// SPDX-License-Identifier: GPL-2.0 /* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #include #define CREATE_TRACE_POINTS #include "trace.h" #define NVME_MINORS (1U << MINORBITS) struct nvme_ns_info { struct nvme_ns_ids ids; u32 nsid; __le32 anagrpid; u8 pi_offset; bool is_shared; bool is_readonly; bool is_ready; bool is_removed; bool is_rotational; bool no_vwc; }; unsigned int admin_timeout = 60; module_param(admin_timeout, uint, 0644); MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); EXPORT_SYMBOL_GPL(admin_timeout); unsigned int nvme_io_timeout = 30; module_param_named(io_timeout, nvme_io_timeout, uint, 0644); MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); EXPORT_SYMBOL_GPL(nvme_io_timeout); static unsigned char shutdown_timeout = 5; module_param(shutdown_timeout, byte, 0644); MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); static u8 nvme_max_retries = 5; module_param_named(max_retries, nvme_max_retries, byte, 0644); MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); static unsigned long default_ps_max_latency_us = 100000; module_param(default_ps_max_latency_us, ulong, 0644); MODULE_PARM_DESC(default_ps_max_latency_us, "max power saving latency for new devices; use PM QOS to change per device"); static bool force_apst; module_param(force_apst, bool, 0644); MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); static unsigned long apst_primary_timeout_ms = 100; module_param(apst_primary_timeout_ms, ulong, 0644); MODULE_PARM_DESC(apst_primary_timeout_ms, "primary APST timeout in ms"); static unsigned long apst_secondary_timeout_ms = 2000; module_param(apst_secondary_timeout_ms, ulong, 0644); MODULE_PARM_DESC(apst_secondary_timeout_ms, "secondary APST timeout in ms"); static unsigned long apst_primary_latency_tol_us = 15000; module_param(apst_primary_latency_tol_us, ulong, 0644); MODULE_PARM_DESC(apst_primary_latency_tol_us, "primary APST latency tolerance in us"); static unsigned long apst_secondary_latency_tol_us = 100000; module_param(apst_secondary_latency_tol_us, ulong, 0644); MODULE_PARM_DESC(apst_secondary_latency_tol_us, "secondary APST latency tolerance in us"); /* * Older kernels didn't enable protection information if it was at an offset. * Newer kernels do, so it breaks reads on the upgrade if such formats were * used in prior kernels since the metadata written did not contain a valid * checksum. */ static bool disable_pi_offsets = false; module_param(disable_pi_offsets, bool, 0444); MODULE_PARM_DESC(disable_pi_offsets, "disable protection information if it has an offset"); /* * nvme_wq - hosts nvme related works that are not reset or delete * nvme_reset_wq - hosts nvme reset works * nvme_delete_wq - hosts nvme delete works * * nvme_wq will host works such as scan, aen handling, fw activation, * keep-alive, periodic reconnects etc. nvme_reset_wq * runs reset works which also flush works hosted on nvme_wq for * serialization purposes. nvme_delete_wq host controller deletion * works which flush reset works for serialization. */ struct workqueue_struct *nvme_wq; EXPORT_SYMBOL_GPL(nvme_wq); struct workqueue_struct *nvme_reset_wq; EXPORT_SYMBOL_GPL(nvme_reset_wq); struct workqueue_struct *nvme_delete_wq; EXPORT_SYMBOL_GPL(nvme_delete_wq); static LIST_HEAD(nvme_subsystems); DEFINE_MUTEX(nvme_subsystems_lock); static DEFINE_IDA(nvme_instance_ida); static dev_t nvme_ctrl_base_chr_devt; static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); static const struct class nvme_class = { .name = "nvme", .dev_uevent = nvme_class_uevent, }; static const struct class nvme_subsys_class = { .name = "nvme-subsystem", }; static DEFINE_IDA(nvme_ns_chr_minor_ida); static dev_t nvme_ns_chr_devt; static const struct class nvme_ns_chr_class = { .name = "nvme-generic", }; static void nvme_put_subsystem(struct nvme_subsystem *subsys); static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, unsigned nsid); static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, struct nvme_command *cmd); void nvme_queue_scan(struct nvme_ctrl *ctrl) { /* * Only new queue scan work when admin and IO queues are both alive */ if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) queue_work(nvme_wq, &ctrl->scan_work); } /* * Use this function to proceed with scheduling reset_work for a controller * that had previously been set to the resetting state. This is intended for * code paths that can't be interrupted by other reset attempts. A hot removal * may prevent this from succeeding. */ int nvme_try_sched_reset(struct nvme_ctrl *ctrl) { if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) return -EBUSY; if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_try_sched_reset); static void nvme_failfast_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_ctrl, failfast_work); if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) return; set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); dev_info(ctrl->device, "failfast expired\n"); nvme_kick_requeue_lists(ctrl); } static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) { if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) return; schedule_delayed_work(&ctrl->failfast_work, ctrl->opts->fast_io_fail_tmo * HZ); } static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) { if (!ctrl->opts) return; cancel_delayed_work_sync(&ctrl->failfast_work); clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); } int nvme_reset_ctrl(struct nvme_ctrl *ctrl) { if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) return -EBUSY; if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_reset_ctrl); int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) { int ret; ret = nvme_reset_ctrl(ctrl); if (!ret) { flush_work(&ctrl->reset_work); if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) ret = -ENETRESET; } return ret; } static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) { dev_info(ctrl->device, "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); flush_work(&ctrl->reset_work); nvme_stop_ctrl(ctrl); nvme_remove_namespaces(ctrl); ctrl->ops->delete_ctrl(ctrl); nvme_uninit_ctrl(ctrl); } static void nvme_delete_ctrl_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, delete_work); nvme_do_delete_ctrl(ctrl); } int nvme_delete_ctrl(struct nvme_ctrl *ctrl) { if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) return -EBUSY; if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_delete_ctrl); void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) { /* * Keep a reference until nvme_do_delete_ctrl() complete, * since ->delete_ctrl can free the controller. */ nvme_get_ctrl(ctrl); if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) nvme_do_delete_ctrl(ctrl); nvme_put_ctrl(ctrl); } static blk_status_t nvme_error_status(u16 status) { switch (status & NVME_SCT_SC_MASK) { case NVME_SC_SUCCESS: return BLK_STS_OK; case NVME_SC_CAP_EXCEEDED: return BLK_STS_NOSPC; case NVME_SC_LBA_RANGE: case NVME_SC_CMD_INTERRUPTED: case NVME_SC_NS_NOT_READY: return BLK_STS_TARGET; case NVME_SC_BAD_ATTRIBUTES: case NVME_SC_ONCS_NOT_SUPPORTED: case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_INVALID_NS: return BLK_STS_NOTSUPP; case NVME_SC_WRITE_FAULT: case NVME_SC_READ_ERROR: case NVME_SC_UNWRITTEN_BLOCK: case NVME_SC_ACCESS_DENIED: case NVME_SC_READ_ONLY: case NVME_SC_COMPARE_FAILED: return BLK_STS_MEDIUM; case NVME_SC_GUARD_CHECK: case NVME_SC_APPTAG_CHECK: case NVME_SC_REFTAG_CHECK: case NVME_SC_INVALID_PI: return BLK_STS_PROTECTION; case NVME_SC_RESERVATION_CONFLICT: return BLK_STS_RESV_CONFLICT; case NVME_SC_HOST_PATH_ERROR: return BLK_STS_TRANSPORT; case NVME_SC_ZONE_TOO_MANY_ACTIVE: return BLK_STS_ZONE_ACTIVE_RESOURCE; case NVME_SC_ZONE_TOO_MANY_OPEN: return BLK_STS_ZONE_OPEN_RESOURCE; default: return BLK_STS_IOERR; } } static void nvme_retry_req(struct request *req) { unsigned long delay = 0; u16 crd; /* The mask and shift result must be <= 3 */ crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; if (crd) delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; nvme_req(req)->retries++; blk_mq_requeue_request(req, false); blk_mq_delay_kick_requeue_list(req->q, delay); } static void nvme_log_error(struct request *req) { struct nvme_ns *ns = req->q->queuedata; struct nvme_request *nr = nvme_req(req); if (ns) { pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", ns->disk ? ns->disk->disk_name : "?", nvme_get_opcode_str(nr->cmd->common.opcode), nr->cmd->common.opcode, nvme_sect_to_lba(ns->head, blk_rq_pos(req)), blk_rq_bytes(req) >> ns->head->lba_shift, nvme_get_error_status_str(nr->status), NVME_SCT(nr->status), /* Status Code Type */ nr->status & NVME_SC_MASK, /* Status Code */ nr->status & NVME_STATUS_MORE ? "MORE " : "", nr->status & NVME_STATUS_DNR ? "DNR " : ""); return; } pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", dev_name(nr->ctrl->device), nvme_get_admin_opcode_str(nr->cmd->common.opcode), nr->cmd->common.opcode, nvme_get_error_status_str(nr->status), NVME_SCT(nr->status), /* Status Code Type */ nr->status & NVME_SC_MASK, /* Status Code */ nr->status & NVME_STATUS_MORE ? "MORE " : "", nr->status & NVME_STATUS_DNR ? "DNR " : ""); } static void nvme_log_err_passthru(struct request *req) { struct nvme_ns *ns = req->q->queuedata; struct nvme_request *nr = nvme_req(req); pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : nvme_get_admin_opcode_str(nr->cmd->common.opcode), nr->cmd->common.opcode, nvme_get_error_status_str(nr->status), NVME_SCT(nr->status), /* Status Code Type */ nr->status & NVME_SC_MASK, /* Status Code */ nr->status & NVME_STATUS_MORE ? "MORE " : "", nr->status & NVME_STATUS_DNR ? "DNR " : "", nr->cmd->common.cdw10, nr->cmd->common.cdw11, nr->cmd->common.cdw12, nr->cmd->common.cdw13, nr->cmd->common.cdw14, nr->cmd->common.cdw14); } enum nvme_disposition { COMPLETE, RETRY, FAILOVER, AUTHENTICATE, }; static inline enum nvme_disposition nvme_decide_disposition(struct request *req) { if (likely(nvme_req(req)->status == 0)) return COMPLETE; if (blk_noretry_request(req) || (nvme_req(req)->status & NVME_STATUS_DNR) || nvme_req(req)->retries >= nvme_max_retries) return COMPLETE; if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) return AUTHENTICATE; if (req->cmd_flags & REQ_NVME_MPATH) { if (nvme_is_path_error(nvme_req(req)->status) || blk_queue_dying(req->q)) return FAILOVER; } else { if (blk_queue_dying(req->q)) return COMPLETE; } return RETRY; } static inline void nvme_end_req_zoned(struct request *req) { if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && req_op(req) == REQ_OP_ZONE_APPEND) { struct nvme_ns *ns = req->q->queuedata; req->__sector = nvme_lba_to_sect(ns->head, le64_to_cpu(nvme_req(req)->result.u64)); } } static inline void __nvme_end_req(struct request *req) { nvme_end_req_zoned(req); nvme_trace_bio_complete(req); if (req->cmd_flags & REQ_NVME_MPATH) nvme_mpath_end_request(req); } void nvme_end_req(struct request *req) { blk_status_t status = nvme_error_status(nvme_req(req)->status); if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { if (blk_rq_is_passthrough(req)) nvme_log_err_passthru(req); else nvme_log_error(req); } __nvme_end_req(req); blk_mq_end_request(req, status); } void nvme_complete_rq(struct request *req) { struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; trace_nvme_complete_rq(req); nvme_cleanup_cmd(req); /* * Completions of long-running commands should not be able to * defer sending of periodic keep alives, since the controller * may have completed processing such commands a long time ago * (arbitrarily close to command submission time). * req->deadline - req->timeout is the command submission time * in jiffies. */ if (ctrl->kas && req->deadline - req->timeout >= ctrl->ka_last_check_time) ctrl->comp_seen = true; switch (nvme_decide_disposition(req)) { case COMPLETE: nvme_end_req(req); return; case RETRY: nvme_retry_req(req); return; case FAILOVER: nvme_failover_req(req); return; case AUTHENTICATE: #ifdef CONFIG_NVME_HOST_AUTH queue_work(nvme_wq, &ctrl->dhchap_auth_work); nvme_retry_req(req); #else nvme_end_req(req); #endif return; } } EXPORT_SYMBOL_GPL(nvme_complete_rq); void nvme_complete_batch_req(struct request *req) { trace_nvme_complete_rq(req); nvme_cleanup_cmd(req); __nvme_end_req(req); } EXPORT_SYMBOL_GPL(nvme_complete_batch_req); /* * Called to unwind from ->queue_rq on a failed command submission so that the * multipathing code gets called to potentially failover to another path. * The caller needs to unwind all transport specific resource allocations and * must return propagate the return value. */ blk_status_t nvme_host_path_error(struct request *req) { nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; blk_mq_set_request_complete(req); nvme_complete_rq(req); return BLK_STS_OK; } EXPORT_SYMBOL_GPL(nvme_host_path_error); bool nvme_cancel_request(struct request *req, void *data) { dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, "Cancelling I/O %d", req->tag); /* don't abort one completed or idle request */ if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) return true; nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; nvme_req(req)->flags |= NVME_REQ_CANCELLED; blk_mq_complete_request(req); return true; } EXPORT_SYMBOL_GPL(nvme_cancel_request); void nvme_cancel_tagset(struct nvme_ctrl *ctrl) { if (ctrl->tagset) { blk_mq_tagset_busy_iter(ctrl->tagset, nvme_cancel_request, ctrl); blk_mq_tagset_wait_completed_request(ctrl->tagset); } } EXPORT_SYMBOL_GPL(nvme_cancel_tagset); void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) { if (ctrl->admin_tagset) { blk_mq_tagset_busy_iter(ctrl->admin_tagset, nvme_cancel_request, ctrl); blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); } } EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, enum nvme_ctrl_state new_state) { enum nvme_ctrl_state old_state; unsigned long flags; bool changed = false; spin_lock_irqsave(&ctrl->lock, flags); old_state = nvme_ctrl_state(ctrl); switch (new_state) { case NVME_CTRL_LIVE: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: changed = true; fallthrough; default: break; } break; case NVME_CTRL_RESETTING: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_LIVE: changed = true; fallthrough; default: break; } break; case NVME_CTRL_CONNECTING: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_RESETTING: changed = true; fallthrough; default: break; } break; case NVME_CTRL_DELETING: switch (old_state) { case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: changed = true; fallthrough; default: break; } break; case NVME_CTRL_DELETING_NOIO: switch (old_state) { case NVME_CTRL_DELETING: case NVME_CTRL_DEAD: changed = true; fallthrough; default: break; } break; case NVME_CTRL_DEAD: switch (old_state) { case NVME_CTRL_DELETING: changed = true; fallthrough; default: break; } break; default: break; } if (changed) { WRITE_ONCE(ctrl->state, new_state); wake_up_all(&ctrl->state_wq); } spin_unlock_irqrestore(&ctrl->lock, flags); if (!changed) return false; if (new_state == NVME_CTRL_LIVE) { if (old_state == NVME_CTRL_CONNECTING) nvme_stop_failfast_work(ctrl); nvme_kick_requeue_lists(ctrl); } else if (new_state == NVME_CTRL_CONNECTING && old_state == NVME_CTRL_RESETTING) { nvme_start_failfast_work(ctrl); } return changed; } EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); /* * Waits for the controller state to be resetting, or returns false if it is * not possible to ever transition to that state. */ bool nvme_wait_reset(struct nvme_ctrl *ctrl) { wait_event(ctrl->state_wq, nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || nvme_state_terminal(ctrl)); return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; } EXPORT_SYMBOL_GPL(nvme_wait_reset); static void nvme_free_ns_head(struct kref *ref) { struct nvme_ns_head *head = container_of(ref, struct nvme_ns_head, ref); nvme_mpath_remove_disk(head); ida_free(&head->subsys->ns_ida, head->instance); cleanup_srcu_struct(&head->srcu); nvme_put_subsystem(head->subsys); kfree(head); } bool nvme_tryget_ns_head(struct nvme_ns_head *head) { return kref_get_unless_zero(&head->ref); } void nvme_put_ns_head(struct nvme_ns_head *head) { kref_put(&head->ref, nvme_free_ns_head); } static void nvme_free_ns(struct kref *kref) { struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); put_disk(ns->disk); nvme_put_ns_head(ns->head); nvme_put_ctrl(ns->ctrl); kfree(ns); } bool nvme_get_ns(struct nvme_ns *ns) { return kref_get_unless_zero(&ns->kref); } void nvme_put_ns(struct nvme_ns *ns) { kref_put(&ns->kref, nvme_free_ns); } EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); static inline void nvme_clear_nvme_request(struct request *req) { nvme_req(req)->status = 0; nvme_req(req)->retries = 0; nvme_req(req)->flags = 0; req->rq_flags |= RQF_DONTPREP; } /* initialize a passthrough request */ void nvme_init_request(struct request *req, struct nvme_command *cmd) { struct nvme_request *nr = nvme_req(req); bool logging_enabled; if (req->q->queuedata) { struct nvme_ns *ns = req->q->disk->private_data; logging_enabled = ns->head->passthru_err_log_enabled; req->timeout = NVME_IO_TIMEOUT; } else { /* no queuedata implies admin queue */ logging_enabled = nr->ctrl->passthru_err_log_enabled; req->timeout = NVME_ADMIN_TIMEOUT; } if (!logging_enabled) req->rq_flags |= RQF_QUIET; /* passthru commands should let the driver set the SGL flags */ cmd->common.flags &= ~NVME_CMD_SGL_ALL; req->cmd_flags |= REQ_FAILFAST_DRIVER; if (req->mq_hctx->type == HCTX_TYPE_POLL) req->cmd_flags |= REQ_POLLED; nvme_clear_nvme_request(req); memcpy(nr->cmd, cmd, sizeof(*cmd)); } EXPORT_SYMBOL_GPL(nvme_init_request); /* * For something we're not in a state to send to the device the default action * is to busy it and retry it after the controller state is recovered. However, * if the controller is deleting or if anything is marked for failfast or * nvme multipath it is immediately failed. * * Note: commands used to initialize the controller will be marked for failfast. * Note: nvme cli/ioctl commands are marked for failfast. */ blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, struct request *rq) { enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); if (state != NVME_CTRL_DELETING_NOIO && state != NVME_CTRL_DELETING && state != NVME_CTRL_DEAD && !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) return BLK_STS_RESOURCE; return nvme_host_path_error(rq); } EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, bool queue_live, enum nvme_ctrl_state state) { struct nvme_request *req = nvme_req(rq); /* * currently we have a problem sending passthru commands * on the admin_q if the controller is not LIVE because we can't * make sure that they are going out after the admin connect, * controller enable and/or other commands in the initialization * sequence. until the controller will be LIVE, fail with * BLK_STS_RESOURCE so that they will be rescheduled. */ if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) return false; if (ctrl->ops->flags & NVME_F_FABRICS) { /* * Only allow commands on a live queue, except for the connect * command, which is require to set the queue live in the * appropinquate states. */ switch (state) { case NVME_CTRL_CONNECTING: if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) return true; break; default: break; case NVME_CTRL_DEAD: return false; } } return queue_live; } EXPORT_SYMBOL_GPL(__nvme_check_ready); static inline void nvme_setup_flush(struct nvme_ns *ns, struct nvme_command *cmnd) { memset(cmnd, 0, sizeof(*cmnd)); cmnd->common.opcode = nvme_cmd_flush; cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); } static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; struct nvme_dsm_range *range; struct bio *bio; /* * Some devices do not consider the DSM 'Number of Ranges' field when * determining how much data to DMA. Always allocate memory for maximum * number of segments to prevent device reading beyond end of buffer. */ static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); if (!range) { /* * If we fail allocation our range, fallback to the controller * discard page. If that's also busy, it's safe to return * busy, as we know we can make progress once that's freed. */ if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) return BLK_STS_RESOURCE; range = page_address(ns->ctrl->discard_page); } if (queue_max_discard_segments(req->q) == 1) { u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); range[0].cattr = cpu_to_le32(0); range[0].nlb = cpu_to_le32(nlb); range[0].slba = cpu_to_le64(slba); n = 1; } else { __rq_for_each_bio(bio, req) { u64 slba = nvme_sect_to_lba(ns->head, bio->bi_iter.bi_sector); u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; if (n < segments) { range[n].cattr = cpu_to_le32(0); range[n].nlb = cpu_to_le32(nlb); range[n].slba = cpu_to_le64(slba); } n++; } } if (WARN_ON_ONCE(n != segments)) { if (virt_to_page(range) == ns->ctrl->discard_page) clear_bit_unlock(0, &ns->ctrl->discard_page_busy); else kfree(range); return BLK_STS_IOERR; } memset(cmnd, 0, sizeof(*cmnd)); cmnd->dsm.opcode = nvme_cmd_dsm; cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); cmnd->dsm.nr = cpu_to_le32(segments - 1); cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); bvec_set_virt(&req->special_vec, range, alloc_size); req->rq_flags |= RQF_SPECIAL_PAYLOAD; return BLK_STS_OK; } static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, struct request *req) { u32 upper, lower; u64 ref48; /* both rw and write zeroes share the same reftag format */ switch (ns->head->guard_type) { case NVME_NVM_NS_16B_GUARD: cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); break; case NVME_NVM_NS_64B_GUARD: ref48 = ext_pi_ref_tag(req); lower = lower_32_bits(ref48); upper = upper_32_bits(ref48); cmnd->rw.reftag = cpu_to_le32(lower); cmnd->rw.cdw3 = cpu_to_le32(upper); break; default: break; } } static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { memset(cmnd, 0, sizeof(*cmnd)); if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) return nvme_setup_discard(ns, req, cmnd); cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); cmnd->write_zeroes.slba = cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); cmnd->write_zeroes.length = cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->head->features & NVME_NS_DEAC)) cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); if (nvme_ns_has_pi(ns->head)) { cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); switch (ns->head->pi_type) { case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: nvme_set_ref_tag(ns, cmnd, req); break; } } return BLK_STS_OK; } /* * NVMe does not support a dedicated command to issue an atomic write. A write * which does adhere to the device atomic limits will silently be executed * non-atomically. The request issuer should ensure that the write is within * the queue atomic writes limits, but just validate this in case it is not. */ static bool nvme_valid_atomic_write(struct request *req) { struct request_queue *q = req->q; u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) return false; if (boundary_bytes) { u64 mask = boundary_bytes - 1, imask = ~mask; u64 start = blk_rq_pos(req) << SECTOR_SHIFT; u64 end = start + blk_rq_bytes(req) - 1; /* If greater then must be crossing a boundary */ if (blk_rq_bytes(req) > boundary_bytes) return false; if ((start & imask) != (end & imask)) return false; } return true; } static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd, enum nvme_opcode op) { u16 control = 0; u32 dsmgmt = 0; if (req->cmd_flags & REQ_FUA) control |= NVME_RW_FUA; if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; if (req->cmd_flags & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) return BLK_STS_INVAL; cmnd->rw.opcode = op; cmnd->rw.flags = 0; cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); cmnd->rw.cdw2 = 0; cmnd->rw.cdw3 = 0; cmnd->rw.metadata = 0; cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); cmnd->rw.reftag = 0; cmnd->rw.lbat = 0; cmnd->rw.lbatm = 0; if (ns->head->ms) { /* * If formated with metadata, the block layer always provides a * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else * we enable the PRACT bit for protection information or set the * namespace capacity to zero to prevent any I/O. */ if (!blk_integrity_rq(req)) { if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) return BLK_STS_NOTSUPP; control |= NVME_RW_PRINFO_PRACT; } switch (ns->head->pi_type) { case NVME_NS_DPS_PI_TYPE3: control |= NVME_RW_PRINFO_PRCHK_GUARD; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: control |= NVME_RW_PRINFO_PRCHK_GUARD | NVME_RW_PRINFO_PRCHK_REF; if (op == nvme_cmd_zone_append) control |= NVME_RW_APPEND_PIREMAP; nvme_set_ref_tag(ns, cmnd, req); break; } } cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); return 0; } void nvme_cleanup_cmd(struct request *req) { if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; if (req->special_vec.bv_page == ctrl->discard_page) clear_bit_unlock(0, &ctrl->discard_page_busy); else kfree(bvec_virt(&req->special_vec)); req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; } } EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) { struct nvme_command *cmd = nvme_req(req)->cmd; blk_status_t ret = BLK_STS_OK; if (!(req->rq_flags & RQF_DONTPREP)) nvme_clear_nvme_request(req); switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: /* these are setup prior to execution in nvme_init_request() */ break; case REQ_OP_FLUSH: nvme_setup_flush(ns, cmd); break; case REQ_OP_ZONE_RESET_ALL: case REQ_OP_ZONE_RESET: ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); break; case REQ_OP_ZONE_OPEN: ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); break; case REQ_OP_ZONE_CLOSE: ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); break; case REQ_OP_ZONE_FINISH: ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); break; case REQ_OP_WRITE_ZEROES: ret = nvme_setup_write_zeroes(ns, req, cmd); break; case REQ_OP_DISCARD: ret = nvme_setup_discard(ns, req, cmd); break; case REQ_OP_READ: ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); break; case REQ_OP_WRITE: ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); break; case REQ_OP_ZONE_APPEND: ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); break; default: WARN_ON_ONCE(1); return BLK_STS_IOERR; } cmd->common.command_id = nvme_cid(req); trace_nvme_setup_cmd(req, cmd); return ret; } EXPORT_SYMBOL_GPL(nvme_setup_cmd); /* * Return values: * 0: success * >0: nvme controller's cqe status response * <0: kernel error in lieu of controller response */ int nvme_execute_rq(struct request *rq, bool at_head) { blk_status_t status; status = blk_execute_rq(rq, at_head); if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) return -EINTR; if (nvme_req(rq)->status) return nvme_req(rq)->status; return blk_status_to_errno(status); } EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, union nvme_result *result, void *buffer, unsigned bufflen, int qid, nvme_submit_flags_t flags) { struct request *req; int ret; blk_mq_req_flags_t blk_flags = 0; if (flags & NVME_SUBMIT_NOWAIT) blk_flags |= BLK_MQ_REQ_NOWAIT; if (flags & NVME_SUBMIT_RESERVED) blk_flags |= BLK_MQ_REQ_RESERVED; if (qid == NVME_QID_ANY) req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); else req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, qid - 1); if (IS_ERR(req)) return PTR_ERR(req); nvme_init_request(req, cmd); if (flags & NVME_SUBMIT_RETRY) req->cmd_flags &= ~REQ_FAILFAST_DRIVER; if (buffer && bufflen) { ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); if (ret) goto out; } ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); if (result && ret >= 0) *result = nvme_req(req)->result; out: blk_mq_free_request(req); return ret; } EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buffer, unsigned bufflen) { return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, NVME_QID_ANY, 0); } EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) { u32 effects = 0; if (ns) { effects = le32_to_cpu(ns->head->effects->iocs[opcode]); if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) dev_warn_once(ctrl->device, "IO command:%02x has unusual effects:%08x\n", opcode, effects); /* * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, * which would deadlock when done on an I/O command. Note that * We already warn about an unusual effect above. */ effects &= ~NVME_CMD_EFFECTS_CSE_MASK; } else { effects = le32_to_cpu(ctrl->effects->acs[opcode]); /* Ignore execution restrictions if any relaxation bits are set */ if (effects & NVME_CMD_EFFECTS_CSER_MASK) effects &= ~NVME_CMD_EFFECTS_CSE_MASK; } return effects; } EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) { u32 effects = nvme_command_effects(ctrl, ns, opcode); /* * For simplicity, IO to all namespaces is quiesced even if the command * effects say only one namespace is affected. */ if (effects & NVME_CMD_EFFECTS_CSE_MASK) { mutex_lock(&ctrl->scan_lock); mutex_lock(&ctrl->subsys->lock); nvme_mpath_start_freeze(ctrl->subsys); nvme_mpath_wait_freeze(ctrl->subsys); nvme_start_freeze(ctrl); nvme_wait_freeze(ctrl); } return effects; } EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, struct nvme_command *cmd, int status) { if (effects & NVME_CMD_EFFECTS_CSE_MASK) { nvme_unfreeze(ctrl); nvme_mpath_unfreeze(ctrl->subsys); mutex_unlock(&ctrl->subsys->lock); mutex_unlock(&ctrl->scan_lock); } if (effects & NVME_CMD_EFFECTS_CCC) { if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags)) { dev_info(ctrl->device, "controller capabilities changed, reset may be required to take effect.\n"); } } if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { nvme_queue_scan(ctrl); flush_work(&ctrl->scan_work); } if (ns) return; switch (cmd->common.opcode) { case nvme_admin_set_features: switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { case NVME_FEAT_KATO: /* * Keep alive commands interval on the host should be * updated when KATO is modified by Set Features * commands. */ if (!status) nvme_update_keep_alive(ctrl, cmd); break; default: break; } break; default: break; } } EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); /* * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: * * The host should send Keep Alive commands at half of the Keep Alive Timeout * accounting for transport roundtrip times [..]. */ static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) { unsigned long delay = ctrl->kato * HZ / 2; /* * When using Traffic Based Keep Alive, we need to run * nvme_keep_alive_work at twice the normal frequency, as one * command completion can postpone sending a keep alive command * by up to twice the delay between runs. */ if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) delay /= 2; return delay; } static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) { unsigned long now = jiffies; unsigned long delay = nvme_keep_alive_work_period(ctrl); unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; if (time_after(now, ka_next_check_tm)) delay = 0; else delay = ka_next_check_tm - now; queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); } static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, blk_status_t status) { struct nvme_ctrl *ctrl = rq->end_io_data; unsigned long rtt = jiffies - (rq->deadline - rq->timeout); unsigned long delay = nvme_keep_alive_work_period(ctrl); enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); /* * Subtract off the keepalive RTT so nvme_keep_alive_work runs * at the desired frequency. */ if (rtt <= delay) { delay -= rtt; } else { dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", jiffies_to_msecs(rtt)); delay = 0; } blk_mq_free_request(rq); if (status) { dev_err(ctrl->device, "failed nvme_keep_alive_end_io error=%d\n", status); return RQ_END_IO_NONE; } ctrl->ka_last_check_time = jiffies; ctrl->comp_seen = false; if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); return RQ_END_IO_NONE; } static void nvme_keep_alive_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_ctrl, ka_work); bool comp_seen = ctrl->comp_seen; struct request *rq; ctrl->ka_last_check_time = jiffies; if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { dev_dbg(ctrl->device, "reschedule traffic based keep-alive timer\n"); ctrl->comp_seen = false; nvme_queue_keep_alive_work(ctrl); return; } rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); if (IS_ERR(rq)) { /* allocation failure, reset the controller */ dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); nvme_reset_ctrl(ctrl); return; } nvme_init_request(rq, &ctrl->ka_cmd); rq->timeout = ctrl->kato * HZ; rq->end_io = nvme_keep_alive_end_io; rq->end_io_data = ctrl; blk_execute_rq_nowait(rq, false); } static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; nvme_queue_keep_alive_work(ctrl); } void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; cancel_delayed_work_sync(&ctrl->ka_work); } EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, struct nvme_command *cmd) { unsigned int new_kato = DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); dev_info(ctrl->device, "keep alive interval updated from %u ms to %u ms\n", ctrl->kato * 1000 / 2, new_kato * 1000 / 2); nvme_stop_keep_alive(ctrl); ctrl->kato = new_kato; nvme_start_keep_alive(ctrl); } static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) { /* * The CNS field occupies a full byte starting with NVMe 1.2 */ if (ctrl->vs >= NVME_VS(1, 2, 0)) return true; /* * NVMe 1.1 expanded the CNS value to two bits, which means values * larger than that could get truncated and treated as an incorrect * value. * * Qemu implemented 1.0 behavior for controllers claiming 1.1 * compliance, so they need to be quirked here. */ if (ctrl->vs >= NVME_VS(1, 1, 0) && !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) return cns <= 3; /* * NVMe 1.0 used a single bit for the CNS value. */ return cns <= 1; } static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_CTRL; *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ctrl)); if (error) { kfree(*id); *id = NULL; } return error; } static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, struct nvme_ns_id_desc *cur, bool *csi_seen) { const char *warn_str = "ctrl returned bogus length:"; void *data = cur; switch (cur->nidt) { case NVME_NIDT_EUI64: if (cur->nidl != NVME_NIDT_EUI64_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", warn_str, cur->nidl); return -1; } if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) return NVME_NIDT_EUI64_LEN; memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); return NVME_NIDT_EUI64_LEN; case NVME_NIDT_NGUID: if (cur->nidl != NVME_NIDT_NGUID_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", warn_str, cur->nidl); return -1; } if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) return NVME_NIDT_NGUID_LEN; memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); return NVME_NIDT_NGUID_LEN; case NVME_NIDT_UUID: if (cur->nidl != NVME_NIDT_UUID_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", warn_str, cur->nidl); return -1; } if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) return NVME_NIDT_UUID_LEN; uuid_copy(&ids->uuid, data + sizeof(*cur)); return NVME_NIDT_UUID_LEN; case NVME_NIDT_CSI: if (cur->nidl != NVME_NIDT_CSI_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", warn_str, cur->nidl); return -1; } memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); *csi_seen = true; return NVME_NIDT_CSI_LEN; default: /* Skip unknown types */ return cur->nidl; } } static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) { struct nvme_command c = { }; bool csi_seen = false; int status, pos, len; void *data; if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) return 0; if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) return 0; c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(info->nsid); c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); if (!data) return -ENOMEM; status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, NVME_IDENTIFY_DATA_SIZE); if (status) { dev_warn(ctrl->device, "Identify Descriptors failed (nsid=%u, status=0x%x)\n", info->nsid, status); goto free_data; } for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; if (cur->nidl == 0) break; len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); if (len < 0) break; len += sizeof(*cur); } if (nvme_multi_css(ctrl) && !csi_seen) { dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", info->nsid); status = -EINVAL; } free_data: kfree(data); return status; } int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, struct nvme_id_ns **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.cns = NVME_ID_CNS_NS; *id = kmalloc(sizeof(**id), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); if (error) { dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); kfree(*id); *id = NULL; } return error; } static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) { struct nvme_ns_ids *ids = &info->ids; struct nvme_id_ns *id; int ret; ret = nvme_identify_ns(ctrl, info->nsid, &id); if (ret) return ret; if (id->ncap == 0) { /* namespace not allocated or attached */ info->is_removed = true; ret = -ENODEV; goto error; } info->anagrpid = id->anagrpid; info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; info->is_ready = true; if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { dev_info(ctrl->device, "Ignoring bogus Namespace Identifiers\n"); } else { if (ctrl->vs >= NVME_VS(1, 1, 0) && !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); if (ctrl->vs >= NVME_VS(1, 2, 0) && !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); } error: kfree(id); return ret; } static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) { struct nvme_id_ns_cs_indep *id; struct nvme_command c = { .identify.opcode = nvme_admin_identify, .identify.nsid = cpu_to_le32(info->nsid), .identify.cns = NVME_ID_CNS_NS_CS_INDEP, }; int ret; id = kmalloc(sizeof(*id), GFP_KERNEL); if (!id) return -ENOMEM; ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); if (!ret) { info->anagrpid = id->anagrpid; info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; info->is_ready = id->nstat & NVME_NSTAT_NRDY; info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; } kfree(id); return ret; } static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { union nvme_result res = { 0 }; struct nvme_command c = { }; int ret; c.features.opcode = op; c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, NVME_QID_ANY, 0); if (ret >= 0 && result) *result = le32_to_cpu(res.u32); return ret; } int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, buflen, result); } EXPORT_SYMBOL_GPL(nvme_set_features); int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, buflen, result); } EXPORT_SYMBOL_GPL(nvme_get_features); int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) { u32 q_count = (*count - 1) | ((*count - 1) << 16); u32 result; int status, nr_io_queues; status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, &result); if (status < 0) return status; /* * Degraded controllers might return an error when setting the queue * count. We still want to be able to bring them online and offer * access to the admin queue, as that might be only way to fix them up. */ if (status > 0) { dev_err(ctrl->device, "Could not set queue count (%d)\n", status); *count = 0; } else { nr_io_queues = min(result & 0xffff, result >> 16) + 1; *count = min(*count, nr_io_queues); } return 0; } EXPORT_SYMBOL_GPL(nvme_set_queue_count); #define NVME_AEN_SUPPORTED \ (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) static void nvme_enable_aen(struct nvme_ctrl *ctrl) { u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; int status; if (!supported_aens) return; status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, NULL, 0, &result); if (status) dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", supported_aens); queue_work(nvme_wq, &ctrl->async_event_work); } static int nvme_ns_open(struct nvme_ns *ns) { /* should never be called due to GENHD_FL_HIDDEN */ if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) goto fail; if (!nvme_get_ns(ns)) goto fail; if (!try_module_get(ns->ctrl->ops->module)) goto fail_put_ns; return 0; fail_put_ns: nvme_put_ns(ns); fail: return -ENXIO; } static void nvme_ns_release(struct nvme_ns *ns) { module_put(ns->ctrl->ops->module); nvme_put_ns(ns); } static int nvme_open(struct gendisk *disk, blk_mode_t mode) { return nvme_ns_open(disk->private_data); } static void nvme_release(struct gendisk *disk) { nvme_ns_release(disk->private_data); } int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bdev->bd_disk) >> 11; return 0; } static bool nvme_init_integrity(struct nvme_ns_head *head, struct queue_limits *lim, struct nvme_ns_info *info) { struct blk_integrity *bi = &lim->integrity; memset(bi, 0, sizeof(*bi)); if (!head->ms) return true; /* * PI can always be supported as we can ask the controller to simply * insert/strip it, which is not possible for other kinds of metadata. */ if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || !(head->features & NVME_NS_METADATA_SUPPORTED)) return nvme_ns_has_pi(head); switch (head->pi_type) { case NVME_NS_DPS_PI_TYPE3: switch (head->guard_type) { case NVME_NVM_NS_16B_GUARD: bi->csum_type = BLK_INTEGRITY_CSUM_CRC; bi->tag_size = sizeof(u16) + sizeof(u32); bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; case NVME_NVM_NS_64B_GUARD: bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; bi->tag_size = sizeof(u16) + 6; bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; default: break; } break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: switch (head->guard_type) { case NVME_NVM_NS_16B_GUARD: bi->csum_type = BLK_INTEGRITY_CSUM_CRC; bi->tag_size = sizeof(u16); bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | BLK_INTEGRITY_REF_TAG; break; case NVME_NVM_NS_64B_GUARD: bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; bi->tag_size = sizeof(u16); bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | BLK_INTEGRITY_REF_TAG; break; default: break; } break; default: break; } bi->tuple_size = head->ms; bi->pi_offset = info->pi_offset; return true; } static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) { struct nvme_ctrl *ctrl = ns->ctrl; if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) lim->max_hw_discard_sectors = nvme_lba_to_sect(ns->head, ctrl->dmrsl); else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) lim->max_hw_discard_sectors = UINT_MAX; else lim->max_hw_discard_sectors = 0; lim->discard_granularity = lim->logical_block_size; if (ctrl->dmrl) lim->max_discard_segments = ctrl->dmrl; else lim->max_discard_segments = NVME_DSM_MAX_RANGES; } static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) { return uuid_equal(&a->uuid, &b->uuid) && memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && a->csi == b->csi; } static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, struct nvme_id_ns_nvm **nvmp) { struct nvme_command c = { .identify.opcode = nvme_admin_identify, .identify.nsid = cpu_to_le32(nsid), .identify.cns = NVME_ID_CNS_CS_NS, .identify.csi = NVME_CSI_NVM, }; struct nvme_id_ns_nvm *nvm; int ret; nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); if (!nvm) return -ENOMEM; ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); if (ret) kfree(nvm); else *nvmp = nvm; return ret; } static void nvme_configure_pi_elbas(struct nvme_ns_head *head, struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) { u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); u8 guard_type; /* no support for storage tag formats right now */ if (nvme_elbaf_sts(elbaf)) return; guard_type = nvme_elbaf_guard_type(elbaf); if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && guard_type == NVME_NVM_NS_QTYPE_GUARD) guard_type = nvme_elbaf_qualified_guard_type(elbaf); head->guard_type = guard_type; switch (head->guard_type) { case NVME_NVM_NS_64B_GUARD: head->pi_size = sizeof(struct crc64_pi_tuple); break; case NVME_NVM_NS_16B_GUARD: head->pi_size = sizeof(struct t10_pi_tuple); break; default: break; } } static void nvme_configure_metadata(struct nvme_ctrl *ctrl, struct nvme_ns_head *head, struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) { head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); head->pi_type = 0; head->pi_size = 0; head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) return; if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { nvme_configure_pi_elbas(head, id, nvm); } else { head->pi_size = sizeof(struct t10_pi_tuple); head->guard_type = NVME_NVM_NS_16B_GUARD; } if (head->pi_size && head->ms >= head->pi_size) head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { if (disable_pi_offsets) head->pi_type = 0; else info->pi_offset = head->ms - head->pi_size; } if (ctrl->ops->flags & NVME_F_FABRICS) { /* * The NVMe over Fabrics specification only supports metadata as * part of the extended data LBA. We rely on HCA/HBA support to * remap the separate metadata buffer from the block layer. */ if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) return; head->features |= NVME_NS_EXT_LBAS; /* * The current fabrics transport drivers support namespace * metadata formats only if nvme_ns_has_pi() returns true. * Suppress support for all other formats so the namespace will * have a 0 capacity and not be usable through the block stack. * * Note, this check will need to be modified if any drivers * gain the ability to use other metadata formats. */ if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) head->features |= NVME_NS_METADATA_SUPPORTED; } else { /* * For PCIe controllers, we can't easily remap the separate * metadata buffer from the block layer and thus require a * separate metadata buffer for block layer metadata/PI support. * We allow extended LBAs for the passthrough interface, though. */ if (id->flbas & NVME_NS_FLBAS_META_EXT) head->features |= NVME_NS_EXT_LBAS; else head->features |= NVME_NS_METADATA_SUPPORTED; } } static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, struct queue_limits *lim, u32 bs, u32 atomic_bs) { unsigned int boundary = 0; if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { if (le16_to_cpu(id->nabspf)) boundary = (le16_to_cpu(id->nabspf) + 1) * bs; } lim->atomic_write_hw_max = atomic_bs; lim->atomic_write_hw_boundary = boundary; lim->atomic_write_hw_unit_min = bs; lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); } static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) { return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; } static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, struct queue_limits *lim) { lim->max_hw_sectors = ctrl->max_hw_sectors; lim->max_segments = min_t(u32, USHRT_MAX, min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); lim->max_integrity_segments = ctrl->max_integrity_segments; lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; lim->max_segment_size = UINT_MAX; lim->dma_alignment = 3; } static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, struct queue_limits *lim) { struct nvme_ns_head *head = ns->head; u32 bs = 1U << head->lba_shift; u32 atomic_bs, phys_bs, io_opt = 0; bool valid = true; /* * The block layer can't support LBA sizes larger than the page size * or smaller than a sector size yet, so catch this early and don't * allow block I/O. */ if (blk_validate_block_size(bs)) { bs = (1 << 9); valid = false; } atomic_bs = phys_bs = bs; if (id->nabo == 0) { /* * Bit 1 indicates whether NAWUPF is defined for this namespace * and whether it should be used instead of AWUPF. If NAWUPF == * 0 then AWUPF must be used instead. */ if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; else atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); } if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { /* NPWG = Namespace Preferred Write Granularity */ phys_bs = bs * (1 + le16_to_cpu(id->npwg)); /* NOWS = Namespace Optimal Write Size */ if (id->nows) io_opt = bs * (1 + le16_to_cpu(id->nows)); } /* * Linux filesystems assume writing a single physical block is * an atomic operation. Hence limit the physical block size to the * value of the Atomic Write Unit Power Fail parameter. */ lim->logical_block_size = bs; lim->physical_block_size = min(phys_bs, atomic_bs); lim->io_min = phys_bs; lim->io_opt = io_opt; if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) lim->max_write_zeroes_sectors = UINT_MAX; else lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; return valid; } static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) { return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); } static inline bool nvme_first_scan(struct gendisk *disk) { /* nvme_alloc_ns() scans the disk prior to adding it */ return !disk_live(disk); } static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, struct queue_limits *lim) { struct nvme_ctrl *ctrl = ns->ctrl; u32 iob; if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && is_power_of_2(ctrl->max_hw_sectors)) iob = ctrl->max_hw_sectors; else iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); if (!iob) return; if (!is_power_of_2(iob)) { if (nvme_first_scan(ns->disk)) pr_warn("%s: ignoring unaligned IO boundary:%u\n", ns->disk->disk_name, iob); return; } if (blk_queue_is_zoned(ns->disk->queue)) { if (nvme_first_scan(ns->disk)) pr_warn("%s: ignoring zoned namespace IO boundary\n", ns->disk->disk_name); return; } lim->chunk_sectors = iob; } static int nvme_update_ns_info_generic(struct nvme_ns *ns, struct nvme_ns_info *info) { struct queue_limits lim; int ret; blk_mq_freeze_queue(ns->disk->queue); lim = queue_limits_start_update(ns->disk->queue); nvme_set_ctrl_limits(ns->ctrl, &lim); ret = queue_limits_commit_update(ns->disk->queue, &lim); set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); blk_mq_unfreeze_queue(ns->disk->queue); /* Hide the block-interface for these devices */ if (!ret) ret = -ENODEV; return ret; } static int nvme_update_ns_info_block(struct nvme_ns *ns, struct nvme_ns_info *info) { struct queue_limits lim; struct nvme_id_ns_nvm *nvm = NULL; struct nvme_zone_info zi = {}; struct nvme_id_ns *id; sector_t capacity; unsigned lbaf; int ret; ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); if (ret) return ret; if (id->ncap == 0) { /* namespace not allocated or attached */ info->is_removed = true; ret = -ENXIO; goto out; } lbaf = nvme_lbaf_index(id->flbas); if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); if (ret < 0) goto out; } if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && ns->head->ids.csi == NVME_CSI_ZNS) { ret = nvme_query_zone_info(ns, lbaf, &zi); if (ret < 0) goto out; } blk_mq_freeze_queue(ns->disk->queue); ns->head->lba_shift = id->lbaf[lbaf].ds; ns->head->nuse = le64_to_cpu(id->nuse); capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); lim = queue_limits_start_update(ns->disk->queue); nvme_set_ctrl_limits(ns->ctrl, &lim); nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); nvme_set_chunk_sectors(ns, id, &lim); if (!nvme_update_disk_info(ns, id, &lim)) capacity = 0; nvme_config_discard(ns, &lim); if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && ns->head->ids.csi == NVME_CSI_ZNS) nvme_update_zone_info(ns, &lim, &zi); if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; else lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); if (info->is_rotational) lim.features |= BLK_FEAT_ROTATIONAL; /* * Register a metadata profile for PI, or the plain non-integrity NVMe * metadata masquerading as Type 0 if supported, otherwise reject block * I/O to namespaces with metadata except when the namespace supports * PI, as it can strip/insert in that case. */ if (!nvme_init_integrity(ns->head, &lim, info)) capacity = 0; ret = queue_limits_commit_update(ns->disk->queue, &lim); if (ret) { blk_mq_unfreeze_queue(ns->disk->queue); goto out; } set_capacity_and_notify(ns->disk, capacity); /* * Only set the DEAC bit if the device guarantees that reads from * deallocated data return zeroes. While the DEAC bit does not * require that, it must be a no-op if reads from deallocated data * do not return zeroes. */ if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) ns->head->features |= NVME_NS_DEAC; set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); set_bit(NVME_NS_READY, &ns->flags); blk_mq_unfreeze_queue(ns->disk->queue); if (blk_queue_is_zoned(ns->queue)) { ret = blk_revalidate_disk_zones(ns->disk); if (ret && !nvme_first_scan(ns->disk)) goto out; } ret = 0; out: kfree(nvm); kfree(id); return ret; } static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) { bool unsupported = false; int ret; switch (info->ids.csi) { case NVME_CSI_ZNS: if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { dev_info(ns->ctrl->device, "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", info->nsid); ret = nvme_update_ns_info_generic(ns, info); break; } ret = nvme_update_ns_info_block(ns, info); break; case NVME_CSI_NVM: ret = nvme_update_ns_info_block(ns, info); break; default: dev_info(ns->ctrl->device, "block device for nsid %u not supported (csi %u)\n", info->nsid, info->ids.csi); ret = nvme_update_ns_info_generic(ns, info); break; } /* * If probing fails due an unsupported feature, hide the block device, * but still allow other access. */ if (ret == -ENODEV) { ns->disk->flags |= GENHD_FL_HIDDEN; set_bit(NVME_NS_READY, &ns->flags); unsupported = true; ret = 0; } if (!ret && nvme_ns_head_multipath(ns->head)) { struct queue_limits *ns_lim = &ns->disk->queue->limits; struct queue_limits lim; blk_mq_freeze_queue(ns->head->disk->queue); /* * queue_limits mixes values that are the hardware limitations * for bio splitting with what is the device configuration. * * For NVMe the device configuration can change after e.g. a * Format command, and we really want to pick up the new format * value here. But we must still stack the queue limits to the * least common denominator for multipathing to split the bios * properly. * * To work around this, we explicitly set the device * configuration to those that we just queried, but only stack * the splitting limits in to make sure we still obey possibly * lower limitations of other controllers. */ lim = queue_limits_start_update(ns->head->disk->queue); lim.logical_block_size = ns_lim->logical_block_size; lim.physical_block_size = ns_lim->physical_block_size; lim.io_min = ns_lim->io_min; lim.io_opt = ns_lim->io_opt; queue_limits_stack_bdev(&lim, ns->disk->part0, 0, ns->head->disk->disk_name); if (unsupported) ns->head->disk->flags |= GENHD_FL_HIDDEN; else nvme_init_integrity(ns->head, &lim, info); ret = queue_limits_commit_update(ns->head->disk->queue, &lim); set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); nvme_mpath_revalidate_paths(ns); blk_mq_unfreeze_queue(ns->head->disk->queue); } return ret; } int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], enum blk_unique_id type) { struct nvme_ns_ids *ids = &ns->head->ids; if (type != BLK_UID_EUI64) return -EINVAL; if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { memcpy(id, &ids->nguid, sizeof(ids->nguid)); return sizeof(ids->nguid); } if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { memcpy(id, &ids->eui64, sizeof(ids->eui64)); return sizeof(ids->eui64); } return -EINVAL; } static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], enum blk_unique_id type) { return nvme_ns_get_unique_id(disk->private_data, id, type); } #ifdef CONFIG_BLK_SED_OPAL static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, bool send) { struct nvme_ctrl *ctrl = data; struct nvme_command cmd = { }; if (send) cmd.common.opcode = nvme_admin_security_send; else cmd.common.opcode = nvme_admin_security_recv; cmd.common.nsid = 0; cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); cmd.common.cdw11 = cpu_to_le32(len); return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); } static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) { if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { if (!ctrl->opal_dev) ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); else if (was_suspended) opal_unlock_from_suspend(ctrl->opal_dev); } else { free_opal_dev(ctrl->opal_dev); ctrl->opal_dev = NULL; } } #else static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) { } #endif /* CONFIG_BLK_SED_OPAL */ #ifdef CONFIG_BLK_DEV_ZONED static int nvme_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data) { return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, data); } #else #define nvme_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ const struct block_device_operations nvme_bdev_ops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = blkdev_compat_ptr_ioctl, .open = nvme_open, .release = nvme_release, .getgeo = nvme_getgeo, .get_unique_id = nvme_get_unique_id, .report_zones = nvme_report_zones, .pr_ops = &nvme_pr_ops, }; static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, u32 timeout, const char *op) { unsigned long timeout_jiffies = jiffies + timeout * HZ; u32 csts; int ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if (csts == ~0) return -ENODEV; if ((csts & mask) == val) break; usleep_range(1000, 2000); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout_jiffies)) { dev_err(ctrl->device, "Device not ready; aborting %s, CSTS=0x%x\n", op, csts); return -ENODEV; } } return ret; } int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) { int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; if (shutdown) ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; else ctrl->ctrl_config &= ~NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; if (shutdown) { return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT, ctrl->shutdown_timeout, "shutdown"); } if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) msleep(NVME_QUIRK_DELAY_AMOUNT); return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); } EXPORT_SYMBOL_GPL(nvme_disable_ctrl); int nvme_enable_ctrl(struct nvme_ctrl *ctrl) { unsigned dev_page_min; u32 timeout; int ret; ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); if (ret) { dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); return ret; } dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { dev_err(ctrl->device, "Minimum device page size %u too large for host (%u)\n", 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); return -ENODEV; } if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) ctrl->ctrl_config = NVME_CC_CSS_CSI; else ctrl->ctrl_config = NVME_CC_CSS_NVM; /* * Setting CRIME results in CSTS.RDY before the media is ready. This * makes it possible for media related commands to return the error * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is * restructured to handle retries, disable CC.CRIME. */ ctrl->ctrl_config &= ~NVME_CC_CRIME; ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; /* CAP value may change after initial CC write */ ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); if (ret) return ret; timeout = NVME_CAP_TIMEOUT(ctrl->cap); if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { u32 crto, ready_timeout; ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); if (ret) { dev_err(ctrl->device, "Reading CRTO failed (%d)\n", ret); return ret; } /* * CRTO should always be greater or equal to CAP.TO, but some * devices are known to get this wrong. Use the larger of the * two values. */ ready_timeout = NVME_CRTO_CRWMT(crto); if (ready_timeout < timeout) dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", crto, ctrl->cap); else timeout = ready_timeout; } ctrl->ctrl_config |= NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, (timeout + 1) / 2, "initialisation"); } EXPORT_SYMBOL_GPL(nvme_enable_ctrl); static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) { __le64 ts; int ret; if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) return 0; ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), NULL); if (ret) dev_warn_once(ctrl->device, "could not set timestamp (%d)\n", ret); return ret; } static int nvme_configure_host_options(struct nvme_ctrl *ctrl) { struct nvme_feat_host_behavior *host; u8 acre = 0, lbafee = 0; int ret; /* Don't bother enabling the feature if retry delay is not reported */ if (ctrl->crdt[0]) acre = NVME_ENABLE_ACRE; if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) lbafee = NVME_ENABLE_LBAFEE; if (!acre && !lbafee) return 0; host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) return 0; host->acre = acre; host->lbafee = lbafee; ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, host, sizeof(*host), NULL); kfree(host); return ret; } /* * The function checks whether the given total (exlat + enlat) latency of * a power state allows the latter to be used as an APST transition target. * It does so by comparing the latency to the primary and secondary latency * tolerances defined by module params. If there's a match, the corresponding * timeout value is returned and the matching tolerance index (1 or 2) is * reported. */ static bool nvme_apst_get_transition_time(u64 total_latency, u64 *transition_time, unsigned *last_index) { if (total_latency <= apst_primary_latency_tol_us) { if (*last_index == 1) return false; *last_index = 1; *transition_time = apst_primary_timeout_ms; return true; } if (apst_secondary_timeout_ms && total_latency <= apst_secondary_latency_tol_us) { if (*last_index <= 2) return false; *last_index = 2; *transition_time = apst_secondary_timeout_ms; return true; } return false; } /* * APST (Autonomous Power State Transition) lets us program a table of power * state transitions that the controller will perform automatically. * * Depending on module params, one of the two supported techniques will be used: * * - If the parameters provide explicit timeouts and tolerances, they will be * used to build a table with up to 2 non-operational states to transition to. * The default parameter values were selected based on the values used by * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic * regeneration of the APST table in the event of switching between external * and battery power, the timeouts and tolerances reflect a compromise * between values used by Microsoft for AC and battery scenarios. * - If not, we'll configure the table with a simple heuristic: we are willing * to spend at most 2% of the time transitioning between power states. * Therefore, when running in any given state, we will enter the next * lower-power non-operational state after waiting 50 * (enlat + exlat) * microseconds, as long as that state's exit latency is under the requested * maximum latency. * * We will not autonomously enter any non-operational state for which the total * latency exceeds ps_max_latency_us. * * Users can set ps_max_latency_us to zero to turn off APST. */ static int nvme_configure_apst(struct nvme_ctrl *ctrl) { struct nvme_feat_auto_pst *table; unsigned apste = 0; u64 max_lat_us = 0; __le64 target = 0; int max_ps = -1; int state; int ret; unsigned last_lt_index = UINT_MAX; /* * If APST isn't supported or if we haven't been initialized yet, * then don't do anything. */ if (!ctrl->apsta) return 0; if (ctrl->npss > 31) { dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); return 0; } table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return 0; if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { /* Turn off APST. */ dev_dbg(ctrl->device, "APST disabled\n"); goto done; } /* * Walk through all states from lowest- to highest-power. * According to the spec, lower-numbered states use more power. NPSS, * despite the name, is the index of the lowest-power state, not the * number of states. */ for (state = (int)ctrl->npss; state >= 0; state--) { u64 total_latency_us, exit_latency_us, transition_ms; if (target) table->entries[state] = target; /* * Don't allow transitions to the deepest state if it's quirked * off. */ if (state == ctrl->npss && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) continue; /* * Is this state a useful non-operational state for higher-power * states to autonomously transition to? */ if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) continue; exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); if (exit_latency_us > ctrl->ps_max_latency_us) continue; total_latency_us = exit_latency_us + le32_to_cpu(ctrl->psd[state].entry_lat); /* * This state is good. It can be used as the APST idle target * for higher power states. */ if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { if (!nvme_apst_get_transition_time(total_latency_us, &transition_ms, &last_lt_index)) continue; } else { transition_ms = total_latency_us + 19; do_div(transition_ms, 20); if (transition_ms > (1 << 24) - 1) transition_ms = (1 << 24) - 1; } target = cpu_to_le64((state << 3) | (transition_ms << 8)); if (max_ps == -1) max_ps = state; if (total_latency_us > max_lat_us) max_lat_us = total_latency_us; } if (max_ps == -1) dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); else dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", max_ps, max_lat_us, (int)sizeof(*table), table); apste = 1; done: ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, table, sizeof(*table), NULL); if (ret) dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); kfree(table); return ret; } static void nvme_set_latency_tolerance(struct device *dev, s32 val) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); u64 latency; switch (val) { case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: case PM_QOS_LATENCY_ANY: latency = U64_MAX; break; default: latency = val; } if (ctrl->ps_max_latency_us != latency) { ctrl->ps_max_latency_us = latency; if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) nvme_configure_apst(ctrl); } } struct nvme_core_quirk_entry { /* * NVMe model and firmware strings are padded with spaces. For * simplicity, strings in the quirk table are padded with NULLs * instead. */ u16 vid; const char *mn; const char *fr; unsigned long quirks; }; static const struct nvme_core_quirk_entry core_quirks[] = { { /* * This Toshiba device seems to die using any APST states. See: * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 */ .vid = 0x1179, .mn = "THNSF5256GPUK TOSHIBA", .quirks = NVME_QUIRK_NO_APST, }, { /* * This LiteON CL1-3D*-Q11 firmware version has a race * condition associated with actions related to suspend to idle * LiteON has resolved the problem in future firmware */ .vid = 0x14a4, .fr = "22301111", .quirks = NVME_QUIRK_SIMPLE_SUSPEND, }, { /* * This Kioxia CD6-V Series / HPE PE8030 device times out and * aborts I/O during any load, but more easily reproducible * with discards (fstrim). * * The device is left in a state where it is also not possible * to use "nvme set-feature" to disable APST, but booting with * nvme_core.default_ps_max_latency=0 works. */ .vid = 0x1e0f, .mn = "KCD6XVUL6T40", .quirks = NVME_QUIRK_NO_APST, }, { /* * The external Samsung X5 SSD fails initialization without a * delay before checking if it is ready and has a whole set of * other problems. To make this even more interesting, it * shares the PCI ID with internal Samsung 970 Evo Plus that * does not need or want these quirks. */ .vid = 0x144d, .mn = "Samsung Portable SSD X5", .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | NVME_QUIRK_NO_DEEPEST_PS | NVME_QUIRK_IGNORE_DEV_SUBNQN, } }; /* match is null-terminated but idstr is space-padded. */ static bool string_matches(const char *idstr, const char *match, size_t len) { size_t matchlen; if (!match) return true; matchlen = strlen(match); WARN_ON_ONCE(matchlen > len); if (memcmp(idstr, match, matchlen)) return false; for (; matchlen < len; matchlen++) if (idstr[matchlen] != ' ') return false; return true; } static bool quirk_matches(const struct nvme_id_ctrl *id, const struct nvme_core_quirk_entry *q) { return q->vid == le16_to_cpu(id->vid) && string_matches(id->mn, q->mn, sizeof(id->mn)) && string_matches(id->fr, q->fr, sizeof(id->fr)); } static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { size_t nqnlen; int off; if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); return; } if (ctrl->vs >= NVME_VS(1, 2, 1)) dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); } /* * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe * Base Specification 2.0. It is slightly different from the format * specified there due to historic reasons, and we can't change it now. */ off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, "nqn.2014.08.org.nvmexpress:%04x%04x", le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); off += sizeof(id->sn); memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); off += sizeof(id->mn); memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); } static void nvme_release_subsystem(struct device *dev) { struct nvme_subsystem *subsys = container_of(dev, struct nvme_subsystem, dev); if (subsys->instance >= 0) ida_free(&nvme_instance_ida, subsys->instance); kfree(subsys); } static void nvme_destroy_subsystem(struct kref *ref) { struct nvme_subsystem *subsys = container_of(ref, struct nvme_subsystem, ref); mutex_lock(&nvme_subsystems_lock); list_del(&subsys->entry); mutex_unlock(&nvme_subsystems_lock); ida_destroy(&subsys->ns_ida); device_del(&subsys->dev); put_device(&subsys->dev); } static void nvme_put_subsystem(struct nvme_subsystem *subsys) { kref_put(&subsys->ref, nvme_destroy_subsystem); } static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) { struct nvme_subsystem *subsys; lockdep_assert_held(&nvme_subsystems_lock); /* * Fail matches for discovery subsystems. This results * in each discovery controller bound to a unique subsystem. * This avoids issues with validating controller values * that can only be true when there is a single unique subsystem. * There may be multiple and completely independent entities * that provide discovery controllers. */ if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) return NULL; list_for_each_entry(subsys, &nvme_subsystems, entry) { if (strcmp(subsys->subnqn, subsysnqn)) continue; if (!kref_get_unless_zero(&subsys->ref)) continue; return subsys; } return NULL; } static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) { return ctrl->opts && ctrl->opts->discovery_nqn; } static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { struct nvme_ctrl *tmp; lockdep_assert_held(&nvme_subsystems_lock); list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { if (nvme_state_terminal(tmp)) continue; if (tmp->cntlid == ctrl->cntlid) { dev_err(ctrl->device, "Duplicate cntlid %u with %s, subsys %s, rejecting\n", ctrl->cntlid, dev_name(tmp->device), subsys->subnqn); return false; } if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || nvme_discovery_ctrl(ctrl)) continue; dev_err(ctrl->device, "Subsystem does not support multiple controllers\n"); return false; } return true; } static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { struct nvme_subsystem *subsys, *found; int ret; subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); if (!subsys) return -ENOMEM; subsys->instance = -1; mutex_init(&subsys->lock); kref_init(&subsys->ref); INIT_LIST_HEAD(&subsys->ctrls); INIT_LIST_HEAD(&subsys->nsheads); nvme_init_subnqn(subsys, ctrl, id); memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); memcpy(subsys->model, id->mn, sizeof(subsys->model)); subsys->vendor_id = le16_to_cpu(id->vid); subsys->cmic = id->cmic; /* Versions prior to 1.4 don't necessarily report a valid type */ if (id->cntrltype == NVME_CTRL_DISC || !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) subsys->subtype = NVME_NQN_DISC; else subsys->subtype = NVME_NQN_NVME; if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { dev_err(ctrl->device, "Subsystem %s is not a discovery controller", subsys->subnqn); kfree(subsys); return -EINVAL; } subsys->awupf = le16_to_cpu(id->awupf); nvme_mpath_default_iopolicy(subsys); subsys->dev.class = &nvme_subsys_class; subsys->dev.release = nvme_release_subsystem; subsys->dev.groups = nvme_subsys_attrs_groups; dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); device_initialize(&subsys->dev); mutex_lock(&nvme_subsystems_lock); found = __nvme_find_get_subsystem(subsys->subnqn); if (found) { put_device(&subsys->dev); subsys = found; if (!nvme_validate_cntlid(subsys, ctrl, id)) { ret = -EINVAL; goto out_put_subsystem; } } else { ret = device_add(&subsys->dev); if (ret) { dev_err(ctrl->device, "failed to register subsystem device.\n"); put_device(&subsys->dev); goto out_unlock; } ida_init(&subsys->ns_ida); list_add_tail(&subsys->entry, &nvme_subsystems); } ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, dev_name(ctrl->device)); if (ret) { dev_err(ctrl->device, "failed to create sysfs link from subsystem.\n"); goto out_put_subsystem; } if (!found) subsys->instance = ctrl->instance; ctrl->subsys = subsys; list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); mutex_unlock(&nvme_subsystems_lock); return 0; out_put_subsystem: nvme_put_subsystem(subsys); out_unlock: mutex_unlock(&nvme_subsystems_lock); return ret; } int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, void *log, size_t size, u64 offset) { struct nvme_command c = { }; u32 dwlen = nvme_bytes_to_numd(size); c.get_log_page.opcode = nvme_admin_get_log_page; c.get_log_page.nsid = cpu_to_le32(nsid); c.get_log_page.lid = log_page; c.get_log_page.lsp = lsp; c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); c.get_log_page.csi = csi; return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); } static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, struct nvme_effects_log **log) { struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); int ret; if (cel) goto out; cel = kzalloc(sizeof(*cel), GFP_KERNEL); if (!cel) return -ENOMEM; ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, cel, sizeof(*cel), 0); if (ret) { kfree(cel); return ret; } xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); out: *log = cel; return 0; } static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) { u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; if (check_shl_overflow(1U, units + page_shift - 9, &val)) return UINT_MAX; return val; } static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) { struct nvme_command c = { }; struct nvme_id_ctrl_nvm *id; int ret; /* * Even though NVMe spec explicitly states that MDTS is not applicable * to the write-zeroes, we are cautious and limit the size to the * controllers max_hw_sectors value, which is based on the MDTS field * and possibly other limiting factors. */ if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; else ctrl->max_zeroes_sectors = 0; if (ctrl->subsys->subtype != NVME_NQN_NVME || !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) return 0; id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) return -ENOMEM; c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_CS_CTRL; c.identify.csi = NVME_CSI_NVM; ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); if (ret) goto free_data; ctrl->dmrl = id->dmrl; ctrl->dmrsl = le32_to_cpu(id->dmrsl); if (id->wzsl) ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); free_data: if (ret > 0) set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); kfree(id); return ret; } static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) { struct nvme_effects_log *log = ctrl->effects; log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | NVME_CMD_EFFECTS_CSE_MASK); log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK); /* * The spec says the result of a security receive command depends on * the previous security send command. As such, many vendors log this * command as one to submitted only when no other commands to the same * namespace are outstanding. The intention is to tell the host to * prevent mixing security send and receive. * * This driver can only enforce such exclusive access against IO * queues, though. We are not readily able to enforce such a rule for * two commands to the admin queue, which is the only queue that * matters for this command. * * Rather than blindly freezing the IO queues for this effect that * doesn't even apply to IO, mask it off. */ log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); } static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { int ret = 0; if (ctrl->effects) return 0; if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); if (ret < 0) return ret; } if (!ctrl->effects) { ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); if (!ctrl->effects) return -ENOMEM; xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); } nvme_init_known_nvm_effects(ctrl); return 0; } static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { /* * In fabrics we need to verify the cntlid matches the * admin connect */ if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { dev_err(ctrl->device, "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", ctrl->cntlid, le16_to_cpu(id->cntlid)); return -EINVAL; } if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { dev_err(ctrl->device, "keep-alive support is mandatory for fabrics\n"); return -EINVAL; } if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { dev_err(ctrl->device, "I/O queue command capsule supported size %d < 4\n", ctrl->ioccsz); return -EINVAL; } if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { dev_err(ctrl->device, "I/O queue response capsule supported size %d < 1\n", ctrl->iorcsz); return -EINVAL; } if (!ctrl->maxcmd) { dev_warn(ctrl->device, "Firmware bug: maximum outstanding commands is 0\n"); ctrl->maxcmd = ctrl->sqsize + 1; } return 0; } static int nvme_init_identify(struct nvme_ctrl *ctrl) { struct queue_limits lim; struct nvme_id_ctrl *id; u32 max_hw_sectors; bool prev_apst_enabled; int ret; ret = nvme_identify_ctrl(ctrl, &id); if (ret) { dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); return -EIO; } if (!(ctrl->ops->flags & NVME_F_FABRICS)) ctrl->cntlid = le16_to_cpu(id->cntlid); if (!ctrl->identified) { unsigned int i; /* * Check for quirks. Quirk can depend on firmware version, * so, in principle, the set of quirks present can change * across a reset. As a possible future enhancement, we * could re-scan for quirks every time we reinitialize * the device, but we'd have to make sure that the driver * behaves intelligently if the quirks change. */ for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { if (quirk_matches(id, &core_quirks[i])) ctrl->quirks |= core_quirks[i].quirks; } ret = nvme_init_subsystem(ctrl, id); if (ret) goto out_free; ret = nvme_init_effects(ctrl, id); if (ret) goto out_free; } memcpy(ctrl->subsys->firmware_rev, id->fr, sizeof(ctrl->subsys->firmware_rev)); if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; } ctrl->crdt[0] = le16_to_cpu(id->crdt1); ctrl->crdt[1] = le16_to_cpu(id->crdt2); ctrl->crdt[2] = le16_to_cpu(id->crdt3); ctrl->oacs = le16_to_cpu(id->oacs); ctrl->oncs = le16_to_cpu(id->oncs); ctrl->mtfa = le16_to_cpu(id->mtfa); ctrl->oaes = le32_to_cpu(id->oaes); ctrl->wctemp = le16_to_cpu(id->wctemp); ctrl->cctemp = le16_to_cpu(id->cctemp); atomic_set(&ctrl->abort_limit, id->acl + 1); ctrl->vwc = id->vwc; if (id->mdts) max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); else max_hw_sectors = UINT_MAX; ctrl->max_hw_sectors = min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); lim = queue_limits_start_update(ctrl->admin_q); nvme_set_ctrl_limits(ctrl, &lim); ret = queue_limits_commit_update(ctrl->admin_q, &lim); if (ret) goto out_free; ctrl->sgls = le32_to_cpu(id->sgls); ctrl->kas = le16_to_cpu(id->kas); ctrl->max_namespaces = le32_to_cpu(id->mnan); ctrl->ctratt = le32_to_cpu(id->ctratt); ctrl->cntrltype = id->cntrltype; ctrl->dctype = id->dctype; if (id->rtd3e) { /* us -> s */ u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, shutdown_timeout, 60); if (ctrl->shutdown_timeout != shutdown_timeout) dev_info(ctrl->device, "D3 entry latency set to %u seconds\n", ctrl->shutdown_timeout); } else ctrl->shutdown_timeout = shutdown_timeout; ctrl->npss = id->npss; ctrl->apsta = id->apsta; prev_apst_enabled = ctrl->apst_enabled; if (ctrl->quirks & NVME_QUIRK_NO_APST) { if (force_apst && id->apsta) { dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); ctrl->apst_enabled = true; } else { ctrl->apst_enabled = false; } } else { ctrl->apst_enabled = id->apsta; } memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); if (ctrl->ops->flags & NVME_F_FABRICS) { ctrl->icdoff = le16_to_cpu(id->icdoff); ctrl->ioccsz = le32_to_cpu(id->ioccsz); ctrl->iorcsz = le32_to_cpu(id->iorcsz); ctrl->maxcmd = le16_to_cpu(id->maxcmd); ret = nvme_check_ctrl_fabric_info(ctrl, id); if (ret) goto out_free; } else { ctrl->hmpre = le32_to_cpu(id->hmpre); ctrl->hmmin = le32_to_cpu(id->hmmin); ctrl->hmminds = le32_to_cpu(id->hmminds); ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); } ret = nvme_mpath_init_identify(ctrl, id); if (ret < 0) goto out_free; if (ctrl->apst_enabled && !prev_apst_enabled) dev_pm_qos_expose_latency_tolerance(ctrl->device); else if (!ctrl->apst_enabled && prev_apst_enabled) dev_pm_qos_hide_latency_tolerance(ctrl->device); out_free: kfree(id); return ret; } /* * Initialize the cached copies of the Identify data and various controller * register in our nvme_ctrl structure. This should be called as soon as * the admin queue is fully up and running. */ int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) { int ret; ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); if (ret) { dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); return ret; } ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); if (ctrl->vs >= NVME_VS(1, 1, 0)) ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); ret = nvme_init_identify(ctrl); if (ret) return ret; ret = nvme_configure_apst(ctrl); if (ret < 0) return ret; ret = nvme_configure_timestamp(ctrl); if (ret < 0) return ret; ret = nvme_configure_host_options(ctrl); if (ret < 0) return ret; nvme_configure_opal(ctrl, was_suspended); if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { /* * Do not return errors unless we are in a controller reset, * the controller works perfectly fine without hwmon. */ ret = nvme_hwmon_init(ctrl); if (ret == -EINTR) return ret; } clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); ctrl->identified = true; nvme_start_keep_alive(ctrl); return 0; } EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); static int nvme_dev_open(struct inode *inode, struct file *file) { struct nvme_ctrl *ctrl = container_of(inode->i_cdev, struct nvme_ctrl, cdev); switch (nvme_ctrl_state(ctrl)) { case NVME_CTRL_LIVE: break; default: return -EWOULDBLOCK; } nvme_get_ctrl(ctrl); if (!try_module_get(ctrl->ops->module)) { nvme_put_ctrl(ctrl); return -EINVAL; } file->private_data = ctrl; return 0; } static int nvme_dev_release(struct inode *inode, struct file *file) { struct nvme_ctrl *ctrl = container_of(inode->i_cdev, struct nvme_ctrl, cdev); module_put(ctrl->ops->module); nvme_put_ctrl(ctrl); return 0; } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .release = nvme_dev_release, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = compat_ptr_ioctl, .uring_cmd = nvme_dev_uring_cmd, }; static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns_head *h; lockdep_assert_held(&ctrl->subsys->lock); list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { /* * Private namespaces can share NSIDs under some conditions. * In that case we can't use the same ns_head for namespaces * with the same NSID. */ if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) continue; if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) return h; } return NULL; } static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, struct nvme_ns_ids *ids) { bool has_uuid = !uuid_is_null(&ids->uuid); bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) { if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) return -EINVAL; if (has_nguid && memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) return -EINVAL; if (has_eui64 && memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) return -EINVAL; } return 0; } static void nvme_cdev_rel(struct device *dev) { ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); } void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) { cdev_device_del(cdev, cdev_device); put_device(cdev_device); } int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, const struct file_operations *fops, struct module *owner) { int minor, ret; minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); if (minor < 0) return minor; cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); cdev_device->class = &nvme_ns_chr_class; cdev_device->release = nvme_cdev_rel; device_initialize(cdev_device); cdev_init(cdev, fops); cdev->owner = owner; ret = cdev_device_add(cdev, cdev_device); if (ret) put_device(cdev_device); return ret; } static int nvme_ns_chr_open(struct inode *inode, struct file *file) { return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); } static int nvme_ns_chr_release(struct inode *inode, struct file *file) { nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); return 0; } static const struct file_operations nvme_ns_chr_fops = { .owner = THIS_MODULE, .open = nvme_ns_chr_open, .release = nvme_ns_chr_release, .unlocked_ioctl = nvme_ns_chr_ioctl, .compat_ioctl = compat_ptr_ioctl, .uring_cmd = nvme_ns_chr_uring_cmd, .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, }; static int nvme_add_ns_cdev(struct nvme_ns *ns) { int ret; ns->cdev_device.parent = ns->ctrl->device; ret = dev_set_name(&ns->cdev_device, "ng%dn%d", ns->ctrl->instance, ns->head->instance); if (ret) return ret; return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, ns->ctrl->ops->module); } static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) { struct nvme_ns_head *head; size_t size = sizeof(*head); int ret = -ENOMEM; #ifdef CONFIG_NVME_MULTIPATH size += num_possible_nodes() * sizeof(struct nvme_ns *); #endif head = kzalloc(size, GFP_KERNEL); if (!head) goto out; ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); if (ret < 0) goto out_free_head; head->instance = ret; INIT_LIST_HEAD(&head->list); ret = init_srcu_struct(&head->srcu); if (ret) goto out_ida_remove; head->subsys = ctrl->subsys; head->ns_id = info->nsid; head->ids = info->ids; head->shared = info->is_shared; head->rotational = info->is_rotational; ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); kref_init(&head->ref); if (head->ids.csi) { ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); if (ret) goto out_cleanup_srcu; } else head->effects = ctrl->effects; ret = nvme_mpath_alloc_disk(ctrl, head); if (ret) goto out_cleanup_srcu; list_add_tail(&head->entry, &ctrl->subsys->nsheads); kref_get(&ctrl->subsys->ref); return head; out_cleanup_srcu: cleanup_srcu_struct(&head->srcu); out_ida_remove: ida_free(&ctrl->subsys->ns_ida, head->instance); out_free_head: kfree(head); out: if (ret > 0) ret = blk_status_to_errno(nvme_error_status(ret)); return ERR_PTR(ret); } static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, struct nvme_ns_ids *ids) { struct nvme_subsystem *s; int ret = 0; /* * Note that this check is racy as we try to avoid holding the global * lock over the whole ns_head creation. But it is only intended as * a sanity check anyway. */ mutex_lock(&nvme_subsystems_lock); list_for_each_entry(s, &nvme_subsystems, entry) { if (s == this) continue; mutex_lock(&s->lock); ret = nvme_subsys_check_duplicate_ids(s, ids); mutex_unlock(&s->lock); if (ret) break; } mutex_unlock(&nvme_subsystems_lock); return ret; } static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) { struct nvme_ctrl *ctrl = ns->ctrl; struct nvme_ns_head *head = NULL; int ret; ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); if (ret) { /* * We've found two different namespaces on two different * subsystems that report the same ID. This is pretty nasty * for anything that actually requires unique device * identification. In the kernel we need this for multipathing, * and in user space the /dev/disk/by-id/ links rely on it. * * If the device also claims to be multi-path capable back off * here now and refuse the probe the second device as this is a * recipe for data corruption. If not this is probably a * cheap consumer device if on the PCIe bus, so let the user * proceed and use the shiny toy, but warn that with changing * probing order (which due to our async probing could just be * device taking longer to startup) the other device could show * up at any time. */ nvme_print_device_info(ctrl); if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && info->is_shared)) { dev_err(ctrl->device, "ignoring nsid %d because of duplicate IDs\n", info->nsid); return ret; } dev_err(ctrl->device, "clearing duplicate IDs for nsid %d\n", info->nsid); dev_err(ctrl->device, "use of /dev/disk/by-id/ may cause data corruption\n"); memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); ctrl->quirks |= NVME_QUIRK_BOGUS_NID; } mutex_lock(&ctrl->subsys->lock); head = nvme_find_ns_head(ctrl, info->nsid); if (!head) { ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); if (ret) { dev_err(ctrl->device, "duplicate IDs in subsystem for nsid %d\n", info->nsid); goto out_unlock; } head = nvme_alloc_ns_head(ctrl, info); if (IS_ERR(head)) { ret = PTR_ERR(head); goto out_unlock; } } else { ret = -EINVAL; if (!info->is_shared || !head->shared) { dev_err(ctrl->device, "Duplicate unshared namespace %d\n", info->nsid); goto out_put_ns_head; } if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { dev_err(ctrl->device, "IDs don't match for shared namespace %d\n", info->nsid); goto out_put_ns_head; } if (!multipath) { dev_warn(ctrl->device, "Found shared namespace %d, but multipathing not supported.\n", info->nsid); dev_warn_once(ctrl->device, "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); } } list_add_tail_rcu(&ns->siblings, &head->list); ns->head = head; mutex_unlock(&ctrl->subsys->lock); return 0; out_put_ns_head: nvme_put_ns_head(head); out_unlock: mutex_unlock(&ctrl->subsys->lock); return ret; } struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *ret = NULL; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) { if (ns->head->ns_id == nsid) { if (!nvme_get_ns(ns)) continue; ret = ns; break; } if (ns->head->ns_id > nsid) break; } srcu_read_unlock(&ctrl->srcu, srcu_idx); return ret; } EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); /* * Add the namespace to the controller list while keeping the list ordered. */ static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) { struct nvme_ns *tmp; list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { if (tmp->head->ns_id < ns->head->ns_id) { list_add_rcu(&ns->list, &tmp->list); return; } } list_add(&ns->list, &ns->ctrl->namespaces); } static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) { struct queue_limits lim = { }; struct nvme_ns *ns; struct gendisk *disk; int node = ctrl->numa_node; ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); if (!ns) return; if (ctrl->opts && ctrl->opts->data_digest) lim.features |= BLK_FEAT_STABLE_WRITES; if (ctrl->ops->supports_pci_p2pdma && ctrl->ops->supports_pci_p2pdma(ctrl)) lim.features |= BLK_FEAT_PCI_P2PDMA; disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); if (IS_ERR(disk)) goto out_free_ns; disk->fops = &nvme_bdev_ops; disk->private_data = ns; ns->disk = disk; ns->queue = disk->queue; ns->ctrl = ctrl; kref_init(&ns->kref); if (nvme_init_ns_head(ns, info)) goto out_cleanup_disk; /* * If multipathing is enabled, the device name for all disks and not * just those that represent shared namespaces needs to be based on the * subsystem instance. Using the controller instance for private * namespaces could lead to naming collisions between shared and private * namespaces if they don't use a common numbering scheme. * * If multipathing is not enabled, disk names must use the controller * instance as shared namespaces will show up as multiple block * devices. */ if (nvme_ns_head_multipath(ns->head)) { sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, ctrl->instance, ns->head->instance); disk->flags |= GENHD_FL_HIDDEN; } else if (multipath) { sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, ns->head->instance); } else { sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); } if (nvme_update_ns_info(ns, info)) goto out_unlink_ns; mutex_lock(&ctrl->namespaces_lock); /* * Ensure that no namespaces are added to the ctrl list after the queues * are frozen, thereby avoiding a deadlock between scan and reset. */ if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { mutex_unlock(&ctrl->namespaces_lock); goto out_unlink_ns; } nvme_ns_add_to_ctrl_list(ns); mutex_unlock(&ctrl->namespaces_lock); synchronize_srcu(&ctrl->srcu); nvme_get_ctrl(ctrl); if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) goto out_cleanup_ns_from_list; if (!nvme_ns_head_multipath(ns->head)) nvme_add_ns_cdev(ns); nvme_mpath_add_disk(ns, info->anagrpid); nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); /* * Set ns->disk->device->driver_data to ns so we can access * ns->head->passthru_err_log_enabled in * nvme_io_passthru_err_log_enabled_[store | show](). */ dev_set_drvdata(disk_to_dev(ns->disk), ns); return; out_cleanup_ns_from_list: nvme_put_ctrl(ctrl); mutex_lock(&ctrl->namespaces_lock); list_del_rcu(&ns->list); mutex_unlock(&ctrl->namespaces_lock); synchronize_srcu(&ctrl->srcu); out_unlink_ns: mutex_lock(&ctrl->subsys->lock); list_del_rcu(&ns->siblings); if (list_empty(&ns->head->list)) list_del_init(&ns->head->entry); mutex_unlock(&ctrl->subsys->lock); nvme_put_ns_head(ns->head); out_cleanup_disk: put_disk(disk); out_free_ns: kfree(ns); } static void nvme_ns_remove(struct nvme_ns *ns) { bool last_path = false; if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) return; clear_bit(NVME_NS_READY, &ns->flags); set_capacity(ns->disk, 0); nvme_fault_inject_fini(&ns->fault_inject); /* * Ensure that !NVME_NS_READY is seen by other threads to prevent * this ns going back into current_path. */ synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ if (nvme_mpath_clear_current_path(ns)) synchronize_srcu(&ns->head->srcu); mutex_lock(&ns->ctrl->subsys->lock); list_del_rcu(&ns->siblings); if (list_empty(&ns->head->list)) { list_del_init(&ns->head->entry); last_path = true; } mutex_unlock(&ns->ctrl->subsys->lock); /* guarantee not available in head->list */ synchronize_srcu(&ns->head->srcu); if (!nvme_ns_head_multipath(ns->head)) nvme_cdev_del(&ns->cdev, &ns->cdev_device); del_gendisk(ns->disk); mutex_lock(&ns->ctrl->namespaces_lock); list_del_rcu(&ns->list); mutex_unlock(&ns->ctrl->namespaces_lock); synchronize_srcu(&ns->ctrl->srcu); if (last_path) nvme_mpath_shutdown_disk(ns->head); nvme_put_ns(ns); } static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) { struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); if (ns) { nvme_ns_remove(ns); nvme_put_ns(ns); } } static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) { int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { dev_err(ns->ctrl->device, "identifiers changed for nsid %d\n", ns->head->ns_id); goto out; } ret = nvme_update_ns_info(ns, info); out: /* * Only remove the namespace if we got a fatal error back from the * device, otherwise ignore the error and just move on. * * TODO: we should probably schedule a delayed retry here. */ if (ret > 0 && (ret & NVME_STATUS_DNR)) nvme_ns_remove(ns); } static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns_info info = { .nsid = nsid }; struct nvme_ns *ns; int ret = 1; if (nvme_identify_ns_descs(ctrl, &info)) return; if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { dev_warn(ctrl->device, "command set not reported for nsid: %d\n", nsid); return; } /* * If available try to use the Command Set Idependent Identify Namespace * data structure to find all the generic information that is needed to * set up a namespace. If not fall back to the legacy version. */ if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || ctrl->vs >= NVME_VS(2, 0, 0)) ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); if (ret > 0) ret = nvme_ns_info_from_identify(ctrl, &info); if (info.is_removed) nvme_ns_remove_by_nsid(ctrl, nsid); /* * Ignore the namespace if it is not ready. We will get an AEN once it * becomes ready and restart the scan. */ if (ret || !info.is_ready) return; ns = nvme_find_get_ns(ctrl, nsid); if (ns) { nvme_validate_ns(ns, &info); nvme_put_ns(ns); } else { nvme_alloc_ns(ctrl, &info); } } /** * struct async_scan_info - keeps track of controller & NSIDs to scan * @ctrl: Controller on which namespaces are being scanned * @next_nsid: Index of next NSID to scan in ns_list * @ns_list: Pointer to list of NSIDs to scan * * Note: There is a single async_scan_info structure shared by all instances * of nvme_scan_ns_async() scanning a given controller, so the atomic * operations on next_nsid are critical to ensure each instance scans a unique * NSID. */ struct async_scan_info { struct nvme_ctrl *ctrl; atomic_t next_nsid; __le32 *ns_list; }; static void nvme_scan_ns_async(void *data, async_cookie_t cookie) { struct async_scan_info *scan_info = data; int idx; u32 nsid; idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); nsid = le32_to_cpu(scan_info->ns_list[idx]); nvme_scan_ns(scan_info->ctrl, nsid); } static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *next; LIST_HEAD(rm_list); mutex_lock(&ctrl->namespaces_lock); list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { if (ns->head->ns_id > nsid) { list_del_rcu(&ns->list); synchronize_srcu(&ctrl->srcu); list_add_tail_rcu(&ns->list, &rm_list); } } mutex_unlock(&ctrl->namespaces_lock); list_for_each_entry_safe(ns, next, &rm_list, list) nvme_ns_remove(ns); } static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) { const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); __le32 *ns_list; u32 prev = 0; int ret = 0, i; ASYNC_DOMAIN(domain); struct async_scan_info scan_info; ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); if (!ns_list) return -ENOMEM; scan_info.ctrl = ctrl; scan_info.ns_list = ns_list; for (;;) { struct nvme_command cmd = { .identify.opcode = nvme_admin_identify, .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, .identify.nsid = cpu_to_le32(prev), }; ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, NVME_IDENTIFY_DATA_SIZE); if (ret) { dev_warn(ctrl->device, "Identify NS List failed (status=0x%x)\n", ret); goto free; } atomic_set(&scan_info.next_nsid, 0); for (i = 0; i < nr_entries; i++) { u32 nsid = le32_to_cpu(ns_list[i]); if (!nsid) /* end of the list? */ goto out; async_schedule_domain(nvme_scan_ns_async, &scan_info, &domain); while (++prev < nsid) nvme_ns_remove_by_nsid(ctrl, prev); } async_synchronize_full_domain(&domain); } out: nvme_remove_invalid_namespaces(ctrl, prev); free: async_synchronize_full_domain(&domain); kfree(ns_list); return ret; } static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) { struct nvme_id_ctrl *id; u32 nn, i; if (nvme_identify_ctrl(ctrl, &id)) return; nn = le32_to_cpu(id->nn); kfree(id); for (i = 1; i <= nn; i++) nvme_scan_ns(ctrl, i); nvme_remove_invalid_namespaces(ctrl, nn); } static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) { size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); __le32 *log; int error; log = kzalloc(log_size, GFP_KERNEL); if (!log) return; /* * We need to read the log to clear the AEN, but we don't want to rely * on it for the changed namespace information as userspace could have * raced with us in reading the log page, which could cause us to miss * updates. */ error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, NVME_CSI_NVM, log, log_size, 0); if (error) dev_warn(ctrl->device, "reading changed ns log failed: %d\n", error); kfree(log); } static void nvme_scan_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, scan_work); int ret; /* No tagset on a live ctrl means IO queues could not created */ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) return; /* * Identify controller limits can change at controller reset due to * new firmware download, even though it is not common we cannot ignore * such scenario. Controller's non-mdts limits are reported in the unit * of logical blocks that is dependent on the format of attached * namespace. Hence re-read the limits at the time of ns allocation. */ ret = nvme_init_non_mdts_limits(ctrl); if (ret < 0) { dev_warn(ctrl->device, "reading non-mdts-limits failed: %d\n", ret); return; } if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { dev_info(ctrl->device, "rescanning namespaces.\n"); nvme_clear_changed_ns_log(ctrl); } mutex_lock(&ctrl->scan_lock); if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { nvme_scan_ns_sequential(ctrl); } else { /* * Fall back to sequential scan if DNR is set to handle broken * devices which should support Identify NS List (as per the VS * they report) but don't actually support it. */ ret = nvme_scan_ns_list(ctrl); if (ret > 0 && ret & NVME_STATUS_DNR) nvme_scan_ns_sequential(ctrl); } mutex_unlock(&ctrl->scan_lock); } /* * This function iterates the namespace list unlocked to allow recovery from * controller failure. It is up to the caller to ensure the namespace list is * not modified by scan work while this function is executing. */ void nvme_remove_namespaces(struct nvme_ctrl *ctrl) { struct nvme_ns *ns, *next; LIST_HEAD(ns_list); /* * make sure to requeue I/O to all namespaces as these * might result from the scan itself and must complete * for the scan_work to make progress */ nvme_mpath_clear_ctrl_paths(ctrl); /* * Unquiesce io queues so any pending IO won't hang, especially * those submitted from scan work */ nvme_unquiesce_io_queues(ctrl); /* prevent racing with ns scanning */ flush_work(&ctrl->scan_work); /* * The dead states indicates the controller was not gracefully * disconnected. In that case, we won't be able to flush any data while * removing the namespaces' disks; fail all the queues now to avoid * potentially having to clean up the failed sync later. */ if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) nvme_mark_namespaces_dead(ctrl); /* this is a no-op when called from the controller reset handler */ nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); mutex_lock(&ctrl->namespaces_lock); list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); mutex_unlock(&ctrl->namespaces_lock); synchronize_srcu(&ctrl->srcu); list_for_each_entry_safe(ns, next, &ns_list, list) nvme_ns_remove(ns); } EXPORT_SYMBOL_GPL(nvme_remove_namespaces); static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct nvme_ctrl *ctrl = container_of(dev, struct nvme_ctrl, ctrl_device); struct nvmf_ctrl_options *opts = ctrl->opts; int ret; ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); if (ret) return ret; if (opts) { ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); if (ret) return ret; ret = add_uevent_var(env, "NVME_TRSVCID=%s", opts->trsvcid ?: "none"); if (ret) return ret; ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", opts->host_traddr ?: "none"); if (ret) return ret; ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", opts->host_iface ?: "none"); } return ret; } static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) { char *envp[2] = { envdata, NULL }; kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); } static void nvme_aen_uevent(struct nvme_ctrl *ctrl) { char *envp[2] = { NULL, NULL }; u32 aen_result = ctrl->aen_result; ctrl->aen_result = 0; if (!aen_result) return; envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); if (!envp[0]) return; kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); kfree(envp[0]); } static void nvme_async_event_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, async_event_work); nvme_aen_uevent(ctrl); /* * The transport drivers must guarantee AER submission here is safe by * flushing ctrl async_event_work after changing the controller state * from LIVE and before freeing the admin queue. */ if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) ctrl->ops->submit_async_event(ctrl); } static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) { u32 csts; if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) return false; if (csts == ~0) return false; return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); } static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) { struct nvme_fw_slot_info_log *log; u8 next_fw_slot, cur_fw_slot; log = kmalloc(sizeof(*log), GFP_KERNEL); if (!log) return; if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, log, sizeof(*log), 0)) { dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); goto out_free_log; } cur_fw_slot = log->afi & 0x7; next_fw_slot = (log->afi & 0x70) >> 4; if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { dev_info(ctrl->device, "Firmware is activated after next Controller Level Reset\n"); goto out_free_log; } memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], sizeof(ctrl->subsys->firmware_rev)); out_free_log: kfree(log); } static void nvme_fw_act_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, fw_act_work); unsigned long fw_act_timeout; nvme_auth_stop(ctrl); if (ctrl->mtfa) fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100); else fw_act_timeout = jiffies + msecs_to_jiffies(admin_timeout * 1000); nvme_quiesce_io_queues(ctrl); while (nvme_ctrl_pp_status(ctrl)) { if (time_after(jiffies, fw_act_timeout)) { dev_warn(ctrl->device, "Fw activation timeout, reset controller\n"); nvme_try_sched_reset(ctrl); return; } msleep(100); } if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) return; nvme_unquiesce_io_queues(ctrl); /* read FW slot information to clear the AER */ nvme_get_fw_slot_info(ctrl); queue_work(nvme_wq, &ctrl->async_event_work); } static u32 nvme_aer_type(u32 result) { return result & 0x7; } static u32 nvme_aer_subtype(u32 result) { return (result & 0xff00) >> 8; } static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) { u32 aer_notice_type = nvme_aer_subtype(result); bool requeue = true; switch (aer_notice_type) { case NVME_AER_NOTICE_NS_CHANGED: set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); nvme_queue_scan(ctrl); break; case NVME_AER_NOTICE_FW_ACT_STARTING: /* * We are (ab)using the RESETTING state to prevent subsequent * recovery actions from interfering with the controller's * firmware activation. */ if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { requeue = false; queue_work(nvme_wq, &ctrl->fw_act_work); } break; #ifdef CONFIG_NVME_MULTIPATH case NVME_AER_NOTICE_ANA: if (!ctrl->ana_log_buf) break; queue_work(nvme_wq, &ctrl->ana_work); break; #endif case NVME_AER_NOTICE_DISC_CHANGED: ctrl->aen_result = result; break; default: dev_warn(ctrl->device, "async event result %08x\n", result); } return requeue; } static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) { dev_warn(ctrl->device, "resetting controller due to persistent internal error\n"); nvme_reset_ctrl(ctrl); } void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, volatile union nvme_result *res) { u32 result = le32_to_cpu(res->u32); u32 aer_type = nvme_aer_type(result); u32 aer_subtype = nvme_aer_subtype(result); bool requeue = true; if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) return; trace_nvme_async_event(ctrl, result); switch (aer_type) { case NVME_AER_NOTICE: requeue = nvme_handle_aen_notice(ctrl, result); break; case NVME_AER_ERROR: /* * For a persistent internal error, don't run async_event_work * to submit a new AER. The controller reset will do it. */ if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { nvme_handle_aer_persistent_error(ctrl); return; } fallthrough; case NVME_AER_SMART: case NVME_AER_CSS: case NVME_AER_VS: ctrl->aen_result = result; break; default: break; } if (requeue) queue_work(nvme_wq, &ctrl->async_event_work); } EXPORT_SYMBOL_GPL(nvme_complete_async_event); int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int cmd_size) { struct queue_limits lim = {}; int ret; memset(set, 0, sizeof(*set)); set->ops = ops; set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; if (ctrl->ops->flags & NVME_F_FABRICS) /* Reserved for fabric connect and keep alive */ set->reserved_tags = 2; set->numa_node = ctrl->numa_node; set->flags = BLK_MQ_F_NO_SCHED; if (ctrl->ops->flags & NVME_F_BLOCKING) set->flags |= BLK_MQ_F_BLOCKING; set->cmd_size = cmd_size; set->driver_data = ctrl; set->nr_hw_queues = 1; set->timeout = NVME_ADMIN_TIMEOUT; ret = blk_mq_alloc_tag_set(set); if (ret) return ret; ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); if (IS_ERR(ctrl->admin_q)) { ret = PTR_ERR(ctrl->admin_q); goto out_free_tagset; } if (ctrl->ops->flags & NVME_F_FABRICS) { ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); if (IS_ERR(ctrl->fabrics_q)) { ret = PTR_ERR(ctrl->fabrics_q); goto out_cleanup_admin_q; } } ctrl->admin_tagset = set; return 0; out_cleanup_admin_q: blk_mq_destroy_queue(ctrl->admin_q); blk_put_queue(ctrl->admin_q); out_free_tagset: blk_mq_free_tag_set(set); ctrl->admin_q = NULL; ctrl->fabrics_q = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) { /* * As we're about to destroy the queue and free tagset * we can not have keep-alive work running. */ nvme_stop_keep_alive(ctrl); blk_mq_destroy_queue(ctrl->admin_q); blk_put_queue(ctrl->admin_q); if (ctrl->ops->flags & NVME_F_FABRICS) { blk_mq_destroy_queue(ctrl->fabrics_q); blk_put_queue(ctrl->fabrics_q); } blk_mq_free_tag_set(ctrl->admin_tagset); } EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int nr_maps, unsigned int cmd_size) { int ret; memset(set, 0, sizeof(*set)); set->ops = ops; set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); /* * Some Apple controllers requires tags to be unique across admin and * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. */ if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) set->reserved_tags = NVME_AQ_DEPTH; else if (ctrl->ops->flags & NVME_F_FABRICS) /* Reserved for fabric connect */ set->reserved_tags = 1; set->numa_node = ctrl->numa_node; set->flags = BLK_MQ_F_SHOULD_MERGE; if (ctrl->ops->flags & NVME_F_BLOCKING) set->flags |= BLK_MQ_F_BLOCKING; set->cmd_size = cmd_size; set->driver_data = ctrl; set->nr_hw_queues = ctrl->queue_count - 1; set->timeout = NVME_IO_TIMEOUT; set->nr_maps = nr_maps; ret = blk_mq_alloc_tag_set(set); if (ret) return ret; if (ctrl->ops->flags & NVME_F_FABRICS) { struct queue_limits lim = { .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, }; ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); if (IS_ERR(ctrl->connect_q)) { ret = PTR_ERR(ctrl->connect_q); goto out_free_tag_set; } } ctrl->tagset = set; return 0; out_free_tag_set: blk_mq_free_tag_set(set); ctrl->connect_q = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) { if (ctrl->ops->flags & NVME_F_FABRICS) { blk_mq_destroy_queue(ctrl->connect_q); blk_put_queue(ctrl->connect_q); } blk_mq_free_tag_set(ctrl->tagset); } EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); void nvme_stop_ctrl(struct nvme_ctrl *ctrl) { nvme_mpath_stop(ctrl); nvme_auth_stop(ctrl); nvme_stop_failfast_work(ctrl); flush_work(&ctrl->async_event_work); cancel_work_sync(&ctrl->fw_act_work); if (ctrl->ops->stop_ctrl) ctrl->ops->stop_ctrl(ctrl); } EXPORT_SYMBOL_GPL(nvme_stop_ctrl); void nvme_start_ctrl(struct nvme_ctrl *ctrl) { nvme_enable_aen(ctrl); /* * persistent discovery controllers need to send indication to userspace * to re-read the discovery log page to learn about possible changes * that were missed. We identify persistent discovery controllers by * checking that they started once before, hence are reconnecting back. */ if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && nvme_discovery_ctrl(ctrl)) nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); if (ctrl->queue_count > 1) { nvme_queue_scan(ctrl); nvme_unquiesce_io_queues(ctrl); nvme_mpath_update(ctrl); } nvme_change_uevent(ctrl, "NVME_EVENT=connected"); set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); } EXPORT_SYMBOL_GPL(nvme_start_ctrl); void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) { nvme_stop_keep_alive(ctrl); nvme_hwmon_exit(ctrl); nvme_fault_inject_fini(&ctrl->fault_inject); dev_pm_qos_hide_latency_tolerance(ctrl->device); cdev_device_del(&ctrl->cdev, ctrl->device); nvme_put_ctrl(ctrl); } EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); static void nvme_free_cels(struct nvme_ctrl *ctrl) { struct nvme_effects_log *cel; unsigned long i; xa_for_each(&ctrl->cels, i, cel) { xa_erase(&ctrl->cels, i); kfree(cel); } xa_destroy(&ctrl->cels); } static void nvme_free_ctrl(struct device *dev) { struct nvme_ctrl *ctrl = container_of(dev, struct nvme_ctrl, ctrl_device); struct nvme_subsystem *subsys = ctrl->subsys; if (!subsys || ctrl->instance != subsys->instance) ida_free(&nvme_instance_ida, ctrl->instance); nvme_free_cels(ctrl); nvme_mpath_uninit(ctrl); cleanup_srcu_struct(&ctrl->srcu); nvme_auth_stop(ctrl); nvme_auth_free(ctrl); __free_page(ctrl->discard_page); free_opal_dev(ctrl->opal_dev); if (subsys) { mutex_lock(&nvme_subsystems_lock); list_del(&ctrl->subsys_entry); sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); mutex_unlock(&nvme_subsystems_lock); } ctrl->ops->free_ctrl(ctrl); if (subsys) nvme_put_subsystem(subsys); } /* * Initialize a NVMe controller structures. This needs to be called during * earliest initialization so that we have the initialized structured around * during probing. * * On success, the caller must use the nvme_put_ctrl() to release this when * needed, which also invokes the ops->free_ctrl() callback. */ int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, const struct nvme_ctrl_ops *ops, unsigned long quirks) { int ret; WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); ctrl->passthru_err_log_enabled = false; clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); spin_lock_init(&ctrl->lock); mutex_init(&ctrl->namespaces_lock); ret = init_srcu_struct(&ctrl->srcu); if (ret) return ret; mutex_init(&ctrl->scan_lock); INIT_LIST_HEAD(&ctrl->namespaces); xa_init(&ctrl->cels); ctrl->dev = dev; ctrl->ops = ops; ctrl->quirks = quirks; ctrl->numa_node = NUMA_NO_NODE; INIT_WORK(&ctrl->scan_work, nvme_scan_work); INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); init_waitqueue_head(&ctrl->state_wq); INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; ctrl->ka_last_check_time = jiffies; BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > PAGE_SIZE); ctrl->discard_page = alloc_page(GFP_KERNEL); if (!ctrl->discard_page) { ret = -ENOMEM; goto out; } ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); if (ret < 0) goto out; ctrl->instance = ret; ret = nvme_auth_init_ctrl(ctrl); if (ret) goto out_release_instance; nvme_mpath_init_ctrl(ctrl); device_initialize(&ctrl->ctrl_device); ctrl->device = &ctrl->ctrl_device; ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), ctrl->instance); ctrl->device->class = &nvme_class; ctrl->device->parent = ctrl->dev; if (ops->dev_attr_groups) ctrl->device->groups = ops->dev_attr_groups; else ctrl->device->groups = nvme_dev_attr_groups; ctrl->device->release = nvme_free_ctrl; dev_set_drvdata(ctrl->device, ctrl); return ret; out_release_instance: ida_free(&nvme_instance_ida, ctrl->instance); out: if (ctrl->discard_page) __free_page(ctrl->discard_page); cleanup_srcu_struct(&ctrl->srcu); return ret; } EXPORT_SYMBOL_GPL(nvme_init_ctrl); /* * On success, returns with an elevated controller reference and caller must * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. */ int nvme_add_ctrl(struct nvme_ctrl *ctrl) { int ret; ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); if (ret) return ret; cdev_init(&ctrl->cdev, &nvme_dev_fops); ctrl->cdev.owner = ctrl->ops->module; ret = cdev_device_add(&ctrl->cdev, ctrl->device); if (ret) return ret; /* * Initialize latency tolerance controls. The sysfs files won't * be visible to userspace unless the device actually supports APST. */ ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; dev_pm_qos_update_user_latency_tolerance(ctrl->device, min(default_ps_max_latency_us, (unsigned long)S32_MAX)); nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); nvme_get_ctrl(ctrl); return 0; } EXPORT_SYMBOL_GPL(nvme_add_ctrl); /* let I/O to all namespaces fail in preparation for surprise removal */ void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) blk_mark_disk_dead(ns->disk); srcu_read_unlock(&ctrl->srcu, srcu_idx); } EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); void nvme_unfreeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) blk_mq_unfreeze_queue_non_owner(ns->queue); srcu_read_unlock(&ctrl->srcu, srcu_idx); clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); } EXPORT_SYMBOL_GPL(nvme_unfreeze); int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) { timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); if (timeout <= 0) break; } srcu_read_unlock(&ctrl->srcu, srcu_idx); return timeout; } EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); void nvme_wait_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) blk_mq_freeze_queue_wait(ns->queue); srcu_read_unlock(&ctrl->srcu, srcu_idx); } EXPORT_SYMBOL_GPL(nvme_wait_freeze); void nvme_start_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; set_bit(NVME_CTRL_FROZEN, &ctrl->flags); srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) /* * Typical non_owner use case is from pci driver, in which * start_freeze is called from timeout work function, but * unfreeze is done in reset work context */ blk_freeze_queue_start_non_owner(ns->queue); srcu_read_unlock(&ctrl->srcu, srcu_idx); } EXPORT_SYMBOL_GPL(nvme_start_freeze); void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) { if (!ctrl->tagset) return; if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) blk_mq_quiesce_tagset(ctrl->tagset); else blk_mq_wait_quiesce_done(ctrl->tagset); } EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) { if (!ctrl->tagset) return; if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) blk_mq_unquiesce_tagset(ctrl->tagset); } EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) { if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) blk_mq_quiesce_queue(ctrl->admin_q); else blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); } EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) { if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) blk_mq_unquiesce_queue(ctrl->admin_q); } EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); void nvme_sync_io_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_srcu(ns, &ctrl->namespaces, list, srcu_read_lock_held(&ctrl->srcu)) blk_sync_queue(ns->queue); srcu_read_unlock(&ctrl->srcu, srcu_idx); } EXPORT_SYMBOL_GPL(nvme_sync_io_queues); void nvme_sync_queues(struct nvme_ctrl *ctrl) { nvme_sync_io_queues(ctrl); if (ctrl->admin_q) blk_sync_queue(ctrl->admin_q); } EXPORT_SYMBOL_GPL(nvme_sync_queues); struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) { if (file->f_op != &nvme_dev_fops) return NULL; return file->private_data; } EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); /* * Check we didn't inadvertently grow the command structure sizes: */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); } static int __init nvme_core_init(void) { unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; int result = -ENOMEM; _nvme_check_size(); nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); if (!nvme_wq) goto out; nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); if (!nvme_reset_wq) goto destroy_wq; nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); if (!nvme_delete_wq) goto destroy_reset_wq; result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, NVME_MINORS, "nvme"); if (result < 0) goto destroy_delete_wq; result = class_register(&nvme_class); if (result) goto unregister_chrdev; result = class_register(&nvme_subsys_class); if (result) goto destroy_class; result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, "nvme-generic"); if (result < 0) goto destroy_subsys_class; result = class_register(&nvme_ns_chr_class); if (result) goto unregister_generic_ns; result = nvme_init_auth(); if (result) goto destroy_ns_chr; return 0; destroy_ns_chr: class_unregister(&nvme_ns_chr_class); unregister_generic_ns: unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); destroy_subsys_class: class_unregister(&nvme_subsys_class); destroy_class: class_unregister(&nvme_class); unregister_chrdev: unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); destroy_delete_wq: destroy_workqueue(nvme_delete_wq); destroy_reset_wq: destroy_workqueue(nvme_reset_wq); destroy_wq: destroy_workqueue(nvme_wq); out: return result; } static void __exit nvme_core_exit(void) { nvme_exit_auth(); class_unregister(&nvme_ns_chr_class); class_unregister(&nvme_subsys_class); class_unregister(&nvme_class); unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); destroy_workqueue(nvme_delete_wq); destroy_workqueue(nvme_reset_wq); destroy_workqueue(nvme_wq); ida_destroy(&nvme_ns_chr_minor_ida); ida_destroy(&nvme_instance_ida); } MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); MODULE_DESCRIPTION("NVMe host core framework"); module_init(nvme_core_init); module_exit(nvme_core_exit);