrf_ip6_out_direct(vrf_dev, sk, skb); return vrf_ip6_out_redirect(vrf_dev, skb); } /* holding rtnl */ static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) { struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); struct net *net = dev_net(dev); struct dst_entry *dst; RCU_INIT_POINTER(vrf->rt6, NULL); synchronize_rcu(); /* move dev in dst's to loopback so this VRF device can be deleted * - based on dst_ifdown */ if (rt6) { dst = &rt6->dst; netdev_ref_replace(dst->dev, net->loopback_dev, &dst->dev_tracker, GFP_KERNEL); dst->dev = net->loopback_dev; dst_release(dst); } } static int vrf_rt6_create(struct net_device *dev) { int flags = DST_NOPOLICY | DST_NOXFRM; struct net_vrf *vrf = netdev_priv(dev); struct net *net = dev_net(dev); struct rt6_info *rt6; int rc = -ENOMEM; /* IPv6 can be CONFIG enabled and then disabled runtime */ if (!ipv6_mod_enabled()) return 0; vrf->fib6_table = fib6_new_table(net, vrf->tb_id); if (!vrf->fib6_table) goto out; /* create a dst for routing packets out a VRF device */ rt6 = ip6_dst_alloc(net, dev, flags); if (!rt6) goto out; rt6->dst.output = vrf_output6; rcu_assign_pointer(vrf->rt6, rt6); rc = 0; out: return rc; } #else static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { return skb; } static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) { } static int vrf_rt6_create(struct net_device *dev) { return 0; } #endif /* modelled after ip_finish_output2 */ static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = dst_rtable(dst); struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; vrf_nf_reset_ct(skb); /* Be paranoid, rather than too clever. */ if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { skb = skb_expand_head(skb, hh_len); if (!skb) { dev->stats.tx_errors++; return -ENOMEM; } } rcu_read_lock(); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); if (!IS_ERR(neigh)) { int ret; sock_confirm_neigh(skb, neigh); /* if crossing protocols, can not use the cached header */ ret = neigh_output(neigh, skb, is_v6gw); rcu_read_unlock(); return ret; } rcu_read_unlock(); vrf_tx_error(skb->dev, skb); return -EINVAL; } static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, vrf_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } /* set dst on skb to send packet to us via dev_xmit path. Allows * packet to go through device based features such as qdisc, netfilter * hooks and packet sockets with skb->dev set to vrf device. */ static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_vrf *vrf = netdev_priv(vrf_dev); struct dst_entry *dst = NULL; struct rtable *rth; rcu_read_lock(); rth = rcu_dereference(vrf->rth); if (likely(rth)) { dst = &rth->dst; dst_hold(dst); } rcu_read_unlock(); if (unlikely(!dst)) { vrf_tx_error(vrf_dev, skb); return NULL; } skb_dst_drop(skb); skb_dst_set(skb, dst); return skb; } static int vrf_output_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { vrf_finish_direct(skb); return vrf_ip_local_out(net, sk, skb); } static int vrf_output_direct(struct net *net, struct sock *sk, struct sk_buff *skb) { int err = 1; skb->protocol = htons(ETH_P_IP); if (!(IPCB(skb)->flags & IPSKB_REROUTED)) err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, vrf_output_direct_finish); if (likely(err == 1)) vrf_finish_direct(skb); return err; } static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = vrf_output_direct(net, sk, skb); if (likely(err == 1)) err = vrf_ip_local_out(net, sk, skb); return err; } static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { struct net *net = dev_net(vrf_dev); int err; skb->dev = vrf_dev; err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, vrf_dev, vrf_ip_out_direct_finish); if (likely(err == 1)) err = vrf_output_direct(net, sk, skb); if (likely(err == 1)) return skb; return NULL; } static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { /* don't divert multicast or local broadcast */ if (ipv4_is_multicast(ip_hdr(skb)->daddr) || ipv4_is_lbcast(ip_hdr(skb)->daddr)) return skb; vrf_nf_set_untracked(skb); if (qdisc_tx_is_default(vrf_dev) || IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) return vrf_ip_out_direct(vrf_dev, sk, skb); return vrf_ip_out_redirect(vrf_dev, skb); } /* called with rcu lock held */ static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb, u16 proto) { switch (proto) { case AF_INET: return vrf_ip_out(vrf_dev, sk, skb); case AF_INET6: return vrf_ip6_out(vrf_dev, sk, skb); } return skb; } /* holding rtnl */ static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) { struct rtable *rth = rtnl_dereference(vrf->rth); struct net *net = dev_net(dev); struct dst_entry *dst; RCU_INIT_POINTER(vrf->rth, NULL); synchronize_rcu(); /* move dev in dst's to loopback so this VRF device can be deleted * - based on dst_ifdown */ if (rth) { dst = &rth->dst; netdev_ref_replace(dst->dev, net->loopback_dev, &dst->dev_tracker, GFP_KERNEL); dst->dev = net->loopback_dev; dst_release(dst); } } static int vrf_rtable_create(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); struct rtable *rth; if (!fib_new_table(dev_net(dev), vrf->tb_id)) return -ENOMEM; /* create a dst for routing packets out through a VRF device */ rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1); if (!rth) return -ENOMEM; rth->dst.output = vrf_output; rcu_assign_pointer(vrf->rth, rth); return 0; } /**************************** device handling ********************/ /* cycle interface to flush neighbor cache and move routes across tables */ static void cycle_netdev(struct net_device *dev, struct netlink_ext_ack *extack) { unsigned int flags = dev->flags; int ret; if (!netif_running(dev)) return; ret = dev_change_flags(dev, flags & ~IFF_UP, extack); if (ret >= 0) ret = dev_change_flags(dev, flags, extack); if (ret < 0) { netdev_err(dev, "Failed to cycle device %s; route tables might be wrong!\n", dev->name); } } static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { int ret; /* do not allow loopback device to be enslaved to a VRF. * The vrf device acts as the loopback for the vrf. */ if (port_dev == dev_net(dev)->loopback_dev) { NL_SET_ERR_MSG(extack, "Can not enslave loopback device to a VRF"); return -EOPNOTSUPP; } port_dev->priv_flags |= IFF_L3MDEV_SLAVE; ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); if (ret < 0) goto err; cycle_netdev(port_dev, extack); return 0; err: port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; return ret; } static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { if (netif_is_l3_master(port_dev)) { NL_SET_ERR_MSG(extack, "Can not enslave an L3 master device to a VRF"); return -EINVAL; } if (netif_is_l3_slave(port_dev)) return -EINVAL; return do_vrf_add_slave(dev, port_dev, extack); } /* inverse of do_vrf_add_slave */ static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { netdev_upper_dev_unlink(port_dev, dev); port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; cycle_netdev(port_dev, NULL); return 0; } static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { return do_vrf_del_slave(dev, port_dev); } static void vrf_dev_uninit(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); vrf_rtable_release(dev, vrf); vrf_rt6_release(dev, vrf); } static int vrf_dev_init(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); /* create the default dst which points back to us */ if (vrf_rtable_create(dev) != 0) goto out_nomem; if (vrf_rt6_create(dev) != 0) goto out_rth; dev->flags = IFF_MASTER | IFF_NOARP; /* similarly, oper state is irrelevant; set to up to avoid confusion */ dev->operstate = IF_OPER_UP; netdev_lockdep_set_classes(dev); return 0; out_rth: vrf_rtable_release(dev, vrf); out_nomem: return -ENOMEM; } static const struct net_device_ops vrf_netdev_ops = { .ndo_init = vrf_dev_init, .ndo_uninit = vrf_dev_uninit, .ndo_start_xmit = vrf_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_add_slave = vrf_add_slave, .ndo_del_slave = vrf_del_slave, }; static u32 vrf_fib_table(const struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); return vrf->tb_id; } static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); return 0; } static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, struct sk_buff *skb, struct net_device *dev) { struct net *net = dev_net(dev); if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) skb = NULL; /* kfree_skb(skb) handled by nf code */ return skb; } static int vrf_prepare_mac_header(struct sk_buff *skb, struct net_device *vrf_dev, u16 proto) { struct ethhdr *eth; int err; /* in general, we do not know if there is enough space in the head of * the packet for hosting the mac header. */ err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); if (unlikely(err)) /* no space in the skb head */ return -ENOBUFS; __skb_push(skb, ETH_HLEN); eth = (struct ethhdr *)skb->data; skb_reset_mac_header(skb); skb_reset_mac_len(skb); /* we set the ethernet destination and the source addresses to the * address of the VRF device. */ ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); ether_addr_copy(eth->h_source, vrf_dev->dev_addr); eth->h_proto = htons(proto); /* the destination address of the Ethernet frame corresponds to the * address set on the VRF interface; therefore, the packet is intended * to be processed locally. */ skb->protocol = eth->h_proto; skb->pkt_type = PACKET_HOST; skb_postpush_rcsum(skb, skb->data, ETH_HLEN); skb_pull_inline(skb, ETH_HLEN); return 0; } /* prepare and add the mac header to the packet if it was not set previously. * In this way, packet sniffers such as tcpdump can parse the packet correctly. * If the mac header was already set, the original mac header is left * untouched and the function returns immediately. */ static int vrf_add_mac_header_if_unset(struct sk_buff *skb, struct net_device *vrf_dev, u16 proto, struct net_device *orig_dev) { if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev)) return 0; return vrf_prepare_mac_header(skb, vrf_dev, proto); } #if IS_ENABLED(CONFIG_IPV6) /* neighbor handling is done with actual device; do not want * to flip skb->dev for those ndisc packets. This really fails * for multiple next protocols (e.g., NEXTHDR_HOP). But it is * a start. */ static bool ipv6_ndisc_frame(const struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); bool rc = false; if (iph->nexthdr == NEXTHDR_ICMP) { const struct icmp6hdr *icmph; struct icmp6hdr _icmph; icmph = skb_header_pointer(skb, sizeof(*iph), sizeof(_icmph), &_icmph); if (!icmph) goto out; switch (icmph->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: rc = true; break; } } out: return rc; } static struct rt6_info *vrf_ip6_route_lookup(struct net *net, const struct net_device *dev, struct flowi6 *fl6, int ifindex, const struct sk_buff *skb, int flags) { struct net_vrf *vrf = netdev_priv(dev); return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); } static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, int ifindex) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct flowi6 fl6 = { .flowi6_iif = ifindex, .flowi6_mark = skb->mark, .flowi6_proto = iph->nexthdr, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), }; struct net *net = dev_net(vrf_dev); struct rt6_info *rt6; rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); if (unlikely(!rt6)) return; if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) return; skb_dst_set(skb, &rt6->dst); } static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { int orig_iif = skb->skb_iif; bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); bool is_ndisc = ipv6_ndisc_frame(skb); /* loopback, multicast & non-ND link-local traffic; do not push through * packet taps again. Reset pkt_type for upper layers to process skb. * For non-loopback strict packets, determine the dst using the original * ifindex. */ if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; IP6CB(skb)->flags |= IP6SKB_L3SLAVE; if (skb->pkt_type == PACKET_LOOPBACK) skb->pkt_type = PACKET_HOST; else vrf_ip6_input_dst(skb, vrf_dev, orig_iif); goto out; } /* if packet is NDISC then keep the ingress interface */ if (!is_ndisc) { struct net_device *orig_dev = skb->dev; dev_dstats_rx_add(vrf_dev, skb->len); skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; if (!list_empty(&vrf_dev->ptype_all)) { int err; err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IPV6, orig_dev); if (likely(!err)) { skb_push(skb, skb->mac_len); dev_queue_xmit_nit(skb, vrf_dev); skb_pull(skb, skb->mac_len); } } IP6CB(skb)->flags |= IP6SKB_L3SLAVE; } if (need_strict) vrf_ip6_input_dst(skb, vrf_dev, orig_iif); skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); out: return skb; } #else static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { return skb; } #endif static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_device *orig_dev = skb->dev; skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; IPCB(skb)->flags |= IPSKB_L3SLAVE; if (ipv4_is_multicast(ip_hdr(skb)->daddr)) goto out; /* loopback traffic; do not push through packet taps again. * Reset pkt_type for upper layers to process skb */ if (skb->pkt_type == PACKET_LOOPBACK) { skb->pkt_type = PACKET_HOST; goto out; } dev_dstats_rx_add(vrf_dev, skb->len); if (!list_empty(&vrf_dev->ptype_all)) { int err; err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP, orig_dev); if (likely(!err)) { skb_push(skb, skb->mac_len); dev_queue_xmit_nit(skb, vrf_dev); skb_pull(skb, skb->mac_len); } } skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); out: return skb; } /* called with rcu lock held */ static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, struct sk_buff *skb, u16 proto) { switch (proto) { case AF_INET: return vrf_ip_rcv(vrf_dev, skb); case AF_INET6: return vrf_ip6_rcv(vrf_dev, skb); } return skb; } #if IS_ENABLED(CONFIG_IPV6) /* send to link-local or multicast address via interface enslaved to * VRF device. Force lookup to VRF table without changing flow struct * Note: Caller to this function must hold rcu_read_lock() and no refcnt * is taken on the dst by this function. */ static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, struct flowi6 *fl6) { struct net *net = dev_net(dev); int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; struct dst_entry *dst = NULL; struct rt6_info *rt; /* VRF device does not have a link-local address and * sending packets to link-local or mcast addresses over * a VRF device does not make sense */ if (fl6->flowi6_oif == dev->ifindex) { dst = &net->ipv6.ip6_null_entry->dst; return dst; } if (!ipv6_addr_any(&fl6->saddr)) flags |= RT6_LOOKUP_F_HAS_SADDR; rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); if (rt) dst = &rt->dst; return dst; } #endif static const struct l3mdev_ops vrf_l3mdev_ops = { .l3mdev_fib_table = vrf_fib_table, .l3mdev_l3_rcv = vrf_l3_rcv, .l3mdev_l3_out = vrf_l3_out, #if IS_ENABLED(CONFIG_IPV6) .l3mdev_link_scope_lookup = vrf_link_scope_lookup, #endif }; static void vrf_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); } static const struct ethtool_ops vrf_ethtool_ops = { .get_drvinfo = vrf_get_drvinfo, }; static inline size_t vrf_fib_rule_nl_size(void) { size_t sz; sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ return sz; } static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) { struct fib_rule_hdr *frh; struct nlmsghdr *nlh; struct sk_buff *skb; int err; if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && !ipv6_mod_enabled()) return 0; skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); if (!skb) return -ENOMEM; nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); if (!nlh) goto nla_put_failure; /* rule only needs to appear once */ nlh->nlmsg_flags |= NLM_F_EXCL; frh = nlmsg_data(nlh); memset(frh, 0, sizeof(*frh)); frh->family = family; frh->action = FR_ACT_TO_TBL; if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) goto nla_put_failure; if (nla_put_u8(skb, FRA_L3MDEV, 1)) goto nla_put_failure; if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) goto nla_put_failure; nlmsg_end(skb, nlh); /* fib_nl_{new,del}rule handling looks for net from skb->sk */ skb->sk = dev_net(dev)->rtnl; if (add_it) { err = fib_nl_newrule(skb, nlh, NULL); if (err == -EEXIST) err = 0; } else { err = fib_nl_delrule(skb, nlh, NULL); if (err == -ENOENT) err = 0; } nlmsg_free(skb); return err; nla_put_failure: nlmsg_free(skb); return -EMSGSIZE; } static int vrf_add_fib_rules(const struct net_device *dev) { int err; err = vrf_fib_rule(dev, AF_INET, true); if (err < 0) goto out_err; err = vrf_fib_rule(dev, AF_INET6, true); if (err < 0) goto ipv6_err; #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); if (err < 0) goto ipmr_err; #endif #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); if (err < 0) goto ip6mr_err; #endif return 0; #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) ip6mr_err: vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); #endif #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) ipmr_err: vrf_fib_rule(dev, AF_INET6, false); #endif ipv6_err: vrf_fib_rule(dev, AF_INET, false); out_err: netdev_err(dev, "Failed to add FIB rules.\n"); return err; } static void vrf_setup(struct net_device *dev) { ether_setup(dev); /* Initialize the device structure. */ dev->netdev_ops = &vrf_netdev_ops; dev->l3mdev_ops = &vrf_l3mdev_ops; dev->ethtool_ops = &vrf_ethtool_ops; dev->needs_free_netdev = true; /* Fill in device structure with ethernet-generic values. */ eth_hw_addr_random(dev); /* don't acquire vrf device's netif_tx_lock when transmitting */ dev->lltx = true; /* don't allow vrf devices to change network namespaces. */ dev->netns_local = true; /* does not make sense for a VLAN to be added to a vrf device */ dev->features |= NETIF_F_VLAN_CHALLENGED; /* enable offload features */ dev->features |= NETIF_F_GSO_SOFTWARE; dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; dev->hw_features = dev->features; dev->hw_enc_features = dev->features; /* default to no qdisc; user can add if desired */ dev->priv_flags |= IFF_NO_QUEUE; dev->priv_flags |= IFF_NO_RX_HANDLER; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; /* VRF devices do not care about MTU, but if the MTU is set * too low then the ipv4 and ipv6 protocols are disabled * which breaks networking. */ dev->min_mtu = IPV6_MIN_MTU; dev->max_mtu = IP6_MAX_MTU; dev->mtu = dev->max_mtu; dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS; } static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { NL_SET_ERR_MSG(extack, "Invalid hardware address"); return -EINVAL; } if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { NL_SET_ERR_MSG(extack, "Invalid hardware address"); return -EADDRNOTAVAIL; } } return 0; } static void vrf_dellink(struct net_device *dev, struct list_head *head) { struct net_device *port_dev; struct list_head *iter; netdev_for_each_lower_dev(dev, port_dev, iter) vrf_del_slave(dev, port_dev); vrf_map_unregister_dev(dev); unregister_netdevice_queue(dev, head); } static int vrf_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net_vrf *vrf = netdev_priv(dev); struct netns_vrf *nn_vrf; bool *add_fib_rules; struct net *net; int err; if (!data || !data[IFLA_VRF_TABLE]) { NL_SET_ERR_MSG(extack, "VRF table id is missing"); return -EINVAL; } vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); if (vrf->tb_id == RT_TABLE_UNSPEC) { NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], "Invalid VRF table id"); return -EINVAL; } dev->priv_flags |= IFF_L3MDEV_MASTER; err = register_netdevice(dev); if (err) goto out; /* mapping between table_id and vrf; * note: such binding could not be done in the dev init function * because dev->ifindex id is not available yet. */ vrf->ifindex = dev->ifindex; err = vrf_map_register_dev(dev, extack); if (err) { unregister_netdevice(dev); goto out; } net = dev_net(dev); nn_vrf = net_generic(net, vrf_net_id); add_fib_rules = &nn_vrf->add_fib_rules; if (*add_fib_rules) { err = vrf_add_fib_rules(dev); if (err) { vrf_map_unregister_dev(dev); unregister_netdevice(dev); goto out; } *add_fib_rules = false; } out: return err; } static size_t vrf_nl_getsize(const struct net_device *dev) { return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ } static int vrf_fillinfo(struct sk_buff *skb, const struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); } static size_t vrf_get_slave_size(const struct net_device *bond_dev, const struct net_device *slave_dev) { return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ } static int vrf_fill_slave_info(struct sk_buff *skb, const struct net_device *vrf_dev, const struct net_device *slave_dev) { struct net_vrf *vrf = netdev_priv(vrf_dev); if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) return -EMSGSIZE; return 0; } static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { [IFLA_VRF_TABLE] = { .type = NLA_U32 }, }; static struct rtnl_link_ops vrf_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct net_vrf), .get_size = vrf_nl_getsize, .policy = vrf_nl_policy, .validate = vrf_validate, .fill_info = vrf_fillinfo, .get_slave_size = vrf_get_slave_size, .fill_slave_info = vrf_fill_slave_info, .newlink = vrf_newlink, .dellink = vrf_dellink, .setup = vrf_setup, .maxtype = IFLA_VRF_MAX, }; static int vrf_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); /* only care about unregister events to drop slave references */ if (event == NETDEV_UNREGISTER) { struct net_device *vrf_dev; if (!netif_is_l3_slave(dev)) goto out; vrf_dev = netdev_master_upper_dev_get(dev); vrf_del_slave(vrf_dev, dev); } out: return NOTIFY_DONE; } static struct notifier_block vrf_notifier_block __read_mostly = { .notifier_call = vrf_device_event, }; static int vrf_map_init(struct vrf_map *vmap) { spin_lock_init(&vmap->vmap_lock); hash_init(vmap->ht); vmap->strict_mode = false; return 0; } #ifdef CONFIG_SYSCTL static bool vrf_strict_mode(struct vrf_map *vmap) { bool strict_mode; vrf_map_lock(vmap); strict_mode = vmap->strict_mode; vrf_map_unlock(vmap); return strict_mode; } static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) { bool *cur_mode; int res = 0; vrf_map_lock(vmap); cur_mode = &vmap->strict_mode; if (*cur_mode == new_mode) goto unlock; if (*cur_mode) { /* disable strict mode */ *cur_mode = false; } else { if (vmap->shared_tables) { /* we cannot allow strict_mode because there are some * vrfs that share one or more tables. */ res = -EBUSY; goto unlock; } /* no tables are shared among vrfs, so we can go back * to 1:1 association between a vrf with its table. */ *cur_mode = true; } unlock: vrf_map_unlock(vmap); return res; } static int vrf_shared_table_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = (struct net *)table->extra1; struct vrf_map *vmap = netns_vrf_map(net); int proc_strict_mode = 0; struct ctl_table tmp = { .procname = table->procname, .data = &proc_strict_mode, .maxlen = sizeof(int), .mode = table->mode, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }; int ret; if (!write) proc_strict_mode = vrf_strict_mode(vmap); ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && ret == 0) ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); return ret; } static const struct ctl_table vrf_table[] = { { .procname = "strict_mode", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = vrf_shared_table_handler, /* set by the vrf_netns_init */ .extra1 = NULL, }, }; static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) { struct ctl_table *table; table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); if (!table) return -ENOMEM; /* init the extra1 parameter with the reference to current netns */ table[0].extra1 = net; nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table, ARRAY_SIZE(vrf_table)); if (!nn_vrf->ctl_hdr) { kfree(table); return -ENOMEM; } return 0; } static void vrf_netns_exit_sysctl(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); const struct ctl_table *table; table = nn_vrf->ctl_hdr->ctl_table_arg; unregister_net_sysctl_table(nn_vrf->ctl_hdr); kfree(table); } #else static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) { return 0; } static void vrf_netns_exit_sysctl(struct net *net) { } #endif /* Initialize per network namespace state */ static int __net_init vrf_netns_init(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); nn_vrf->add_fib_rules = true; vrf_map_init(&nn_vrf->vmap); return vrf_netns_init_sysctl(net, nn_vrf); } static void __net_exit vrf_netns_exit(struct net *net) { vrf_netns_exit_sysctl(net); } static struct pernet_operations vrf_net_ops __net_initdata = { .init = vrf_netns_init, .exit = vrf_netns_exit, .id = &vrf_net_id, .size = sizeof(struct netns_vrf), }; static int __init vrf_init_module(void) { int rc; register_netdevice_notifier(&vrf_notifier_block); rc = register_pernet_subsys(&vrf_net_ops); if (rc < 0) goto error; rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, vrf_ifindex_lookup_by_table_id); if (rc < 0) goto unreg_pernet; rc = rtnl_link_register(&vrf_link_ops); if (rc < 0) goto table_lookup_unreg; return 0; table_lookup_unreg: l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, vrf_ifindex_lookup_by_table_id); unreg_pernet: unregister_pernet_subsys(&vrf_net_ops); error: unregister_netdevice_notifier(&vrf_notifier_block); return rc; } module_init(vrf_init_module); MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK(DRV_NAME); MODULE_VERSION(DRV_VERSION);