// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries. * All rights reserved. */ #include #include #include #include "cfg80211.h" #include "wlan_cfg.h" #define WAKE_UP_TRIAL_RETRY 10000 static void wilc_wlan_txq_remove(struct wilc *wilc, u8 q_num, struct txq_entry_t *tqe) { list_del(&tqe->list); wilc->txq_entries -= 1; wilc->txq[q_num].count--; } static struct txq_entry_t * wilc_wlan_txq_remove_from_head(struct wilc *wilc, u8 q_num) { struct txq_entry_t *tqe = NULL; unsigned long flags; spin_lock_irqsave(&wilc->txq_spinlock, flags); if (!list_empty(&wilc->txq[q_num].txq_head.list)) { tqe = list_first_entry(&wilc->txq[q_num].txq_head.list, struct txq_entry_t, list); list_del(&tqe->list); wilc->txq_entries -= 1; wilc->txq[q_num].count--; } spin_unlock_irqrestore(&wilc->txq_spinlock, flags); return tqe; } static void wilc_wlan_txq_add_to_tail(struct net_device *dev, u8 q_num, struct txq_entry_t *tqe) { unsigned long flags; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc = vif->wilc; spin_lock_irqsave(&wilc->txq_spinlock, flags); list_add_tail(&tqe->list, &wilc->txq[q_num].txq_head.list); wilc->txq_entries += 1; wilc->txq[q_num].count++; spin_unlock_irqrestore(&wilc->txq_spinlock, flags); complete(&wilc->txq_event); } static void wilc_wlan_txq_add_to_head(struct wilc_vif *vif, u8 q_num, struct txq_entry_t *tqe) { unsigned long flags; struct wilc *wilc = vif->wilc; mutex_lock(&wilc->txq_add_to_head_cs); spin_lock_irqsave(&wilc->txq_spinlock, flags); list_add(&tqe->list, &wilc->txq[q_num].txq_head.list); wilc->txq_entries += 1; wilc->txq[q_num].count++; spin_unlock_irqrestore(&wilc->txq_spinlock, flags); mutex_unlock(&wilc->txq_add_to_head_cs); complete(&wilc->txq_event); } #define NOT_TCP_ACK (-1) static inline void add_tcp_session(struct wilc_vif *vif, u32 src_prt, u32 dst_prt, u32 seq) { struct tcp_ack_filter *f = &vif->ack_filter; if (f->tcp_session < 2 * MAX_TCP_SESSION) { f->ack_session_info[f->tcp_session].seq_num = seq; f->ack_session_info[f->tcp_session].bigger_ack_num = 0; f->ack_session_info[f->tcp_session].src_port = src_prt; f->ack_session_info[f->tcp_session].dst_port = dst_prt; f->tcp_session++; } } static inline void update_tcp_session(struct wilc_vif *vif, u32 index, u32 ack) { struct tcp_ack_filter *f = &vif->ack_filter; if (index < 2 * MAX_TCP_SESSION && ack > f->ack_session_info[index].bigger_ack_num) f->ack_session_info[index].bigger_ack_num = ack; } static inline void add_tcp_pending_ack(struct wilc_vif *vif, u32 ack, u32 session_index, struct txq_entry_t *txqe) { struct tcp_ack_filter *f = &vif->ack_filter; u32 i = f->pending_base + f->pending_acks_idx; if (i < MAX_PENDING_ACKS) { f->pending_acks[i].ack_num = ack; f->pending_acks[i].txqe = txqe; f->pending_acks[i].session_index = session_index; txqe->ack_idx = i; f->pending_acks_idx++; } } static inline void tcp_process(struct net_device *dev, struct txq_entry_t *tqe) { void *buffer = tqe->buffer; const struct ethhdr *eth_hdr_ptr = buffer; int i; unsigned long flags; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc = vif->wilc; struct tcp_ack_filter *f = &vif->ack_filter; const struct iphdr *ip_hdr_ptr; const struct tcphdr *tcp_hdr_ptr; u32 ihl, total_length, data_offset; spin_lock_irqsave(&wilc->txq_spinlock, flags); if (eth_hdr_ptr->h_proto != htons(ETH_P_IP)) goto out; ip_hdr_ptr = buffer + ETH_HLEN; if (ip_hdr_ptr->protocol != IPPROTO_TCP) goto out; ihl = ip_hdr_ptr->ihl << 2; tcp_hdr_ptr = buffer + ETH_HLEN + ihl; total_length = ntohs(ip_hdr_ptr->tot_len); data_offset = tcp_hdr_ptr->doff << 2; if (total_length == (ihl + data_offset)) { u32 seq_no, ack_no; seq_no = ntohl(tcp_hdr_ptr->seq); ack_no = ntohl(tcp_hdr_ptr->ack_seq); for (i = 0; i < f->tcp_session; i++) { u32 j = f->ack_session_info[i].seq_num; if (i < 2 * MAX_TCP_SESSION && j == seq_no) { update_tcp_session(vif, i, ack_no); break; } } if (i == f->tcp_session) add_tcp_session(vif, 0, 0, seq_no); add_tcp_pending_ack(vif, ack_no, i, tqe); } out: spin_unlock_irqrestore(&wilc->txq_spinlock, flags); } static void wilc_wlan_txq_filter_dup_tcp_ack(struct net_device *dev) { struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc = vif->wilc; struct tcp_ack_filter *f = &vif->ack_filter; u32 i = 0; u32 dropped = 0; unsigned long flags; spin_lock_irqsave(&wilc->txq_spinlock, flags); for (i = f->pending_base; i < (f->pending_base + f->pending_acks_idx); i++) { u32 index; u32 bigger_ack_num; if (i >= MAX_PENDING_ACKS) break; index = f->pending_acks[i].session_index; if (index >= 2 * MAX_TCP_SESSION) break; bigger_ack_num = f->ack_session_info[index].bigger_ack_num; if (f->pending_acks[i].ack_num < bigger_ack_num) { struct txq_entry_t *tqe; tqe = f->pending_acks[i].txqe; if (tqe) { wilc_wlan_txq_remove(wilc, tqe->q_num, tqe); tqe->status = 1; if (tqe->tx_complete_func) tqe->tx_complete_func(tqe->priv, tqe->status); kfree(tqe); dropped++; } } } f->pending_acks_idx = 0; f->tcp_session = 0; if (f->pending_base == 0) f->pending_base = MAX_TCP_SESSION; else f->pending_base = 0; spin_unlock_irqrestore(&wilc->txq_spinlock, flags); while (dropped > 0) { wait_for_completion_timeout(&wilc->txq_event, msecs_to_jiffies(1)); dropped--; } } void wilc_enable_tcp_ack_filter(struct wilc_vif *vif, bool value) { vif->ack_filter.enabled = value; } static int wilc_wlan_txq_add_cfg_pkt(struct wilc_vif *vif, u8 *buffer, u32 buffer_size) { struct txq_entry_t *tqe; struct wilc *wilc = vif->wilc; netdev_dbg(vif->ndev, "Adding config packet ...\n"); if (wilc->quit) { netdev_dbg(vif->ndev, "Return due to clear function\n"); complete(&wilc->cfg_event); return 0; } tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC); if (!tqe) { complete(&wilc->cfg_event); return 0; } tqe->type = WILC_CFG_PKT; tqe->buffer = buffer; tqe->buffer_size = buffer_size; tqe->tx_complete_func = NULL; tqe->priv = NULL; tqe->q_num = AC_VO_Q; tqe->ack_idx = NOT_TCP_ACK; tqe->vif = vif; wilc_wlan_txq_add_to_head(vif, AC_VO_Q, tqe); return 1; } static bool is_ac_q_limit(struct wilc *wl, u8 q_num) { u8 factors[NQUEUES] = {1, 1, 1, 1}; u16 i; unsigned long flags; struct wilc_tx_queue_status *q = &wl->tx_q_limit; u8 end_index; u8 q_limit; bool ret = false; spin_lock_irqsave(&wl->txq_spinlock, flags); if (!q->initialized) { for (i = 0; i < AC_BUFFER_SIZE; i++) q->buffer[i] = i % NQUEUES; for (i = 0; i < NQUEUES; i++) { q->cnt[i] = AC_BUFFER_SIZE * factors[i] / NQUEUES; q->sum += q->cnt[i]; } q->end_index = AC_BUFFER_SIZE - 1; q->initialized = 1; } end_index = q->end_index; q->cnt[q->buffer[end_index]] -= factors[q->buffer[end_index]]; q->cnt[q_num] += factors[q_num]; q->sum += (factors[q_num] - factors[q->buffer[end_index]]); q->buffer[end_index] = q_num; if (end_index > 0) q->end_index--; else q->end_index = AC_BUFFER_SIZE - 1; if (!q->sum) q_limit = 1; else q_limit = (q->cnt[q_num] * FLOW_CONTROL_UPPER_THRESHOLD / q->sum) + 1; if (wl->txq[q_num].count <= q_limit) ret = true; spin_unlock_irqrestore(&wl->txq_spinlock, flags); return ret; } static inline u8 ac_classify(struct wilc *wilc, struct sk_buff *skb) { u8 q_num = AC_BE_Q; u8 dscp; switch (skb->protocol) { case htons(ETH_P_IP): dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; break; case htons(ETH_P_IPV6): dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; break; default: return q_num; } switch (dscp) { case 0x08: case 0x20: case 0x40: q_num = AC_BK_Q; break; case 0x80: case 0xA0: case 0x28: q_num = AC_VI_Q; break; case 0xC0: case 0xD0: case 0xE0: case 0x88: case 0xB8: q_num = AC_VO_Q; break; } return q_num; } static inline int ac_balance(struct wilc *wl, u8 *ratio) { u8 i, max_count = 0; if (!ratio) return -EINVAL; for (i = 0; i < NQUEUES; i++) if (wl->txq[i].fw.count > max_count) max_count = wl->txq[i].fw.count; for (i = 0; i < NQUEUES; i++) ratio[i] = max_count - wl->txq[i].fw.count; return 0; } static inline void ac_update_fw_ac_pkt_info(struct wilc *wl, u32 reg) { wl->txq[AC_BK_Q].fw.count = FIELD_GET(BK_AC_COUNT_FIELD, reg); wl->txq[AC_BE_Q].fw.count = FIELD_GET(BE_AC_COUNT_FIELD, reg); wl->txq[AC_VI_Q].fw.count = FIELD_GET(VI_AC_COUNT_FIELD, reg); wl->txq[AC_VO_Q].fw.count = FIELD_GET(VO_AC_COUNT_FIELD, reg); wl->txq[AC_BK_Q].fw.acm = FIELD_GET(BK_AC_ACM_STAT_FIELD, reg); wl->txq[AC_BE_Q].fw.acm = FIELD_GET(BE_AC_ACM_STAT_FIELD, reg); wl->txq[AC_VI_Q].fw.acm = FIELD_GET(VI_AC_ACM_STAT_FIELD, reg); wl->txq[AC_VO_Q].fw.acm = FIELD_GET(VO_AC_ACM_STAT_FIELD, reg); } static inline u8 ac_change(struct wilc *wilc, u8 *ac) { do { if (wilc->txq[*ac].fw.acm == 0) return 0; (*ac)++; } while (*ac < NQUEUES); return 1; } int wilc_wlan_txq_add_net_pkt(struct net_device *dev, struct tx_complete_data *tx_data, u8 *buffer, u32 buffer_size, void (*tx_complete_fn)(void *, int)) { struct txq_entry_t *tqe; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc; u8 q_num; wilc = vif->wilc; if (wilc->quit) { tx_complete_fn(tx_data, 0); return 0; } if (!wilc->initialized) { tx_complete_fn(tx_data, 0); return 0; } tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC); if (!tqe) { tx_complete_fn(tx_data, 0); return 0; } tqe->type = WILC_NET_PKT; tqe->buffer = buffer; tqe->buffer_size = buffer_size; tqe->tx_complete_func = tx_complete_fn; tqe->priv = tx_data; tqe->vif = vif; q_num = ac_classify(wilc, tx_data->skb); tqe->q_num = q_num; if (ac_change(wilc, &q_num)) { tx_complete_fn(tx_data, 0); kfree(tqe); return 0; } if (is_ac_q_limit(wilc, q_num)) { tqe->ack_idx = NOT_TCP_ACK; if (vif->ack_filter.enabled) tcp_process(dev, tqe); wilc_wlan_txq_add_to_tail(dev, q_num, tqe); } else { tx_complete_fn(tx_data, 0); kfree(tqe); } return wilc->txq_entries; } int wilc_wlan_txq_add_mgmt_pkt(struct net_device *dev, void *priv, u8 *buffer, u32 buffer_size, void (*tx_complete_fn)(void *, int)) { struct txq_entry_t *tqe; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc; wilc = vif->wilc; if (wilc->quit) { tx_complete_fn(priv, 0); return 0; } if (!wilc->initialized) { tx_complete_fn(priv, 0); return 0; } tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC); if (!tqe) { tx_complete_fn(priv, 0); return 0; } tqe->type = WILC_MGMT_PKT; tqe->buffer = buffer; tqe->buffer_size = buffer_size; tqe->tx_complete_func = tx_complete_fn; tqe->priv = priv; tqe->q_num = AC_BE_Q; tqe->ack_idx = NOT_TCP_ACK; tqe->vif = vif; wilc_wlan_txq_add_to_tail(dev, AC_VO_Q, tqe); return 1; } static struct txq_entry_t *wilc_wlan_txq_get_first(struct wilc *wilc, u8 q_num) { struct txq_entry_t *tqe = NULL; unsigned long flags; spin_lock_irqsave(&wilc->txq_spinlock, flags); if (!list_empty(&wilc->txq[q_num].txq_head.list)) tqe = list_first_entry(&wilc->txq[q_num].txq_head.list, struct txq_entry_t, list); spin_unlock_irqrestore(&wilc->txq_spinlock, flags); return tqe; } static struct txq_entry_t *wilc_wlan_txq_get_next(struct wilc *wilc, struct txq_entry_t *tqe, u8 q_num) { unsigned long flags; spin_lock_irqsave(&wilc->txq_spinlock, flags); if (!list_is_last(&tqe->list, &wilc->txq[q_num].txq_head.list)) tqe = list_next_entry(tqe, list); else tqe = NULL; spin_unlock_irqrestore(&wilc->txq_spinlock, flags); return tqe; } static void wilc_wlan_rxq_add(struct wilc *wilc, struct rxq_entry_t *rqe) { if (wilc->quit) return; mutex_lock(&wilc->rxq_cs); list_add_tail(&rqe->list, &wilc->rxq_head.list); mutex_unlock(&wilc->rxq_cs); } static struct rxq_entry_t *wilc_wlan_rxq_remove(struct wilc *wilc) { struct rxq_entry_t *rqe = NULL; mutex_lock(&wilc->rxq_cs); if (!list_empty(&wilc->rxq_head.list)) { rqe = list_first_entry(&wilc->rxq_head.list, struct rxq_entry_t, list); list_del(&rqe->list); } mutex_unlock(&wilc->rxq_cs); return rqe; } static int chip_allow_sleep_wilc1000(struct wilc *wilc) { u32 reg = 0; const struct wilc_hif_func *hif_func = wilc->hif_func; u32 wakeup_reg, wakeup_bit; u32 to_host_from_fw_reg, to_host_from_fw_bit; u32 from_host_to_fw_reg, from_host_to_fw_bit; u32 trials = 100; int ret; if (wilc->io_type == WILC_HIF_SDIO) { wakeup_reg = WILC_SDIO_WAKEUP_REG; wakeup_bit = WILC_SDIO_WAKEUP_BIT; from_host_to_fw_reg = WILC_SDIO_HOST_TO_FW_REG; from_host_to_fw_bit = WILC_SDIO_HOST_TO_FW_BIT; to_host_from_fw_reg = WILC_SDIO_FW_TO_HOST_REG; to_host_from_fw_bit = WILC_SDIO_FW_TO_HOST_BIT; } else { wakeup_reg = WILC_SPI_WAKEUP_REG; wakeup_bit = WILC_SPI_WAKEUP_BIT; from_host_to_fw_reg = WILC_SPI_HOST_TO_FW_REG; from_host_to_fw_bit = WILC_SPI_HOST_TO_FW_BIT; to_host_from_fw_reg = WILC_SPI_FW_TO_HOST_REG; to_host_from_fw_bit = WILC_SPI_FW_TO_HOST_BIT; } while (--trials) { ret = hif_func->hif_read_reg(wilc, to_host_from_fw_reg, ®); if (ret) return ret; if ((reg & to_host_from_fw_bit) == 0) break; } if (!trials) pr_warn("FW not responding\n"); /* Clear bit 1 */ ret = hif_func->hif_read_reg(wilc, wakeup_reg, ®); if (ret) return ret; if (reg & wakeup_bit) { reg &= ~wakeup_bit; ret = hif_func->hif_write_reg(wilc, wakeup_reg, reg); if (ret) return ret; } ret = hif_func->hif_read_reg(wilc, from_host_to_fw_reg, ®); if (ret) return ret; if (reg & from_host_to_fw_bit) { reg &= ~from_host_to_fw_bit; ret = hif_func->hif_write_reg(wilc, from_host_to_fw_reg, reg); if (ret) return ret; } return 0; } static int chip_allow_sleep_wilc3000(struct wilc *wilc) { u32 reg = 0; int ret; const struct wilc_hif_func *hif_func = wilc->hif_func; if (wilc->io_type == WILC_HIF_SDIO) { ret = hif_func->hif_read_reg(wilc, WILC_SDIO_WAKEUP_REG, ®); if (ret) return ret; ret = hif_func->hif_write_reg(wilc, WILC_SDIO_WAKEUP_REG, reg & ~WILC_SDIO_WAKEUP_BIT); if (ret) return ret; } else { ret = hif_func->hif_read_reg(wilc, WILC_SPI_WAKEUP_REG, ®); if (ret) return ret; ret = hif_func->hif_write_reg(wilc, WILC_SPI_WAKEUP_REG, reg & ~WILC_SPI_WAKEUP_BIT); if (ret) return ret; } return 0; } static int chip_allow_sleep(struct wilc *wilc) { if (is_wilc1000(wilc->chipid)) return chip_allow_sleep_wilc1000(wilc); else return chip_allow_sleep_wilc3000(wilc); } static int chip_wakeup_wilc1000(struct wilc *wilc) { u32 ret = 0; u32 clk_status_val = 0, trials = 0; u32 wakeup_reg, wakeup_bit; u32 clk_status_reg, clk_status_bit; u32 from_host_to_fw_reg, from_host_to_fw_bit; const struct wilc_hif_func *hif_func = wilc->hif_func; if (wilc->io_type == WILC_HIF_SDIO) { wakeup_reg = WILC_SDIO_WAKEUP_REG; wakeup_bit = WILC_SDIO_WAKEUP_BIT; clk_status_reg = WILC1000_SDIO_CLK_STATUS_REG; clk_status_bit = WILC1000_SDIO_CLK_STATUS_BIT; from_host_to_fw_reg = WILC_SDIO_HOST_TO_FW_REG; from_host_to_fw_bit = WILC_SDIO_HOST_TO_FW_BIT; } else { wakeup_reg = WILC_SPI_WAKEUP_REG; wakeup_bit = WILC_SPI_WAKEUP_BIT; clk_status_reg = WILC1000_SPI_CLK_STATUS_REG; clk_status_bit = WILC1000_SPI_CLK_STATUS_BIT; from_host_to_fw_reg = WILC_SPI_HOST_TO_FW_REG; from_host_to_fw_bit = WILC_SPI_HOST_TO_FW_BIT; } /* indicate host wakeup */ ret = hif_func->hif_write_reg(wilc, from_host_to_fw_reg, from_host_to_fw_bit); if (ret) return ret; /* Set wake-up bit */ ret = hif_func->hif_write_reg(wilc, wakeup_reg, wakeup_bit); if (ret) return ret; while (trials < WAKE_UP_TRIAL_RETRY) { ret = hif_func->hif_read_reg(wilc, clk_status_reg, &clk_status_val); if (ret) { pr_err("Bus error %d %x\n", ret, clk_status_val); return ret; } if (clk_status_val & clk_status_bit) break; trials++; } if (trials >= WAKE_UP_TRIAL_RETRY) { pr_err("Failed to wake-up the chip\n"); return -ETIMEDOUT; } /* Sometimes spi fail to read clock regs after reading * writing clockless registers */ if (wilc->io_type == WILC_HIF_SPI) wilc->hif_func->hif_reset(wilc); return 0; } static int chip_wakeup_wilc3000(struct wilc *wilc) { u32 wakeup_reg_val, clk_status_reg_val, trials = 0; u32 wakeup_reg, wakeup_bit; u32 clk_status_reg, clk_status_bit; int wake_seq_trials = 5; const struct wilc_hif_func *hif_func = wilc->hif_func; if (wilc->io_type == WILC_HIF_SDIO) { wakeup_reg = WILC_SDIO_WAKEUP_REG; wakeup_bit = WILC_SDIO_WAKEUP_BIT; clk_status_reg = WILC3000_SDIO_CLK_STATUS_REG; clk_status_bit = WILC3000_SDIO_CLK_STATUS_BIT; } else { wakeup_reg = WILC_SPI_WAKEUP_REG; wakeup_bit = WILC_SPI_WAKEUP_BIT; clk_status_reg = WILC3000_SPI_CLK_STATUS_REG; clk_status_bit = WILC3000_SPI_CLK_STATUS_BIT; } hif_func->hif_read_reg(wilc, wakeup_reg, &wakeup_reg_val); do { hif_func->hif_write_reg(wilc, wakeup_reg, wakeup_reg_val | wakeup_bit); /* Check the clock status */ hif_func->hif_read_reg(wilc, clk_status_reg, &clk_status_reg_val); /* In case of clocks off, wait 1ms, and check it again. * if still off, wait for another 1ms, for a total wait of 3ms. * If still off, redo the wake up sequence */ while ((clk_status_reg_val & clk_status_bit) == 0 && (++trials % 4) != 0) { /* Wait for the chip to stabilize*/ usleep_range(1000, 1100); /* Make sure chip is awake. This is an extra step that * can be removed later to avoid the bus access * overhead */ hif_func->hif_read_reg(wilc, clk_status_reg, &clk_status_reg_val); } /* in case of failure, Reset the wakeup bit to introduce a new * edge on the next loop */ if ((clk_status_reg_val & clk_status_bit) == 0) { hif_func->hif_write_reg(wilc, wakeup_reg, wakeup_reg_val & (~wakeup_bit)); /* added wait before wakeup sequence retry */ usleep_range(200, 300); } } while ((clk_status_reg_val & clk_status_bit) == 0 && wake_seq_trials-- > 0); if (!wake_seq_trials) dev_err(wilc->dev, "clocks still OFF. Wake up failed\n"); return 0; } static int chip_wakeup(struct wilc *wilc) { if (is_wilc1000(wilc->chipid)) return chip_wakeup_wilc1000(wilc); else return chip_wakeup_wilc3000(wilc); } static inline int acquire_bus(struct wilc *wilc, enum bus_acquire acquire) { int ret = 0; mutex_lock(&wilc->hif_cs); if (acquire == WILC_BUS_ACQUIRE_AND_WAKEUP && wilc->power_save_mode) { ret = chip_wakeup(wilc); if (ret) mutex_unlock(&wilc->hif_cs); } return ret; } static inline int release_bus(struct wilc *wilc, enum bus_release release) { int ret = 0; if (release == WILC_BUS_RELEASE_ALLOW_SLEEP && wilc->power_save_mode) ret = chip_allow_sleep(wilc); mutex_unlock(&wilc->hif_cs); return ret; } int host_wakeup_notify(struct wilc *wilc) { int ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; wilc->hif_func->hif_write_reg(wilc, is_wilc1000(wilc->chipid) ? WILC1000_CORTUS_INTERRUPT_2 : WILC3000_CORTUS_INTERRUPT_2, 1); return release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); } EXPORT_SYMBOL_GPL(host_wakeup_notify); int host_sleep_notify(struct wilc *wilc) { int ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; wilc->hif_func->hif_write_reg(wilc, is_wilc1000(wilc->chipid) ? WILC1000_CORTUS_INTERRUPT_1 : WILC3000_CORTUS_INTERRUPT_1, 1); return release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); } EXPORT_SYMBOL_GPL(host_sleep_notify); int wilc_wlan_handle_txq(struct wilc *wilc, u32 *txq_count) { int i, entries = 0; u8 k, ac; u32 sum; u32 reg; u8 ac_desired_ratio[NQUEUES] = {0, 0, 0, 0}; u8 ac_preserve_ratio[NQUEUES] = {1, 1, 1, 1}; u8 *num_pkts_to_add; u8 vmm_entries_ac[WILC_VMM_TBL_SIZE]; u32 offset = 0; bool max_size_over = 0, ac_exist = 0; int vmm_sz = 0; struct txq_entry_t *tqe_q[NQUEUES]; int ret = 0; int counter; int timeout; u32 *vmm_table = wilc->vmm_table; u8 ac_pkt_num_to_chip[NQUEUES] = {0, 0, 0, 0}; const struct wilc_hif_func *func; int srcu_idx; u8 *txb = wilc->tx_buffer; struct wilc_vif *vif; int rv; if (wilc->quit) goto out_update_cnt; if (ac_balance(wilc, ac_desired_ratio)) return -EINVAL; mutex_lock(&wilc->txq_add_to_head_cs); srcu_idx = srcu_read_lock(&wilc->srcu); wilc_for_each_vif(wilc, vif) wilc_wlan_txq_filter_dup_tcp_ack(vif->ndev); srcu_read_unlock(&wilc->srcu, srcu_idx); for (ac = 0; ac < NQUEUES; ac++) tqe_q[ac] = wilc_wlan_txq_get_first(wilc, ac); i = 0; sum = 0; max_size_over = 0; num_pkts_to_add = ac_desired_ratio; do { ac_exist = 0; for (ac = 0; (ac < NQUEUES) && (!max_size_over); ac++) { if (!tqe_q[ac]) continue; ac_exist = 1; for (k = 0; (k < num_pkts_to_add[ac]) && (!max_size_over) && tqe_q[ac]; k++) { if (i >= (WILC_VMM_TBL_SIZE - 1)) { max_size_over = 1; break; } if (tqe_q[ac]->type == WILC_CFG_PKT) vmm_sz = ETH_CONFIG_PKT_HDR_OFFSET; else if (tqe_q[ac]->type == WILC_NET_PKT) vmm_sz = ETH_ETHERNET_HDR_OFFSET; else vmm_sz = HOST_HDR_OFFSET; vmm_sz += tqe_q[ac]->buffer_size; vmm_sz = ALIGN(vmm_sz, 4); if ((sum + vmm_sz) > WILC_TX_BUFF_SIZE) { max_size_over = 1; break; } vmm_table[i] = vmm_sz / 4; if (tqe_q[ac]->type == WILC_CFG_PKT) vmm_table[i] |= BIT(10); cpu_to_le32s(&vmm_table[i]); vmm_entries_ac[i] = ac; i++; sum += vmm_sz; tqe_q[ac] = wilc_wlan_txq_get_next(wilc, tqe_q[ac], ac); } } num_pkts_to_add = ac_preserve_ratio; } while (!max_size_over && ac_exist); if (i == 0) goto out_unlock; vmm_table[i] = 0x0; ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) goto out_unlock; counter = 0; func = wilc->hif_func; do { ret = func->hif_read_reg(wilc, WILC_HOST_TX_CTRL, ®); if (ret) break; if ((reg & 0x1) == 0) { ac_update_fw_ac_pkt_info(wilc, reg); break; } counter++; if (counter > 200) { counter = 0; ret = func->hif_write_reg(wilc, WILC_HOST_TX_CTRL, 0); break; } } while (!wilc->quit); if (ret) goto out_release_bus; timeout = 200; do { ret = func->hif_block_tx(wilc, WILC_VMM_TBL_RX_SHADOW_BASE, (u8 *)vmm_table, ((i + 1) * 4)); if (ret) break; if (is_wilc1000(wilc->chipid)) { ret = func->hif_write_reg(wilc, WILC_HOST_VMM_CTL, 0x2); if (ret) break; do { ret = func->hif_read_reg(wilc, WILC_HOST_VMM_CTL, ®); if (ret) break; if (FIELD_GET(WILC_VMM_ENTRY_AVAILABLE, reg)) { entries = FIELD_GET(WILC_VMM_ENTRY_COUNT, reg); break; } } while (--timeout); } else { ret = func->hif_write_reg(wilc, WILC_HOST_VMM_CTL, 0); if (ret) break; /* interrupt firmware */ ret = func->hif_write_reg(wilc, WILC_CORTUS_INTERRUPT_BASE, 1); if (ret) break; do { ret = func->hif_read_reg(wilc, WILC_CORTUS_INTERRUPT_BASE, ®); if (ret) break; if (reg == 0) { /* Get the entries */ ret = func->hif_read_reg(wilc, WILC_HOST_VMM_CTL, ®); if (ret) break; entries = FIELD_GET(WILC_VMM_ENTRY_COUNT, reg); break; } } while (--timeout); } if (timeout <= 0) { ret = func->hif_write_reg(wilc, WILC_HOST_VMM_CTL, 0x0); break; } if (ret) break; if (entries == 0) { ret = func->hif_read_reg(wilc, WILC_HOST_TX_CTRL, ®); if (ret) break; reg &= ~BIT(0); ret = func->hif_write_reg(wilc, WILC_HOST_TX_CTRL, reg); } } while (0); if (ret) goto out_release_bus; if (entries == 0) { /* * No VMM space available in firmware so retry to transmit * the packet from tx queue. */ ret = WILC_VMM_ENTRY_FULL_RETRY; goto out_release_bus; } ret = release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); if (ret) goto out_unlock; offset = 0; i = 0; do { struct txq_entry_t *tqe; u32 header, buffer_offset; char *bssid; u8 mgmt_ptk = 0; if (vmm_table[i] == 0 || vmm_entries_ac[i] >= NQUEUES) break; tqe = wilc_wlan_txq_remove_from_head(wilc, vmm_entries_ac[i]); if (!tqe) break; ac_pkt_num_to_chip[vmm_entries_ac[i]]++; vif = tqe->vif; le32_to_cpus(&vmm_table[i]); vmm_sz = FIELD_GET(WILC_VMM_BUFFER_SIZE, vmm_table[i]); vmm_sz *= 4; if (tqe->type == WILC_MGMT_PKT) mgmt_ptk = 1; header = (FIELD_PREP(WILC_VMM_HDR_TYPE, tqe->type) | FIELD_PREP(WILC_VMM_HDR_MGMT_FIELD, mgmt_ptk) | FIELD_PREP(WILC_VMM_HDR_PKT_SIZE, tqe->buffer_size) | FIELD_PREP(WILC_VMM_HDR_BUFF_SIZE, vmm_sz)); cpu_to_le32s(&header); memcpy(&txb[offset], &header, 4); if (tqe->type == WILC_CFG_PKT) { buffer_offset = ETH_CONFIG_PKT_HDR_OFFSET; } else if (tqe->type == WILC_NET_PKT) { int prio = tqe->q_num; bssid = tqe->vif->bssid; buffer_offset = ETH_ETHERNET_HDR_OFFSET; memcpy(&txb[offset + 4], &prio, sizeof(prio)); memcpy(&txb[offset + 8], bssid, 6); } else { buffer_offset = HOST_HDR_OFFSET; } memcpy(&txb[offset + buffer_offset], tqe->buffer, tqe->buffer_size); offset += vmm_sz; i++; tqe->status = 1; if (tqe->tx_complete_func) tqe->tx_complete_func(tqe->priv, tqe->status); if (tqe->ack_idx != NOT_TCP_ACK && tqe->ack_idx < MAX_PENDING_ACKS) vif->ack_filter.pending_acks[tqe->ack_idx].txqe = NULL; kfree(tqe); } while (--entries); for (i = 0; i < NQUEUES; i++) wilc->txq[i].fw.count += ac_pkt_num_to_chip[i]; ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) goto out_unlock; ret = func->hif_clear_int_ext(wilc, ENABLE_TX_VMM); if (ret) goto out_release_bus; ret = func->hif_block_tx_ext(wilc, 0, txb, offset); out_release_bus: rv = release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); if (!ret && rv) ret = rv; out_unlock: mutex_unlock(&wilc->txq_add_to_head_cs); out_update_cnt: *txq_count = wilc->txq_entries; return ret; } static void wilc_wlan_handle_rx_buff(struct wilc *wilc, u8 *buffer, int size) { int offset = 0; u32 header; u32 pkt_len, pkt_offset, tp_len; int is_cfg_packet; u8 *buff_ptr; do { buff_ptr = buffer + offset; header = get_unaligned_le32(buff_ptr); is_cfg_packet = FIELD_GET(WILC_PKT_HDR_CONFIG_FIELD, header); pkt_offset = FIELD_GET(WILC_PKT_HDR_OFFSET_FIELD, header); tp_len = FIELD_GET(WILC_PKT_HDR_TOTAL_LEN_FIELD, header); pkt_len = FIELD_GET(WILC_PKT_HDR_LEN_FIELD, header); if (pkt_len == 0 || tp_len == 0) break; if (pkt_offset & IS_MANAGMEMENT) { buff_ptr += HOST_HDR_OFFSET; wilc_wfi_mgmt_rx(wilc, buff_ptr, pkt_len, pkt_offset & IS_MGMT_AUTH_PKT); } else { if (!is_cfg_packet) { wilc_frmw_to_host(wilc, buff_ptr, pkt_len, pkt_offset); } else { struct wilc_cfg_rsp rsp; buff_ptr += pkt_offset; wilc_wlan_cfg_indicate_rx(wilc, buff_ptr, pkt_len, &rsp); if (rsp.type == WILC_CFG_RSP) { if (wilc->cfg_seq_no == rsp.seq_no) complete(&wilc->cfg_event); } else if (rsp.type == WILC_CFG_RSP_STATUS) { wilc_mac_indicate(wilc); } } } offset += tp_len; } while (offset < size); } static void wilc_wlan_handle_rxq(struct wilc *wilc) { int size; u8 *buffer; struct rxq_entry_t *rqe; while (!wilc->quit) { rqe = wilc_wlan_rxq_remove(wilc); if (!rqe) break; buffer = rqe->buffer; size = rqe->buffer_size; wilc_wlan_handle_rx_buff(wilc, buffer, size); kfree(rqe); } if (wilc->quit) complete(&wilc->cfg_event); } static void wilc_unknown_isr_ext(struct wilc *wilc) { wilc->hif_func->hif_clear_int_ext(wilc, 0); } static void wilc_wlan_handle_isr_ext(struct wilc *wilc, u32 int_status) { u32 offset = wilc->rx_buffer_offset; u8 *buffer = NULL; u32 size; u32 retries = 0; int ret = 0; struct rxq_entry_t *rqe; size = FIELD_GET(WILC_INTERRUPT_DATA_SIZE, int_status) << 2; while (!size && retries < 10) { wilc->hif_func->hif_read_size(wilc, &size); size = FIELD_GET(WILC_INTERRUPT_DATA_SIZE, size) << 2; retries++; } if (size <= 0) return; if (WILC_RX_BUFF_SIZE - offset < size) offset = 0; buffer = &wilc->rx_buffer[offset]; wilc->hif_func->hif_clear_int_ext(wilc, DATA_INT_CLR | ENABLE_RX_VMM); ret = wilc->hif_func->hif_block_rx_ext(wilc, 0, buffer, size); if (ret) return; offset += size; wilc->rx_buffer_offset = offset; rqe = kmalloc(sizeof(*rqe), GFP_KERNEL); if (!rqe) return; rqe->buffer = buffer; rqe->buffer_size = size; wilc_wlan_rxq_add(wilc, rqe); wilc_wlan_handle_rxq(wilc); } void wilc_handle_isr(struct wilc *wilc) { u32 int_status; int ret; ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) { dev_err_ratelimited(wilc->dev, "Cannot acquire bus\n"); return; } wilc->hif_func->hif_read_int(wilc, &int_status); if (int_status & DATA_INT_EXT) wilc_wlan_handle_isr_ext(wilc, int_status); if (!(int_status & (ALL_INT_EXT))) wilc_unknown_isr_ext(wilc); ret = release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); if (ret) dev_err_ratelimited(wilc->dev, "Cannot release bus\n"); } EXPORT_SYMBOL_GPL(wilc_handle_isr); int wilc_wlan_firmware_download(struct wilc *wilc, const u8 *buffer, u32 buffer_size) { u32 offset; u32 addr, size, size2, blksz; u8 *dma_buffer; int ret = 0; u32 reg = 0; int rv; blksz = BIT(12); dma_buffer = kmalloc(blksz, GFP_KERNEL); if (!dma_buffer) return -EIO; offset = 0; pr_debug("%s: Downloading firmware size = %d\n", __func__, buffer_size); ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, ®); reg &= ~BIT(10); ret = wilc->hif_func->hif_write_reg(wilc, WILC_GLB_RESET_0, reg); wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, ®); if (reg & BIT(10)) pr_err("%s: Failed to reset\n", __func__); ret = release_bus(wilc, WILC_BUS_RELEASE_ONLY); if (ret) goto fail; do { addr = get_unaligned_le32(&buffer[offset]); size = get_unaligned_le32(&buffer[offset + 4]); ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) goto fail; offset += 8; while (((int)size) && (offset < buffer_size)) { if (size <= blksz) size2 = size; else size2 = blksz; memcpy(dma_buffer, &buffer[offset], size2); ret = wilc->hif_func->hif_block_tx(wilc, addr, dma_buffer, size2); if (ret) break; addr += size2; offset += size2; size -= size2; } rv = release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); if (!ret && rv) ret = rv; if (ret) { pr_err("%s Bus error\n", __func__); goto fail; } pr_debug("%s Offset = %d\n", __func__, offset); } while (offset < buffer_size); fail: kfree(dma_buffer); return ret; } int wilc_wlan_start(struct wilc *wilc) { u32 reg = 0; int ret, rv; u32 chipid; if (wilc->io_type == WILC_HIF_SDIO) { reg = 0; reg |= BIT(3); } else if (wilc->io_type == WILC_HIF_SPI) { reg = 1; } ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY); if (ret) return ret; ret = wilc->hif_func->hif_write_reg(wilc, WILC_VMM_CORE_CFG, reg); if (ret) goto release; reg = 0; if (wilc->io_type == WILC_HIF_SDIO && wilc->dev_irq_num) reg |= WILC_HAVE_SDIO_IRQ_GPIO; if (is_wilc3000(wilc->chipid)) reg |= WILC_HAVE_SLEEP_CLK_SRC_RTC; ret = wilc->hif_func->hif_write_reg(wilc, WILC_GP_REG_1, reg); if (ret) goto release; wilc->hif_func->hif_sync_ext(wilc, NUM_INT_EXT); ret = wilc->hif_func->hif_read_reg(wilc, WILC_CHIPID, &chipid); if (ret) goto release; wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, ®); if ((reg & BIT(10)) == BIT(10)) { reg &= ~BIT(10); wilc->hif_func->hif_write_reg(wilc, WILC_GLB_RESET_0, reg); wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, ®); } reg |= BIT(10); ret = wilc->hif_func->hif_write_reg(wilc, WILC_GLB_RESET_0, reg); wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, ®); release: rv = release_bus(wilc, WILC_BUS_RELEASE_ONLY); return ret ? ret : rv; } int wilc_wlan_stop(struct wilc *wilc, struct wilc_vif *vif) { u32 reg = 0; int ret, rv; ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; ret = wilc->hif_func->hif_read_reg(wilc, GLOBAL_MODE_CONTROL, ®); if (ret) goto release; reg &= ~WILC_GLOBAL_MODE_ENABLE_WIFI; ret = wilc->hif_func->hif_write_reg(wilc, GLOBAL_MODE_CONTROL, reg); if (ret) goto release; ret = wilc->hif_func->hif_read_reg(wilc, PWR_SEQ_MISC_CTRL, ®); if (ret) goto release; reg &= ~WILC_PWR_SEQ_ENABLE_WIFI_SLEEP; ret = wilc->hif_func->hif_write_reg(wilc, PWR_SEQ_MISC_CTRL, reg); if (ret) goto release; ret = wilc->hif_func->hif_read_reg(wilc, WILC_GP_REG_0, ®); if (ret) { netdev_err(vif->ndev, "Error while reading reg\n"); goto release; } ret = wilc->hif_func->hif_write_reg(wilc, WILC_GP_REG_0, (reg | WILC_ABORT_REQ_BIT)); if (ret) { netdev_err(vif->ndev, "Error while writing reg\n"); goto release; } ret = 0; release: /* host comm is disabled - we can't issue sleep command anymore: */ rv = release_bus(wilc, WILC_BUS_RELEASE_ONLY); return ret ? ret : rv; } void wilc_wlan_cleanup(struct net_device *dev) { struct txq_entry_t *tqe; struct rxq_entry_t *rqe; u8 ac; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc = vif->wilc; wilc->quit = 1; for (ac = 0; ac < NQUEUES; ac++) { while ((tqe = wilc_wlan_txq_remove_from_head(wilc, ac))) { if (tqe->tx_complete_func) tqe->tx_complete_func(tqe->priv, 0); kfree(tqe); } } while ((rqe = wilc_wlan_rxq_remove(wilc))) kfree(rqe); kfree(wilc->vmm_table); wilc->vmm_table = NULL; kfree(wilc->rx_buffer); wilc->rx_buffer = NULL; kfree(wilc->tx_buffer); wilc->tx_buffer = NULL; wilc->hif_func->hif_deinit(wilc); } static int wilc_wlan_cfg_commit(struct wilc_vif *vif, int type, u32 drv_handler) { struct wilc *wilc = vif->wilc; struct wilc_cfg_frame *cfg = &wilc->cfg_frame; int t_len = wilc->cfg_frame_offset + sizeof(struct wilc_cfg_cmd_hdr); if (type == WILC_CFG_SET) cfg->hdr.cmd_type = 'W'; else cfg->hdr.cmd_type = 'Q'; cfg->hdr.seq_no = wilc->cfg_seq_no % 256; cfg->hdr.total_len = cpu_to_le16(t_len); cfg->hdr.driver_handler = cpu_to_le32(drv_handler); wilc->cfg_seq_no = cfg->hdr.seq_no; if (!wilc_wlan_txq_add_cfg_pkt(vif, (u8 *)&cfg->hdr, t_len)) return -1; return 0; } int wilc_wlan_cfg_set(struct wilc_vif *vif, int start, u16 wid, u8 *buffer, u32 buffer_size, int commit, u32 drv_handler) { u32 offset; int ret_size; struct wilc *wilc = vif->wilc; mutex_lock(&wilc->cfg_cmd_lock); if (start) wilc->cfg_frame_offset = 0; offset = wilc->cfg_frame_offset; ret_size = wilc_wlan_cfg_set_wid(wilc->cfg_frame.frame, offset, wid, buffer, buffer_size); offset += ret_size; wilc->cfg_frame_offset = offset; if (!commit) { mutex_unlock(&wilc->cfg_cmd_lock); return ret_size; } netdev_dbg(vif->ndev, "%s: seqno[%d]\n", __func__, wilc->cfg_seq_no); if (wilc_wlan_cfg_commit(vif, WILC_CFG_SET, drv_handler)) ret_size = 0; if (!wait_for_completion_timeout(&wilc->cfg_event, WILC_CFG_PKTS_TIMEOUT)) { netdev_dbg(vif->ndev, "%s: Timed Out\n", __func__); ret_size = 0; } wilc->cfg_frame_offset = 0; wilc->cfg_seq_no += 1; mutex_unlock(&wilc->cfg_cmd_lock); return ret_size; } int wilc_wlan_cfg_get(struct wilc_vif *vif, int start, u16 wid, int commit, u32 drv_handler) { u32 offset; int ret_size; struct wilc *wilc = vif->wilc; mutex_lock(&wilc->cfg_cmd_lock); if (start) wilc->cfg_frame_offset = 0; offset = wilc->cfg_frame_offset; ret_size = wilc_wlan_cfg_get_wid(wilc->cfg_frame.frame, offset, wid); offset += ret_size; wilc->cfg_frame_offset = offset; if (!commit) { mutex_unlock(&wilc->cfg_cmd_lock); return ret_size; } if (wilc_wlan_cfg_commit(vif, WILC_CFG_QUERY, drv_handler)) ret_size = 0; if (!wait_for_completion_timeout(&wilc->cfg_event, WILC_CFG_PKTS_TIMEOUT)) { netdev_dbg(vif->ndev, "%s: Timed Out\n", __func__); ret_size = 0; } wilc->cfg_frame_offset = 0; wilc->cfg_seq_no += 1; mutex_unlock(&wilc->cfg_cmd_lock); return ret_size; } int wilc_send_config_pkt(struct wilc_vif *vif, u8 mode, struct wid *wids, u32 count) { int i; int ret = 0; u32 drv = wilc_get_vif_idx(vif); if (mode == WILC_GET_CFG) { for (i = 0; i < count; i++) { if (!wilc_wlan_cfg_get(vif, !i, wids[i].id, (i == count - 1), drv)) { ret = -ETIMEDOUT; break; } } for (i = 0; i < count; i++) { wids[i].size = wilc_wlan_cfg_get_val(vif->wilc, wids[i].id, wids[i].val, wids[i].size); } } else if (mode == WILC_SET_CFG) { for (i = 0; i < count; i++) { if (!wilc_wlan_cfg_set(vif, !i, wids[i].id, wids[i].val, wids[i].size, (i == count - 1), drv)) { ret = -ETIMEDOUT; break; } } } return ret; } int wilc_get_chipid(struct wilc *wilc) { u32 chipid = 0; u32 rfrevid = 0; if (wilc->chipid == 0) { wilc->hif_func->hif_read_reg(wilc, WILC3000_CHIP_ID, &chipid); if (!is_wilc3000(chipid)) { wilc->hif_func->hif_read_reg(wilc, WILC_CHIPID, &chipid); wilc->hif_func->hif_read_reg(wilc, WILC_RF_REVISION_ID, &rfrevid); if (!is_wilc1000(chipid)) { wilc->chipid = 0; return -EINVAL; } if (chipid == WILC_1000_BASE_ID_2A) { /* 0x1002A0 */ if (rfrevid != 0x1) chipid = WILC_1000_BASE_ID_2A_REV1; } else if (chipid == WILC_1000_BASE_ID_2B) { /* 0x1002B0 */ if (rfrevid == 0x4) chipid = WILC_1000_BASE_ID_2B_REV1; else if (rfrevid != 0x3) chipid = WILC_1000_BASE_ID_2B_REV2; } } wilc->chipid = chipid; } return 0; } EXPORT_SYMBOL_GPL(wilc_get_chipid); static int init_chip(struct net_device *dev) { u32 reg; int ret, rv; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc = vif->wilc; ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; ret = wilc_get_chipid(wilc); if (ret) goto release; if ((wilc->chipid & 0xfff) != 0xa0) { ret = wilc->hif_func->hif_read_reg(wilc, WILC_CORTUS_RESET_MUX_SEL, ®); if (ret) { netdev_err(dev, "fail read reg 0x1118\n"); goto release; } reg |= BIT(0); ret = wilc->hif_func->hif_write_reg(wilc, WILC_CORTUS_RESET_MUX_SEL, reg); if (ret) { netdev_err(dev, "fail write reg 0x1118\n"); goto release; } ret = wilc->hif_func->hif_write_reg(wilc, WILC_CORTUS_BOOT_REGISTER, WILC_CORTUS_BOOT_FROM_IRAM); if (ret) { netdev_err(dev, "fail write reg 0xc0000\n"); goto release; } } if (is_wilc3000(wilc->chipid)) { ret = wilc->hif_func->hif_read_reg(wilc, WILC3000_BOOTROM_STATUS, ®); if (ret) { netdev_err(dev, "failed to read WILC3000 BootROM status register\n"); goto release; } ret = wilc->hif_func->hif_write_reg(wilc, WILC3000_CORTUS_BOOT_REGISTER_2, WILC_CORTUS_BOOT_FROM_IRAM); if (ret) { netdev_err(dev, "failed to write WILC3000 Boot register\n"); goto release; } } release: rv = release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP); return ret ? ret : rv; } int wilc_load_mac_from_nv(struct wilc *wl) { int ret, rv; unsigned int i; ret = acquire_bus(wl, WILC_BUS_ACQUIRE_AND_WAKEUP); if (ret) return ret; for (i = 0; i < WILC_NVMEM_MAX_NUM_BANK; i++) { int bank_offset = get_bank_offset_from_bank_index(i); u32 reg1, reg2; u8 invalid; u8 used; ret = wl->hif_func->hif_read_reg(wl, WILC_NVMEM_BANK_BASE + bank_offset, ®1); if (ret) { pr_err("Can not read address %d lower part", i); break; } ret = wl->hif_func->hif_read_reg(wl, WILC_NVMEM_BANK_BASE + bank_offset + 4, ®2); if (ret) { pr_err("Can not read address %d upper part", i); break; } used = FIELD_GET(WILC_NVMEM_IS_BANK_USED, reg1); invalid = FIELD_GET(WILC_NVMEM_IS_BANK_INVALID, reg1); if (!used || invalid) continue; wl->nv_mac_address[0] = FIELD_GET(GENMASK(23, 16), reg1); wl->nv_mac_address[1] = FIELD_GET(GENMASK(15, 8), reg1); wl->nv_mac_address[2] = FIELD_GET(GENMASK(7, 0), reg1); wl->nv_mac_address[3] = FIELD_GET(GENMASK(31, 24), reg2); wl->nv_mac_address[4] = FIELD_GET(GENMASK(23, 16), reg2); wl->nv_mac_address[5] = FIELD_GET(GENMASK(15, 8), reg2); ret = 0; break; } rv = release_bus(wl, WILC_BUS_RELEASE_ALLOW_SLEEP); return ret ? ret : rv; } EXPORT_SYMBOL_GPL(wilc_load_mac_from_nv); int wilc_wlan_init(struct net_device *dev) { int ret = 0, rv; struct wilc_vif *vif = netdev_priv(dev); struct wilc *wilc; wilc = vif->wilc; wilc->quit = 0; if (!wilc->hif_func->hif_is_init(wilc)) { ret = acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY); if (ret) return ret; ret = wilc->hif_func->hif_init(wilc, false); if (!ret) ret = wilc_get_chipid(wilc); rv = release_bus(wilc, WILC_BUS_RELEASE_ONLY); if (!ret && rv) ret = rv; if (ret) goto fail; if (!is_wilc1000(wilc->chipid) && !is_wilc3000(wilc->chipid)) { netdev_err(dev, "Unsupported chipid: %x\n", wilc->chipid); ret = -EINVAL; goto fail; } netdev_dbg(dev, "chipid (%08x)\n", wilc->chipid); } if (!wilc->vmm_table) wilc->vmm_table = kcalloc(WILC_VMM_TBL_SIZE, sizeof(u32), GFP_KERNEL); if (!wilc->vmm_table) { ret = -ENOBUFS; goto fail; } if (!wilc->tx_buffer) wilc->tx_buffer = kmalloc(WILC_TX_BUFF_SIZE, GFP_KERNEL); if (!wilc->tx_buffer) { ret = -ENOBUFS; goto fail; } if (!wilc->rx_buffer) wilc->rx_buffer = kmalloc(WILC_RX_BUFF_SIZE, GFP_KERNEL); if (!wilc->rx_buffer) { ret = -ENOBUFS; goto fail; } if (init_chip(dev)) { ret = -EIO; goto fail; } return 0; fail: kfree(wilc->vmm_table); wilc->vmm_table = NULL; kfree(wilc->rx_buffer); wilc->rx_buffer = NULL; kfree(wilc->tx_buffer); wilc->tx_buffer = NULL; return ret; }