// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include #include #include #include #include #include "mt7996.h" #include "mac.h" #include "mcu.h" #include "coredump.h" #include "eeprom.h" static const struct ieee80211_iface_limit if_limits_global = { .max = MT7996_MAX_INTERFACES * MT7996_MAX_RADIOS, .types = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }; static const struct ieee80211_iface_combination if_comb_global = { .limits = &if_limits_global, .n_limits = 1, .max_interfaces = MT7996_MAX_INTERFACES * MT7996_MAX_RADIOS, .num_different_channels = MT7996_MAX_RADIOS, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160), }; static const struct ieee80211_iface_limit if_limits[] = { { .max = 16, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, { .max = MT7996_MAX_INTERFACES, .types = BIT(NL80211_IFTYPE_STATION) } }; static const struct ieee80211_iface_combination if_comb = { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = MT7996_MAX_INTERFACES, .num_different_channels = 1, .beacon_int_infra_match = true, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160), .beacon_int_min_gcd = 100, }; static ssize_t mt7996_thermal_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mt7996_phy *phy = dev_get_drvdata(dev); int i = to_sensor_dev_attr(attr)->index; int temperature; switch (i) { case 0: temperature = mt7996_mcu_get_temperature(phy); if (temperature < 0) return temperature; /* display in millidegree celcius */ return sprintf(buf, "%u\n", temperature * 1000); case 1: case 2: return sprintf(buf, "%u\n", phy->throttle_temp[i - 1] * 1000); case 3: return sprintf(buf, "%hhu\n", phy->throttle_state); default: return -EINVAL; } } static ssize_t mt7996_thermal_temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mt7996_phy *phy = dev_get_drvdata(dev); int ret, i = to_sensor_dev_attr(attr)->index; long val; ret = kstrtol(buf, 10, &val); if (ret < 0) return ret; mutex_lock(&phy->dev->mt76.mutex); val = DIV_ROUND_CLOSEST(clamp_val(val, 40 * 1000, 130 * 1000), 1000); /* add a safety margin ~10 */ if ((i - 1 == MT7996_CRIT_TEMP_IDX && val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) || (i - 1 == MT7996_MAX_TEMP_IDX && val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) { dev_err(phy->dev->mt76.dev, "temp1_max shall be 10 degrees higher than temp1_crit."); mutex_unlock(&phy->dev->mt76.mutex); return -EINVAL; } phy->throttle_temp[i - 1] = val; mutex_unlock(&phy->dev->mt76.mutex); ret = mt7996_mcu_set_thermal_protect(phy, true); if (ret) return ret; return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1); static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2); static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3); static struct attribute *mt7996_hwmon_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_throttle1.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(mt7996_hwmon); static int mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = MT7996_CDEV_THROTTLE_MAX; return 0; } static int mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct mt7996_phy *phy = cdev->devdata; *state = phy->cdev_state; return 0; } static int mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev, unsigned long state) { struct mt7996_phy *phy = cdev->devdata; u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state; int ret; if (state > MT7996_CDEV_THROTTLE_MAX) { dev_err(phy->dev->mt76.dev, "please specify a valid throttling state\n"); return -EINVAL; } if (state == phy->cdev_state) return 0; /* cooling_device convention: 0 = no cooling, more = more cooling * mcu convention: 1 = max cooling, more = less cooling */ ret = mt7996_mcu_set_thermal_throttling(phy, throttling); if (ret) return ret; phy->cdev_state = state; return 0; } static const struct thermal_cooling_device_ops mt7996_thermal_ops = { .get_max_state = mt7996_thermal_get_max_throttle_state, .get_cur_state = mt7996_thermal_get_cur_throttle_state, .set_cur_state = mt7996_thermal_set_cur_throttle_state, }; static void mt7996_unregister_thermal(struct mt7996_phy *phy) { struct wiphy *wiphy = phy->mt76->hw->wiphy; char name[sizeof("cooling_deviceXXX")]; if (!phy->cdev) return; snprintf(name, sizeof(name), "cooling_device%d", phy->mt76->band_idx); sysfs_remove_link(&wiphy->dev.kobj, name); thermal_cooling_device_unregister(phy->cdev); } static int mt7996_thermal_init(struct mt7996_phy *phy) { struct wiphy *wiphy = phy->mt76->hw->wiphy; char cname[sizeof("cooling_deviceXXX")]; struct thermal_cooling_device *cdev; struct device *hwmon; const char *name; name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s.%d", wiphy_name(wiphy), phy->mt76->band_idx); snprintf(cname, sizeof(cname), "cooling_device%d", phy->mt76->band_idx); cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops); if (!IS_ERR(cdev)) { if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj, cname) < 0) thermal_cooling_device_unregister(cdev); else phy->cdev = cdev; } /* initialize critical/maximum high temperature */ phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP; phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP; if (!IS_REACHABLE(CONFIG_HWMON)) return 0; hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy, mt7996_hwmon_groups); if (IS_ERR(hwmon)) return PTR_ERR(hwmon); return 0; } static void mt7996_led_set_config(struct led_classdev *led_cdev, u8 delay_on, u8 delay_off) { struct mt7996_dev *dev; struct mt76_phy *mphy; u32 val; mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); dev = container_of(mphy->dev, struct mt7996_dev, mt76); /* select TX blink mode, 2: only data frames */ mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2); /* enable LED */ mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1); /* set LED Tx blink on/off time */ val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) | FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off); mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val); /* turn LED off */ if (delay_off == 0xff && delay_on == 0x0) { val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK; } else { /* control LED */ val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK; if (mphy->band_idx == MT_BAND1) val |= MT_LED_CTRL_BLINK_BAND_SEL; } if (mphy->leds.al) val |= MT_LED_CTRL_POLARITY; mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val); mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK); } static int mt7996_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { u16 delta_on = 0, delta_off = 0; #define HW_TICK 10 #define TO_HW_TICK(_t) (((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK) if (*delay_on) delta_on = TO_HW_TICK(*delay_on); if (*delay_off) delta_off = TO_HW_TICK(*delay_off); mt7996_led_set_config(led_cdev, delta_on, delta_off); return 0; } static void mt7996_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { if (!brightness) mt7996_led_set_config(led_cdev, 0, 0xff); else mt7996_led_set_config(led_cdev, 0xff, 0); } static void __mt7996_init_txpower(struct mt7996_phy *phy, struct ieee80211_supported_band *sband) { struct mt7996_dev *dev = phy->dev; int i, nss = hweight16(phy->mt76->chainmask); int nss_delta = mt76_tx_power_nss_delta(nss); int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band); struct mt76_power_limits limits; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; int target_power = mt7996_eeprom_get_target_power(dev, chan); target_power += pwr_delta; target_power = mt76_get_rate_power_limits(phy->mt76, chan, &limits, target_power); target_power += nss_delta; target_power = DIV_ROUND_UP(target_power, 2); chan->max_power = min_t(int, chan->max_reg_power, target_power); chan->orig_mpwr = target_power; } } void mt7996_init_txpower(struct mt7996_phy *phy) { if (!phy) return; if (phy->mt76->cap.has_2ghz) __mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband); if (phy->mt76->cap.has_5ghz) __mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband); if (phy->mt76->cap.has_6ghz) __mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband); } static void mt7996_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy; memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2)); dev->mt76.region = request->dfs_region; mt7996_for_each_phy(dev, phy) { if (dev->mt76.region == NL80211_DFS_UNSET) mt7996_mcu_rdd_background_enable(phy, NULL); mt7996_init_txpower(phy); phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; mt7996_dfs_init_radar_detector(phy); } } static void mt7996_init_wiphy_band(struct ieee80211_hw *hw, struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; struct wiphy *wiphy = hw->wiphy; int n_radios = hw->wiphy->n_radio; struct wiphy_radio_freq_range *freq = &dev->radio_freqs[n_radios]; struct wiphy_radio *radio = &dev->radios[n_radios]; phy->slottime = 9; phy->beacon_rate = -1; if (phy->mt76->cap.has_2ghz) { phy->mt76->sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_2g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; freq->start_freq = 2400000; freq->end_freq = 2500000; } else if (phy->mt76->cap.has_5ghz) { phy->mt76->sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; phy->mt76->sband_5g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_1; ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW); freq->start_freq = 5000000; freq->end_freq = 5900000; } else if (phy->mt76->cap.has_6ghz) { freq->start_freq = 5900000; freq->end_freq = 7200000; } else { return; } dev->radio_phy[n_radios] = phy; radio->freq_range = freq; radio->n_freq_range = 1; radio->iface_combinations = &if_comb; radio->n_iface_combinations = 1; hw->wiphy->n_radio++; wiphy->available_antennas_rx |= phy->mt76->chainmask; wiphy->available_antennas_tx |= phy->mt76->chainmask; mt76_set_stream_caps(phy->mt76, true); mt7996_set_stream_vht_txbf_caps(phy); mt7996_set_stream_he_eht_caps(phy); mt7996_init_txpower(phy); } static void mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt76_dev *mdev = &dev->mt76; struct wiphy *wiphy = hw->wiphy; u16 max_subframes = dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT : IEEE80211_MAX_AMPDU_BUF_HE; hw->queues = 4; hw->max_rx_aggregation_subframes = max_subframes; hw->max_tx_aggregation_subframes = max_subframes; hw->netdev_features = NETIF_F_RXCSUM; if (mtk_wed_device_active(wed)) hw->netdev_features |= NETIF_F_HW_TC; hw->radiotap_timestamp.units_pos = IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US; hw->sta_data_size = sizeof(struct mt7996_sta); hw->vif_data_size = sizeof(struct mt7996_vif); hw->chanctx_data_size = sizeof(struct mt76_chanctx); wiphy->iface_combinations = &if_comb_global; wiphy->n_iface_combinations = 1; wiphy->radio = dev->radios; wiphy->reg_notifier = mt7996_regd_notifier; wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; wiphy->mbssid_max_interfaces = 16; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER); if (mt7996_has_background_radar(dev) && (!mdev->dev->of_node || !of_property_read_bool(mdev->dev->of_node, "mediatek,disable-radar-background"))) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_RADAR_BACKGROUND); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD); ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD); ieee80211_hw_set(hw, NO_VIRTUAL_MONITOR); ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID); hw->max_tx_fragments = 4; /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt7996_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt7996_led_set_blink; } wiphy->max_scan_ssids = 4; wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; mt7996_init_wiphy_band(hw, &dev->phy); } static void mt7996_mac_init_band(struct mt7996_dev *dev, u8 band) { u32 mask, set; /* clear estimated value of EIFS for Rx duration & OBSS time */ mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR); /* clear backoff time for Rx duration */ mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band), MT_WF_RMAC_MIB_NONQOSD_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band), MT_WF_RMAC_MIB_QOS01_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band), MT_WF_RMAC_MIB_QOS23_BACKOFF); /* clear backoff time for Tx duration */ mt76_clear(dev, MT_WTBLOFF_ACR(band), MT_WTBLOFF_ADM_BACKOFFTIME); /* clear backoff time and set software compensation for OBSS time */ mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET; set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) | FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4); mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set); /* filter out non-resp frames and get instanstaeous signal reporting */ mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM; set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) | FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3); mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set); /* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set. */ mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H); } static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev) { int i; for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) { u16 rate = mt76_rates[i].hw_value; /* odd index for driver, even index for firmware */ u16 idx = MT7996_BASIC_RATES_TBL + 2 * i; rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) | FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0)); mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false); } } void mt7996_mac_init(struct mt7996_dev *dev) { #define HIF_TXD_V2_1 0x21 int i; mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT); for (i = 0; i < mt7996_wtbl_size(dev); i++) mt7996_mac_wtbl_update(dev, i, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (IS_ENABLED(CONFIG_MT76_LEDS)) { i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2; mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4); } /* rro module init */ if (is_mt7996(&dev->mt76)) mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2); else mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, dev->hif2 ? 7 : 0); if (dev->has_rro) { u16 timeout; timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128; mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout); mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1); mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0); } else { mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3); mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1); } mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_HW_PATH_HIF_VER, HIF_TXD_V2_1, 0); for (i = MT_BAND0; i <= MT_BAND2; i++) mt7996_mac_init_band(dev, i); mt7996_mac_init_basic_rates(dev); } int mt7996_txbf_init(struct mt7996_dev *dev) { int ret; if (mt7996_band_valid(dev, MT_BAND1) || mt7996_band_valid(dev, MT_BAND2)) { ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL); if (ret) return ret; } /* trigger sounding packets */ ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON); if (ret) return ret; /* enable eBF */ return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE); } static int mt7996_register_phy(struct mt7996_dev *dev, enum mt76_band_id band) { struct mt7996_phy *phy; struct mt76_phy *mphy; u32 mac_ofs, hif1_ofs = 0; int ret; struct mtk_wed_device *wed = &dev->mt76.mmio.wed; if (!mt7996_band_valid(dev, band)) return 0; if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) { hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); wed = &dev->mt76.mmio.wed_hif2; } mphy = mt76_alloc_radio_phy(&dev->mt76, sizeof(*phy), band); if (!mphy) return -ENOMEM; phy = mphy->priv; phy->dev = dev; phy->mt76 = mphy; mphy->dev->phys[band] = mphy; INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work); ret = mt7996_eeprom_parse_hw_cap(dev, phy); if (ret) goto error; mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2; memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN); /* Make the extra PHY MAC address local without overlapping with * the usual MAC address allocation scheme on multiple virtual interfaces */ if (!is_valid_ether_addr(mphy->macaddr)) { memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mphy->macaddr[0] |= 2; mphy->macaddr[0] ^= BIT(7); if (band == MT_BAND2) mphy->macaddr[0] ^= BIT(6); } mt76_eeprom_override(mphy); /* init wiphy according to mphy and phy */ mt7996_init_wiphy_band(mphy->hw, phy); ret = mt7996_init_tx_queues(mphy->priv, MT_TXQ_ID(band), MT7996_TX_RING_SIZE, MT_TXQ_RING_BASE(band) + hif1_ofs, wed); if (ret) goto error; ret = mt76_register_phy(mphy, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) goto error; if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) { u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2; mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask); mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask); } return 0; error: mphy->dev->phys[band] = NULL; return ret; } static void mt7996_unregister_phy(struct mt7996_phy *phy) { if (phy) mt7996_unregister_thermal(phy); } static void mt7996_init_work(struct work_struct *work) { struct mt7996_dev *dev = container_of(work, struct mt7996_dev, init_work); mt7996_mcu_set_eeprom(dev); mt7996_mac_init(dev); mt7996_txbf_init(dev); } void mt7996_wfsys_reset(struct mt7996_dev *dev) { mt76_set(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); } static int mt7996_wed_rro_init(struct mt7996_dev *dev) { #ifdef CONFIG_NET_MEDIATEK_SOC_WED struct mtk_wed_device *wed = &dev->mt76.mmio.wed; u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0; struct mt7996_wed_rro_addr *addr; void *ptr; int i; if (!dev->has_rro) return 0; if (!mtk_wed_device_active(wed)) return 0; for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) { ptr = dmam_alloc_coherent(dev->mt76.dma_dev, MT7996_RRO_BA_BITMAP_CR_SIZE, &dev->wed_rro.ba_bitmap[i].phy_addr, GFP_KERNEL); if (!ptr) return -ENOMEM; dev->wed_rro.ba_bitmap[i].ptr = ptr; } for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) { int j; ptr = dmam_alloc_coherent(dev->mt76.dma_dev, MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr), &dev->wed_rro.addr_elem[i].phy_addr, GFP_KERNEL); if (!ptr) return -ENOMEM; dev->wed_rro.addr_elem[i].ptr = ptr; memset(dev->wed_rro.addr_elem[i].ptr, 0, MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr)); addr = dev->wed_rro.addr_elem[i].ptr; for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) { addr->signature = 0xff; addr++; } wed->wlan.ind_cmd.addr_elem_phys[i] = dev->wed_rro.addr_elem[i].phy_addr; } ptr = dmam_alloc_coherent(dev->mt76.dma_dev, MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr), &dev->wed_rro.session.phy_addr, GFP_KERNEL); if (!ptr) return -ENOMEM; dev->wed_rro.session.ptr = ptr; addr = dev->wed_rro.session.ptr; for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) { addr->signature = 0xff; addr++; } /* rro hw init */ /* TODO: remove line after WM has set */ mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK); /* setup BA bitmap cache address */ mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0, dev->wed_rro.ba_bitmap[0].phy_addr); mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0); mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0, dev->wed_rro.ba_bitmap[1].phy_addr); mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0); /* setup Address element address */ for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) { mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4); reg += 4; } /* setup Address element address - separate address segment mode */ mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1, MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE); wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6; wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION; wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr; wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN; wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL; mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00); mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1, MT_RRO_IND_CMD_SIGNATURE_BASE1_EN); /* particular session configure */ /* use max session idx + 1 as particular session id */ mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr); mt76_wr(dev, MT_RRO_PARTICULAR_CFG1, MT_RRO_PARTICULAR_CONFG_EN | FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION)); /* interrupt enable */ mt76_wr(dev, MT_RRO_HOST_INT_ENA, MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA); /* rro ind cmd queue init */ return mt7996_dma_rro_init(dev); #else return 0; #endif } static void mt7996_wed_rro_free(struct mt7996_dev *dev) { #ifdef CONFIG_NET_MEDIATEK_SOC_WED int i; if (!dev->has_rro) return; if (!mtk_wed_device_active(&dev->mt76.mmio.wed)) return; for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) { if (!dev->wed_rro.ba_bitmap[i].ptr) continue; dmam_free_coherent(dev->mt76.dma_dev, MT7996_RRO_BA_BITMAP_CR_SIZE, dev->wed_rro.ba_bitmap[i].ptr, dev->wed_rro.ba_bitmap[i].phy_addr); } for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) { if (!dev->wed_rro.addr_elem[i].ptr) continue; dmam_free_coherent(dev->mt76.dma_dev, MT7996_RRO_WINDOW_MAX_SIZE * sizeof(struct mt7996_wed_rro_addr), dev->wed_rro.addr_elem[i].ptr, dev->wed_rro.addr_elem[i].phy_addr); } if (!dev->wed_rro.session.ptr) return; dmam_free_coherent(dev->mt76.dma_dev, MT7996_RRO_WINDOW_MAX_LEN * sizeof(struct mt7996_wed_rro_addr), dev->wed_rro.session.ptr, dev->wed_rro.session.phy_addr); #endif } static void mt7996_wed_rro_work(struct work_struct *work) { #ifdef CONFIG_NET_MEDIATEK_SOC_WED struct mt7996_dev *dev; LIST_HEAD(list); dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev, wed_rro.work); spin_lock_bh(&dev->wed_rro.lock); list_splice_init(&dev->wed_rro.poll_list, &list); spin_unlock_bh(&dev->wed_rro.lock); while (!list_empty(&list)) { struct mt7996_wed_rro_session_id *e; int i; e = list_first_entry(&list, struct mt7996_wed_rro_session_id, list); list_del_init(&e->list); for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) { void *ptr = dev->wed_rro.session.ptr; struct mt7996_wed_rro_addr *elem; u32 idx, elem_id = i; if (e->id == MT7996_RRO_MAX_SESSION) goto reset; idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE; if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem)) goto out; ptr = dev->wed_rro.addr_elem[idx].ptr; elem_id += (e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) * MT7996_RRO_WINDOW_MAX_LEN; reset: elem = ptr + elem_id * sizeof(*elem); elem->signature = 0xff; } mt7996_mcu_wed_rro_reset_sessions(dev, e->id); out: kfree(e); } #endif } static int mt7996_variant_type_init(struct mt7996_dev *dev) { u32 val = mt76_rr(dev, MT_PAD_GPIO); u8 var_type; switch (mt76_chip(&dev->mt76)) { case 0x7990: if (val & MT_PAD_GPIO_2ADIE_TBTC) var_type = MT7996_VAR_TYPE_233; else var_type = MT7996_VAR_TYPE_444; break; case 0x7992: if (val & MT_PAD_GPIO_ADIE_SINGLE) var_type = MT7992_VAR_TYPE_23; else if (u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992)) var_type = MT7992_VAR_TYPE_44; else return -EINVAL; break; default: return -EINVAL; } dev->var.type = var_type; return 0; } static int mt7996_variant_fem_init(struct mt7996_dev *dev) { #define MT7976C_EFUSE_OFFSET 0x470 u8 buf[MT7996_EEPROM_BLOCK_SIZE], idx, adie_idx, adie_comb; u32 regval, val = mt76_rr(dev, MT_PAD_GPIO); u16 adie_id, adie_ver; bool is_7976c; int ret; if (is_mt7992(&dev->mt76)) { adie_idx = (val & MT_PAD_GPIO_ADIE_SINGLE) ? 0 : 1; adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992); } else { adie_idx = 0; adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB); } ret = mt7996_mcu_rf_regval(dev, MT_ADIE_CHIP_ID(adie_idx), ®val, false); if (ret) return ret; ret = mt7996_mcu_get_eeprom(dev, MT7976C_EFUSE_OFFSET, buf, sizeof(buf)); if (ret && ret != -EINVAL) return ret; adie_ver = u32_get_bits(regval, MT_ADIE_VERSION_MASK); idx = MT7976C_EFUSE_OFFSET % MT7996_EEPROM_BLOCK_SIZE; is_7976c = adie_ver == 0x8a10 || adie_ver == 0x8b00 || adie_ver == 0x8c10 || buf[idx] == 0xc; adie_id = u32_get_bits(regval, MT_ADIE_CHIP_ID_MASK); if (adie_id == 0x7975 || adie_id == 0x7979 || (adie_id == 0x7976 && is_7976c)) dev->var.fem = MT7996_FEM_INT; else if (adie_id == 0x7977 && adie_comb == 1) dev->var.fem = MT7996_FEM_MIX; else dev->var.fem = MT7996_FEM_EXT; return 0; } static int mt7996_init_hardware(struct mt7996_dev *dev) { int ret, idx; mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); if (is_mt7992(&dev->mt76)) { mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0); mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0); } INIT_WORK(&dev->init_work, mt7996_init_work); INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work); INIT_LIST_HEAD(&dev->wed_rro.poll_list); spin_lock_init(&dev->wed_rro.lock); ret = mt7996_variant_type_init(dev); if (ret) return ret; ret = mt7996_dma_init(dev); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); ret = mt7996_mcu_init(dev); if (ret) return ret; ret = mt7996_wed_rro_init(dev); if (ret) return ret; ret = mt7996_variant_fem_init(dev); if (ret) return ret; ret = mt7996_eeprom_init(dev); if (ret < 0) return ret; /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy) { int sts; u32 *cap; if (!phy->mt76->cap.has_5ghz) return; sts = hweight16(phy->mt76->chainmask); cap = &phy->mt76->sband_5g.sband.vht_cap.cap; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; if (is_mt7996(phy->mt76->dev)) *cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3); else *cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4); *cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); if (sts < 2) return; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE | FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1); } static void mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy, struct ieee80211_sta_he_cap *he_cap, int vif, enum nl80211_band band) { struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem; int sts = hweight16(phy->mt76->chainmask); bool non_2g = band != NL80211_BAND_2GHZ; u8 c; #ifdef CONFIG_MAC80211_MESH if (vif == NL80211_IFTYPE_MESH_POINT) return; #endif elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK | IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; elem->phy_cap_info[5] &= ~c; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] &= ~c; elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK; c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; elem->phy_cap_info[2] |= c; c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE; if (is_mt7996(phy->mt76->dev)) c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 | (IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 * non_2g); else c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 | (IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 * non_2g); elem->phy_cap_info[4] |= c; /* do not support NG16 due to spec D4.0 changes subcarrier idx */ c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU | IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU; if (vif == NL80211_IFTYPE_STATION) c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; elem->phy_cap_info[6] |= c; if (sts < 2) return; /* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */ elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3; if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION)) return; elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, sts - 1) | (FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK, sts - 1) * non_2g); elem->phy_cap_info[5] |= c; if (vif != NL80211_IFTYPE_AP) return; elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] |= c; c = 0; if (non_2g) c |= IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; elem->phy_cap_info[7] |= c; } static void mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data, enum nl80211_iftype iftype) { struct ieee80211_sta_he_cap *he_cap = &data->he_cap; struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem; struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp; int i, nss = hweight8(phy->mt76->antenna_mask); u16 mcs_map = 0; for (i = 0; i < 8; i++) { if (i < nss) mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2)); else mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2)); } he_cap->has_he = true; he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE; he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; else he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD; he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ; he_cap_elem->phy_cap_info[7] = IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI; switch (iftype) { case NL80211_IFTYPE_AP: he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES; he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR; he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR; he_cap_elem->mac_cap_info[5] |= IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_STATION: he_cap_elem->mac_cap_info[1] |= IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G; else he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G; he_cap_elem->phy_cap_info[1] |= IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP; he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; break; default: break; } he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map); mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype, band); memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); if (he_cap_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss, band); } else { he_cap_elem->phy_cap_info[9] |= u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US, IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK); } if (band == NL80211_BAND_6GHZ) { u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS | IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) | u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) | u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); data->he_6ghz_capa.capa = cpu_to_le16(cap); } } static void mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data, enum nl80211_iftype iftype) { struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap; struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp; enum nl80211_chan_width width = phy->mt76->chandef.width; int nss = hweight8(phy->mt76->antenna_mask); int sts = hweight16(phy->mt76->chainmask); u8 val; if (!phy->dev->has_eht) return; eht_cap->has_eht = true; eht_cap_elem->mac_cap_info[0] = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS | IEEE80211_EHT_MAC_CAP0_OM_CONTROL | u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454, IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK); eht_cap_elem->phy_cap_info[0] = IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE; /* Set the maximum capability regardless of the antenna configuration. */ val = is_mt7992(phy->mt76->dev) ? 4 : 3; eht_cap_elem->phy_cap_info[0] |= u8_encode_bits(u8_get_bits(val, BIT(0)), IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK); eht_cap_elem->phy_cap_info[1] = u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)), IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK); eht_cap_elem->phy_cap_info[2] = u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK); if (band != NL80211_BAND_2GHZ) { eht_cap_elem->phy_cap_info[1] |= u8_encode_bits(val, IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK); eht_cap_elem->phy_cap_info[2] |= u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK); } if (band == NL80211_BAND_6GHZ) { eht_cap_elem->phy_cap_info[0] |= IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; eht_cap_elem->phy_cap_info[1] |= u8_encode_bits(val, IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK); eht_cap_elem->phy_cap_info[2] |= u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK); } eht_cap_elem->phy_cap_info[3] = IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK; eht_cap_elem->phy_cap_info[4] = IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI | u8_encode_bits(min_t(int, sts - 1, 2), IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK); eht_cap_elem->phy_cap_info[5] = u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US, IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) | u8_encode_bits(u8_get_bits(1, GENMASK(1, 0)), IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK); val = width == NL80211_CHAN_WIDTH_320 ? 0xf : width == NL80211_CHAN_WIDTH_160 ? 0x7 : width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1; eht_cap_elem->phy_cap_info[6] = u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK); val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) | u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX); #define SET_EHT_MAX_NSS(_bw, _val) do { \ eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val; \ eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val; \ eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val; \ } while (0) SET_EHT_MAX_NSS(80, val); SET_EHT_MAX_NSS(160, val); if (band == NL80211_BAND_6GHZ) SET_EHT_MAX_NSS(320, val); #undef SET_EHT_MAX_NSS if (iftype != NL80211_IFTYPE_AP) return; eht_cap_elem->phy_cap_info[3] |= IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK; eht_cap_elem->phy_cap_info[7] = IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ; if (band == NL80211_BAND_2GHZ) return; eht_cap_elem->phy_cap_info[7] |= IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ; if (band != NL80211_BAND_6GHZ) return; eht_cap_elem->phy_cap_info[7] |= IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ; } static void __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy, struct ieee80211_supported_band *sband, enum nl80211_band band) { struct ieee80211_sband_iftype_data *data = phy->iftype[band]; int i, n = 0; for (i = 0; i < NUM_NL80211_IFTYPES; i++) { switch (i) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: #endif break; default: continue; } data[n].types_mask = BIT(i); mt7996_init_he_caps(phy, band, &data[n], i); mt7996_init_eht_caps(phy, band, &data[n], i); n++; } _ieee80211_set_sband_iftype_data(sband, data, n); } void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy) { if (phy->mt76->cap.has_2ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband, NL80211_BAND_2GHZ); if (phy->mt76->cap.has_5ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband, NL80211_BAND_5GHZ); if (phy->mt76->cap.has_6ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband, NL80211_BAND_6GHZ); } int mt7996_register_device(struct mt7996_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct mt7996_phy *phy; int ret; dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work); INIT_LIST_HEAD(&dev->sta_rc_list); INIT_LIST_HEAD(&dev->twt_list); init_waitqueue_head(&dev->reset_wait); INIT_WORK(&dev->reset_work, mt7996_mac_reset_work); INIT_WORK(&dev->dump_work, mt7996_mac_dump_work); mutex_init(&dev->dump_mutex); ret = mt7996_init_hardware(dev); if (ret) return ret; mt7996_init_wiphy(hw, &dev->mt76.mmio.wed); ret = mt7996_register_phy(dev, MT_BAND1); if (ret) return ret; ret = mt7996_register_phy(dev, MT_BAND2); if (ret) return ret; ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; mt7996_for_each_phy(dev, phy) mt7996_thermal_init(phy); ieee80211_queue_work(mt76_hw(dev), &dev->init_work); dev->recovery.hw_init_done = true; ret = mt7996_init_debugfs(dev); if (ret) goto error; ret = mt7996_coredump_register(dev); if (ret) goto error; return 0; error: cancel_work_sync(&dev->init_work); return ret; } void mt7996_unregister_device(struct mt7996_dev *dev) { cancel_work_sync(&dev->wed_rro.work); mt7996_unregister_phy(mt7996_phy3(dev)); mt7996_unregister_phy(mt7996_phy2(dev)); mt7996_unregister_thermal(&dev->phy); mt7996_coredump_unregister(dev); mt76_unregister_device(&dev->mt76); mt7996_wed_rro_free(dev); mt7996_mcu_exit(dev); mt7996_tx_token_put(dev); mt7996_dma_cleanup(dev); tasklet_disable(&dev->mt76.irq_tasklet); mt76_free_device(&dev->mt76); }