/* * Copyright (c) 2008-2011 Atheros Communications Inc. * Copyright (c) 2011 Neratec Solutions AG * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" #include "ath9k.h" #include "dfs.h" #include "dfs_debug.h" /* internal struct to pass radar data */ struct ath_radar_data { u8 pulse_bw_info; u8 rssi; u8 ext_rssi; u8 pulse_length_ext; u8 pulse_length_pri; }; /**** begin: CHIRP ************************************************************/ /* min and max gradients for defined FCC chirping pulses, given by * - 20MHz chirp width over a pulse width of 50us * - 5MHz chirp width over a pulse width of 100us */ static const int BIN_DELTA_MIN = 1; static const int BIN_DELTA_MAX = 10; /* we need at least 3 deltas / 4 samples for a reliable chirp detection */ #define NUM_DIFFS 3 #define FFT_NUM_SAMPLES (NUM_DIFFS + 1) /* Threshold for difference of delta peaks */ static const int MAX_DIFF = 2; /* width range to be checked for chirping */ static const int MIN_CHIRP_PULSE_WIDTH = 20; static const int MAX_CHIRP_PULSE_WIDTH = 110; struct ath9k_dfs_fft_20 { u8 bin[28]; u8 lower_bins[3]; } __packed; struct ath9k_dfs_fft_40 { u8 bin[64]; u8 lower_bins[3]; u8 upper_bins[3]; } __packed; static inline int fft_max_index(u8 *bins) { return (bins[2] & 0xfc) >> 2; } static inline int fft_max_magnitude(u8 *bins) { return (bins[0] & 0xc0) >> 6 | bins[1] << 2 | (bins[2] & 0x03) << 10; } static inline u8 fft_bitmap_weight(u8 *bins) { return bins[0] & 0x3f; } static int ath9k_get_max_index_ht40(struct ath9k_dfs_fft_40 *fft, bool is_ctl, bool is_ext) { const int DFS_UPPER_BIN_OFFSET = 64; /* if detected radar on both channels, select the significant one */ if (is_ctl && is_ext) { /* first check whether channels have 'strong' bins */ is_ctl = fft_bitmap_weight(fft->lower_bins) != 0; is_ext = fft_bitmap_weight(fft->upper_bins) != 0; /* if still unclear, take higher magnitude */ if (is_ctl && is_ext) { int mag_lower = fft_max_magnitude(fft->lower_bins); int mag_upper = fft_max_magnitude(fft->upper_bins); if (mag_upper > mag_lower) is_ctl = false; else is_ext = false; } } if (is_ctl) return fft_max_index(fft->lower_bins); return fft_max_index(fft->upper_bins) + DFS_UPPER_BIN_OFFSET; } static bool ath9k_check_chirping(struct ath_softc *sc, u8 *data, int datalen, bool is_ctl, bool is_ext) { int i; int max_bin[FFT_NUM_SAMPLES]; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); int prev_delta; if (IS_CHAN_HT40(ah->curchan)) { struct ath9k_dfs_fft_40 *fft = (struct ath9k_dfs_fft_40 *) data; int num_fft_packets = datalen / sizeof(*fft); if (num_fft_packets == 0) return false; ath_dbg(common, DFS, "HT40: datalen=%d, num_fft_packets=%d\n", datalen, num_fft_packets); if (num_fft_packets < FFT_NUM_SAMPLES) { ath_dbg(common, DFS, "not enough packets for chirp\n"); return false; } /* HW sometimes adds 2 garbage bytes in front of FFT samples */ if ((datalen % sizeof(*fft)) == 2) { fft = (struct ath9k_dfs_fft_40 *) (data + 2); ath_dbg(common, DFS, "fixing datalen by 2\n"); } if (IS_CHAN_HT40MINUS(ah->curchan)) swap(is_ctl, is_ext); for (i = 0; i < FFT_NUM_SAMPLES; i++) max_bin[i] = ath9k_get_max_index_ht40(fft + i, is_ctl, is_ext); } else { struct ath9k_dfs_fft_20 *fft = (struct ath9k_dfs_fft_20 *) data; int num_fft_packets = datalen / sizeof(*fft); if (num_fft_packets == 0) return false; ath_dbg(common, DFS, "HT20: datalen=%d, num_fft_packets=%d\n", datalen, num_fft_packets); if (num_fft_packets < FFT_NUM_SAMPLES) { ath_dbg(common, DFS, "not enough packets for chirp\n"); return false; } /* in ht20, this is a 6-bit signed number => shift it to 0 */ for (i = 0; i < FFT_NUM_SAMPLES; i++) max_bin[i] = fft_max_index(fft[i].lower_bins) ^ 0x20; } ath_dbg(common, DFS, "bin_max = [%d, %d, %d, %d]\n", max_bin[0], max_bin[1], max_bin[2], max_bin[3]); /* Check for chirp attributes within specs * a) delta of adjacent max_bins is within range * b) delta of adjacent deltas are within tolerance */ prev_delta = 0; for (i = 0; i < NUM_DIFFS; i++) { int ddelta = -1; int delta = max_bin[i + 1] - max_bin[i]; /* ensure gradient is within valid range */ if (abs(delta) < BIN_DELTA_MIN || abs(delta) > BIN_DELTA_MAX) { ath_dbg(common, DFS, "CHIRP: invalid delta %d " "in sample %d\n", delta, i); return false; } if (i == 0) goto done; ddelta = delta - prev_delta; if (abs(ddelta) > MAX_DIFF) { ath_dbg(common, DFS, "CHIRP: ddelta %d too high\n", ddelta); return false; } done: ath_dbg(common, DFS, "CHIRP - %d: delta=%d, ddelta=%d\n", i, delta, ddelta); prev_delta = delta; } return true; } /**** end: CHIRP **************************************************************/ /* convert pulse duration to usecs, considering clock mode */ static u32 dur_to_usecs(struct ath_hw *ah, u32 dur) { const u32 AR93X_NSECS_PER_DUR = 800; const u32 AR93X_NSECS_PER_DUR_FAST = (8000 / 11); u32 nsecs; if (IS_CHAN_A_FAST_CLOCK(ah, ah->curchan)) nsecs = dur * AR93X_NSECS_PER_DUR_FAST; else nsecs = dur * AR93X_NSECS_PER_DUR; return (nsecs + 500) / 1000; } #define PRI_CH_RADAR_FOUND 0x01 #define EXT_CH_RADAR_FOUND 0x02 static bool ath9k_postprocess_radar_event(struct ath_softc *sc, struct ath_radar_data *ard, struct pulse_event *pe) { u8 rssi; u16 dur; /* * Only the last 2 bits of the BW info are relevant, they indicate * which channel the radar was detected in. */ ard->pulse_bw_info &= 0x03; switch (ard->pulse_bw_info) { case PRI_CH_RADAR_FOUND: /* radar in ctrl channel */ dur = ard->pulse_length_pri; DFS_STAT_INC(sc, pri_phy_errors); /* * cannot use ctrl channel RSSI * if extension channel is stronger */ rssi = (ard->ext_rssi >= (ard->rssi + 3)) ? 0 : ard->rssi; break; case EXT_CH_RADAR_FOUND: /* radar in extension channel */ dur = ard->pulse_length_ext; DFS_STAT_INC(sc, ext_phy_errors); /* * cannot use extension channel RSSI * if control channel is stronger */ rssi = (ard->rssi >= (ard->ext_rssi + 12)) ? 0 : ard->ext_rssi; break; case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND): /* * Conducted testing, when pulse is on DC, both pri and ext * durations are reported to be same * * Radiated testing, when pulse is on DC, different pri and * ext durations are reported, so take the larger of the two */ if (ard->pulse_length_ext >= ard->pulse_length_pri) dur = ard->pulse_length_ext; else dur = ard->pulse_length_pri; DFS_STAT_INC(sc, dc_phy_errors); /* when both are present use stronger one */ rssi = max(ard->rssi, ard->ext_rssi); break; default: /* * Bogus bandwidth info was received in descriptor, * so ignore this PHY error */ DFS_STAT_INC(sc, bwinfo_discards); return false; } if (rssi == 0) { DFS_STAT_INC(sc, rssi_discards); return false; } /* convert duration to usecs */ pe->width = dur_to_usecs(sc->sc_ah, dur); pe->rssi = rssi; DFS_STAT_INC(sc, pulses_detected); return true; } static void ath9k_dfs_process_radar_pulse(struct ath_softc *sc, struct pulse_event *pe) { struct dfs_pattern_detector *pd = sc->dfs_detector; DFS_STAT_INC(sc, pulses_processed); if (pd == NULL) return; if (!pd->add_pulse(pd, pe, NULL)) return; DFS_STAT_INC(sc, radar_detected); ieee80211_radar_detected(sc->hw, NULL); } /* * DFS: check PHY-error for radar pulse and feed the detector */ void ath9k_dfs_process_phyerr(struct ath_softc *sc, void *data, struct ath_rx_status *rs, u64 mactime) { struct ath_radar_data ard; u16 datalen; char *vdata_end; struct pulse_event pe; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); DFS_STAT_INC(sc, pulses_total); if ((rs->rs_phyerr != ATH9K_PHYERR_RADAR) && (rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT)) { ath_dbg(common, DFS, "Error: rs_phyer=0x%x not a radar error\n", rs->rs_phyerr); DFS_STAT_INC(sc, pulses_no_dfs); return; } datalen = rs->rs_datalen; if (datalen == 0) { DFS_STAT_INC(sc, datalen_discards); return; } ard.rssi = rs->rs_rssi_ctl[0]; ard.ext_rssi = rs->rs_rssi_ext[0]; /* * hardware stores this as 8 bit signed value. * we will cap it at 0 if it is a negative number */ if (ard.rssi & 0x80) ard.rssi = 0; if (ard.ext_rssi & 0x80) ard.ext_rssi = 0; vdata_end = data + datalen; ard.pulse_bw_info = vdata_end[-1]; ard.pulse_length_ext = vdata_end[-2]; ard.pulse_length_pri = vdata_end[-3]; pe.freq = ah->curchan->channel; pe.ts = mactime; if (!ath9k_postprocess_radar_event(sc, &ard, &pe)) return; if (pe.width > MIN_CHIRP_PULSE_WIDTH && pe.width < MAX_CHIRP_PULSE_WIDTH) { bool is_ctl = !!(ard.pulse_bw_info & PRI_CH_RADAR_FOUND); bool is_ext = !!(ard.pulse_bw_info & EXT_CH_RADAR_FOUND); int clen = datalen - 3; pe.chirp = ath9k_check_chirping(sc, data, clen, is_ctl, is_ext); } else { pe.chirp = false; } ath_dbg(common, DFS, "ath9k_dfs_process_phyerr: type=%d, freq=%d, ts=%llu, " "width=%d, rssi=%d, delta_ts=%llu\n", ard.pulse_bw_info, pe.freq, pe.ts, pe.width, pe.rssi, pe.ts - sc->dfs_prev_pulse_ts); sc->dfs_prev_pulse_ts = pe.ts; if (ard.pulse_bw_info & PRI_CH_RADAR_FOUND) ath9k_dfs_process_radar_pulse(sc, &pe); if (IS_CHAN_HT40(ah->curchan) && ard.pulse_bw_info & EXT_CH_RADAR_FOUND) { pe.freq += IS_CHAN_HT40PLUS(ah->curchan) ? 20 : -20; ath9k_dfs_process_radar_pulse(sc, &pe); } } #undef PRI_CH_RADAR_FOUND #undef EXT_CH_RADAR_FOUND