// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * NXP NETC V4 Timer driver * Copyright 2025 NXP */ #include #include #include #include #include #include #include #include #define NETC_TMR_PCI_VENDOR_NXP 0x1131 #define NETC_TMR_CTRL 0x0080 #define TMR_CTRL_CK_SEL GENMASK(1, 0) #define TMR_CTRL_TE BIT(2) #define TMR_ETEP(i) BIT(8 + (i)) #define TMR_COMP_MODE BIT(15) #define TMR_CTRL_TCLK_PERIOD GENMASK(25, 16) #define TMR_CTRL_FS BIT(28) #define NETC_TMR_TEVENT 0x0084 #define TMR_TEVNET_PPEN(i) BIT(7 - (i)) #define TMR_TEVENT_PPEN_ALL GENMASK(7, 5) #define TMR_TEVENT_ALMEN(i) BIT(16 + (i)) #define TMR_TEVENT_ETS_THREN(i) BIT(20 + (i)) #define TMR_TEVENT_ETSEN(i) BIT(24 + (i)) #define TMR_TEVENT_ETS_OVEN(i) BIT(28 + (i)) #define TMR_TEVENT_ETS(i) (TMR_TEVENT_ETS_THREN(i) | \ TMR_TEVENT_ETSEN(i) | \ TMR_TEVENT_ETS_OVEN(i)) #define NETC_TMR_TEMASK 0x0088 #define NETC_TMR_STAT 0x0094 #define TMR_STAT_ETS_VLD(i) BIT(24 + (i)) #define NETC_TMR_CNT_L 0x0098 #define NETC_TMR_CNT_H 0x009c #define NETC_TMR_ADD 0x00a0 #define NETC_TMR_PRSC 0x00a8 #define NETC_TMR_ECTRL 0x00ac #define NETC_TMR_OFF_L 0x00b0 #define NETC_TMR_OFF_H 0x00b4 /* i = 0, 1, i indicates the index of TMR_ALARM */ #define NETC_TMR_ALARM_L(i) (0x00b8 + (i) * 8) #define NETC_TMR_ALARM_H(i) (0x00bc + (i) * 8) /* i = 0, 1, 2. i indicates the index of TMR_FIPER. */ #define NETC_TMR_FIPER(i) (0x00d0 + (i) * 4) #define NETC_TMR_FIPER_CTRL 0x00dc #define FIPER_CTRL_DIS(i) (BIT(7) << (i) * 8) #define FIPER_CTRL_PG(i) (BIT(6) << (i) * 8) #define FIPER_CTRL_FS_ALARM(i) (BIT(5) << (i) * 8) #define FIPER_CTRL_PW(i) (GENMASK(4, 0) << (i) * 8) #define FIPER_CTRL_SET_PW(i, v) (((v) & GENMASK(4, 0)) << 8 * (i)) /* i = 0, 1, i indicates the index of TMR_ETTS */ #define NETC_TMR_ETTS_L(i) (0x00e0 + (i) * 8) #define NETC_TMR_ETTS_H(i) (0x00e4 + (i) * 8) #define NETC_TMR_CUR_TIME_L 0x00f0 #define NETC_TMR_CUR_TIME_H 0x00f4 #define NETC_TMR_REGS_BAR 0 #define NETC_GLOBAL_OFFSET 0x10000 #define NETC_GLOBAL_IPBRR0 0xbf8 #define IPBRR0_IP_REV GENMASK(15, 0) #define NETC_REV_4_1 0x0401 #define NETC_TMR_FIPER_NUM 3 #define NETC_TMR_INVALID_CHANNEL NETC_TMR_FIPER_NUM #define NETC_TMR_DEFAULT_PRSC 2 #define NETC_TMR_DEFAULT_ALARM GENMASK_ULL(63, 0) #define NETC_TMR_DEFAULT_FIPER GENMASK(31, 0) #define NETC_TMR_FIPER_MAX_PW GENMASK(4, 0) #define NETC_TMR_ALARM_NUM 2 #define NETC_TMR_DEFAULT_ETTF_THR 7 /* 1588 timer reference clock source select */ #define NETC_TMR_CCM_TIMER1 0 /* enet_timer1_clk_root, from CCM */ #define NETC_TMR_SYSTEM_CLK 1 /* enet_clk_root/2, from CCM */ #define NETC_TMR_EXT_OSC 2 /* tmr_1588_clk, from IO pins */ #define NETC_TMR_SYSCLK_333M 333333333U enum netc_pp_type { NETC_PP_PPS = 1, NETC_PP_PEROUT, }; struct netc_pp { enum netc_pp_type type; bool enabled; int alarm_id; u32 period; /* pulse period, ns */ u64 stime; /* start time, ns */ }; struct netc_timer { void __iomem *base; struct pci_dev *pdev; spinlock_t lock; /* Prevent concurrent access to registers */ struct ptp_clock *clock; struct ptp_clock_info caps; u32 clk_select; u32 clk_freq; u32 oclk_prsc; /* High 32-bit is integer part, low 32-bit is fractional part */ u64 period; int irq; char irq_name[24]; int revision; u32 tmr_emask; u8 pps_channel; u8 fs_alarm_num; u8 fs_alarm_bitmap; struct netc_pp pp[NETC_TMR_FIPER_NUM]; /* periodic pulse */ }; #define netc_timer_rd(p, o) netc_read((p)->base + (o)) #define netc_timer_wr(p, o, v) netc_write((p)->base + (o), v) #define ptp_to_netc_timer(ptp) container_of((ptp), struct netc_timer, caps) static const char *const timer_clk_src[] = { "ccm", "ext" }; static void netc_timer_cnt_write(struct netc_timer *priv, u64 ns) { u32 tmr_cnt_h = upper_32_bits(ns); u32 tmr_cnt_l = lower_32_bits(ns); /* Writes to the TMR_CNT_L register copies the written value * into the shadow TMR_CNT_L register. Writes to the TMR_CNT_H * register copies the values written into the shadow TMR_CNT_H * register. Contents of the shadow registers are copied into * the TMR_CNT_L and TMR_CNT_H registers following a write into * the TMR_CNT_H register. So the user must writes to TMR_CNT_L * register first. Other H/L registers should have the same * behavior. */ netc_timer_wr(priv, NETC_TMR_CNT_L, tmr_cnt_l); netc_timer_wr(priv, NETC_TMR_CNT_H, tmr_cnt_h); } static u64 netc_timer_offset_read(struct netc_timer *priv) { u32 tmr_off_l, tmr_off_h; u64 offset; tmr_off_l = netc_timer_rd(priv, NETC_TMR_OFF_L); tmr_off_h = netc_timer_rd(priv, NETC_TMR_OFF_H); offset = (((u64)tmr_off_h) << 32) | tmr_off_l; return offset; } static void netc_timer_offset_write(struct netc_timer *priv, u64 offset) { u32 tmr_off_h = upper_32_bits(offset); u32 tmr_off_l = lower_32_bits(offset); netc_timer_wr(priv, NETC_TMR_OFF_L, tmr_off_l); netc_timer_wr(priv, NETC_TMR_OFF_H, tmr_off_h); } static u64 netc_timer_cur_time_read(struct netc_timer *priv) { u32 time_h, time_l; u64 ns; /* The user should read NETC_TMR_CUR_TIME_L first to * get correct current time. */ time_l = netc_timer_rd(priv, NETC_TMR_CUR_TIME_L); time_h = netc_timer_rd(priv, NETC_TMR_CUR_TIME_H); ns = (u64)time_h << 32 | time_l; return ns; } static void netc_timer_alarm_write(struct netc_timer *priv, u64 alarm, int index) { u32 alarm_h = upper_32_bits(alarm); u32 alarm_l = lower_32_bits(alarm); netc_timer_wr(priv, NETC_TMR_ALARM_L(index), alarm_l); netc_timer_wr(priv, NETC_TMR_ALARM_H(index), alarm_h); } static u32 netc_timer_get_integral_period(struct netc_timer *priv) { u32 tmr_ctrl, integral_period; tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL); integral_period = FIELD_GET(TMR_CTRL_TCLK_PERIOD, tmr_ctrl); return integral_period; } static u32 netc_timer_calculate_fiper_pw(struct netc_timer *priv, u32 fiper) { u64 divisor, pulse_width; /* Set the FIPER pulse width to half FIPER interval by default. * pulse_width = (fiper / 2) / TMR_GCLK_period, * TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq, * TMR_GCLK_freq = (clk_freq / oclk_prsc) Hz, * so pulse_width = fiper * clk_freq / (2 * NSEC_PER_SEC * oclk_prsc). */ divisor = mul_u32_u32(2 * NSEC_PER_SEC, priv->oclk_prsc); pulse_width = div64_u64(mul_u32_u32(fiper, priv->clk_freq), divisor); /* The FIPER_PW field only has 5 bits, need to update oclk_prsc */ if (pulse_width > NETC_TMR_FIPER_MAX_PW) pulse_width = NETC_TMR_FIPER_MAX_PW; return pulse_width; } static void netc_timer_set_pps_alarm(struct netc_timer *priv, int channel, u32 integral_period) { struct netc_pp *pp = &priv->pp[channel]; u64 alarm; /* Get the alarm value */ alarm = netc_timer_cur_time_read(priv) + NSEC_PER_MSEC; alarm = roundup_u64(alarm, NSEC_PER_SEC); alarm = roundup_u64(alarm, integral_period); netc_timer_alarm_write(priv, alarm, pp->alarm_id); } static void netc_timer_set_perout_alarm(struct netc_timer *priv, int channel, u32 integral_period) { u64 cur_time = netc_timer_cur_time_read(priv); struct netc_pp *pp = &priv->pp[channel]; u64 alarm, delta, min_time; u32 period = pp->period; u64 stime = pp->stime; min_time = cur_time + NSEC_PER_MSEC + period; if (stime < min_time) { delta = min_time - stime; stime += roundup_u64(delta, period); } alarm = roundup_u64(stime - period, integral_period); netc_timer_alarm_write(priv, alarm, pp->alarm_id); } static int netc_timer_get_alarm_id(struct netc_timer *priv) { int i; for (i = 0; i < priv->fs_alarm_num; i++) { if (!(priv->fs_alarm_bitmap & BIT(i))) { priv->fs_alarm_bitmap |= BIT(i); break; } } return i; } static u64 netc_timer_get_gclk_period(struct netc_timer *priv) { /* TMR_GCLK_freq = (clk_freq / oclk_prsc) Hz. * TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq. * TMR_GCLK_period = (NSEC_PER_SEC * oclk_prsc) / clk_freq */ return div_u64(mul_u32_u32(NSEC_PER_SEC, priv->oclk_prsc), priv->clk_freq); } static void netc_timer_enable_periodic_pulse(struct netc_timer *priv, u8 channel) { u32 fiper_pw, fiper, fiper_ctrl, integral_period; struct netc_pp *pp = &priv->pp[channel]; int alarm_id = pp->alarm_id; integral_period = netc_timer_get_integral_period(priv); /* Set to desired FIPER interval in ns - TCLK_PERIOD */ fiper = pp->period - integral_period; fiper_pw = netc_timer_calculate_fiper_pw(priv, fiper); fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL); fiper_ctrl &= ~(FIPER_CTRL_DIS(channel) | FIPER_CTRL_PW(channel) | FIPER_CTRL_FS_ALARM(channel)); fiper_ctrl |= FIPER_CTRL_SET_PW(channel, fiper_pw); fiper_ctrl |= alarm_id ? FIPER_CTRL_FS_ALARM(channel) : 0; priv->tmr_emask |= TMR_TEVNET_PPEN(channel) | TMR_TEVENT_ALMEN(alarm_id); if (pp->type == NETC_PP_PPS) netc_timer_set_pps_alarm(priv, channel, integral_period); else netc_timer_set_perout_alarm(priv, channel, integral_period); netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask); netc_timer_wr(priv, NETC_TMR_FIPER(channel), fiper); netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl); } static void netc_timer_disable_periodic_pulse(struct netc_timer *priv, u8 channel) { struct netc_pp *pp = &priv->pp[channel]; int alarm_id = pp->alarm_id; u32 fiper_ctrl; if (!pp->enabled) return; priv->tmr_emask &= ~(TMR_TEVNET_PPEN(channel) | TMR_TEVENT_ALMEN(alarm_id)); fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL); fiper_ctrl |= FIPER_CTRL_DIS(channel); netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, alarm_id); netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask); netc_timer_wr(priv, NETC_TMR_FIPER(channel), NETC_TMR_DEFAULT_FIPER); netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl); } static u8 netc_timer_select_pps_channel(struct netc_timer *priv) { int i; for (i = 0; i < NETC_TMR_FIPER_NUM; i++) { if (!priv->pp[i].enabled) return i; } return NETC_TMR_INVALID_CHANNEL; } /* Note that users should not use this API to output PPS signal on * external pins, because PTP_CLK_REQ_PPS trigger internal PPS event * for input into kernel PPS subsystem. See: * https://lore.kernel.org/r/20201117213826.18235-1-a.fatoum@pengutronix.de */ static int netc_timer_enable_pps(struct netc_timer *priv, struct ptp_clock_request *rq, int on) { struct device *dev = &priv->pdev->dev; unsigned long flags; struct netc_pp *pp; int err = 0; spin_lock_irqsave(&priv->lock, flags); if (on) { int alarm_id; u8 channel; if (priv->pps_channel < NETC_TMR_FIPER_NUM) { channel = priv->pps_channel; } else { channel = netc_timer_select_pps_channel(priv); if (channel == NETC_TMR_INVALID_CHANNEL) { dev_err(dev, "No available FIPERs\n"); err = -EBUSY; goto unlock_spinlock; } } pp = &priv->pp[channel]; if (pp->enabled) goto unlock_spinlock; alarm_id = netc_timer_get_alarm_id(priv); if (alarm_id == priv->fs_alarm_num) { dev_err(dev, "No available ALARMs\n"); err = -EBUSY; goto unlock_spinlock; } pp->enabled = true; pp->type = NETC_PP_PPS; pp->alarm_id = alarm_id; pp->period = NSEC_PER_SEC; priv->pps_channel = channel; netc_timer_enable_periodic_pulse(priv, channel); } else { /* pps_channel is invalid if PPS is not enabled, so no * processing is needed. */ if (priv->pps_channel >= NETC_TMR_FIPER_NUM) goto unlock_spinlock; netc_timer_disable_periodic_pulse(priv, priv->pps_channel); pp = &priv->pp[priv->pps_channel]; priv->fs_alarm_bitmap &= ~BIT(pp->alarm_id); memset(pp, 0, sizeof(*pp)); priv->pps_channel = NETC_TMR_INVALID_CHANNEL; } unlock_spinlock: spin_unlock_irqrestore(&priv->lock, flags); return err; } static int net_timer_enable_perout(struct netc_timer *priv, struct ptp_clock_request *rq, int on) { struct device *dev = &priv->pdev->dev; u32 channel = rq->perout.index; unsigned long flags; struct netc_pp *pp; int err = 0; spin_lock_irqsave(&priv->lock, flags); pp = &priv->pp[channel]; if (pp->type == NETC_PP_PPS) { dev_err(dev, "FIPER%u is being used for PPS\n", channel); err = -EBUSY; goto unlock_spinlock; } if (on) { u64 period_ns, gclk_period, max_period, min_period; struct timespec64 period, stime; u32 integral_period; int alarm_id; period.tv_sec = rq->perout.period.sec; period.tv_nsec = rq->perout.period.nsec; period_ns = timespec64_to_ns(&period); integral_period = netc_timer_get_integral_period(priv); max_period = (u64)NETC_TMR_DEFAULT_FIPER + integral_period; gclk_period = netc_timer_get_gclk_period(priv); min_period = gclk_period * 4 + integral_period; if (period_ns > max_period || period_ns < min_period) { dev_err(dev, "The period range is %llu ~ %llu\n", min_period, max_period); err = -EINVAL; goto unlock_spinlock; } if (pp->enabled) { alarm_id = pp->alarm_id; } else { alarm_id = netc_timer_get_alarm_id(priv); if (alarm_id == priv->fs_alarm_num) { dev_err(dev, "No available ALARMs\n"); err = -EBUSY; goto unlock_spinlock; } pp->type = NETC_PP_PEROUT; pp->enabled = true; pp->alarm_id = alarm_id; } stime.tv_sec = rq->perout.start.sec; stime.tv_nsec = rq->perout.start.nsec; pp->stime = timespec64_to_ns(&stime); pp->period = period_ns; netc_timer_enable_periodic_pulse(priv, channel); } else { netc_timer_disable_periodic_pulse(priv, channel); priv->fs_alarm_bitmap &= ~BIT(pp->alarm_id); memset(pp, 0, sizeof(*pp)); } unlock_spinlock: spin_unlock_irqrestore(&priv->lock, flags); return err; } static void netc_timer_handle_etts_event(struct netc_timer *priv, int index, bool update_event) { struct ptp_clock_event event; u32 etts_l = 0, etts_h = 0; while (netc_timer_rd(priv, NETC_TMR_STAT) & TMR_STAT_ETS_VLD(index)) { etts_l = netc_timer_rd(priv, NETC_TMR_ETTS_L(index)); etts_h = netc_timer_rd(priv, NETC_TMR_ETTS_H(index)); } /* Invalid time stamp */ if (!etts_l && !etts_h) return; if (update_event) { event.type = PTP_CLOCK_EXTTS; event.index = index; event.timestamp = (u64)etts_h << 32; event.timestamp |= etts_l; ptp_clock_event(priv->clock, &event); } } static int netc_timer_enable_extts(struct netc_timer *priv, struct ptp_clock_request *rq, int on) { int index = rq->extts.index; unsigned long flags; u32 tmr_ctrl; /* Reject requests to enable time stamping on both edges */ if ((rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES) return -EOPNOTSUPP; spin_lock_irqsave(&priv->lock, flags); netc_timer_handle_etts_event(priv, rq->extts.index, false); if (on) { tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL); if (rq->extts.flags & PTP_FALLING_EDGE) tmr_ctrl |= TMR_ETEP(index); else tmr_ctrl &= ~TMR_ETEP(index); netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl); priv->tmr_emask |= TMR_TEVENT_ETS(index); } else { priv->tmr_emask &= ~TMR_TEVENT_ETS(index); } netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static void netc_timer_disable_fiper(struct netc_timer *priv) { u32 fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL); int i; for (i = 0; i < NETC_TMR_FIPER_NUM; i++) { if (!priv->pp[i].enabled) continue; fiper_ctrl |= FIPER_CTRL_DIS(i); netc_timer_wr(priv, NETC_TMR_FIPER(i), NETC_TMR_DEFAULT_FIPER); } netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl); } static void netc_timer_enable_fiper(struct netc_timer *priv) { u32 integral_period = netc_timer_get_integral_period(priv); u32 fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL); int i; for (i = 0; i < NETC_TMR_FIPER_NUM; i++) { struct netc_pp *pp = &priv->pp[i]; u32 fiper; if (!pp->enabled) continue; fiper_ctrl &= ~FIPER_CTRL_DIS(i); if (pp->type == NETC_PP_PPS) netc_timer_set_pps_alarm(priv, i, integral_period); else if (pp->type == NETC_PP_PEROUT) netc_timer_set_perout_alarm(priv, i, integral_period); fiper = pp->period - integral_period; netc_timer_wr(priv, NETC_TMR_FIPER(i), fiper); } netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl); } static int netc_timer_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct netc_timer *priv = ptp_to_netc_timer(ptp); switch (rq->type) { case PTP_CLK_REQ_PPS: return netc_timer_enable_pps(priv, rq, on); case PTP_CLK_REQ_PEROUT: return net_timer_enable_perout(priv, rq, on); case PTP_CLK_REQ_EXTTS: return netc_timer_enable_extts(priv, rq, on); default: return -EOPNOTSUPP; } } static void netc_timer_adjust_period(struct netc_timer *priv, u64 period) { u32 fractional_period = lower_32_bits(period); u32 integral_period = upper_32_bits(period); u32 tmr_ctrl, old_tmr_ctrl; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); old_tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL); tmr_ctrl = u32_replace_bits(old_tmr_ctrl, integral_period, TMR_CTRL_TCLK_PERIOD); if (tmr_ctrl != old_tmr_ctrl) { netc_timer_disable_fiper(priv); netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl); netc_timer_enable_fiper(priv); } netc_timer_wr(priv, NETC_TMR_ADD, fractional_period); spin_unlock_irqrestore(&priv->lock, flags); } static int netc_timer_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct netc_timer *priv = ptp_to_netc_timer(ptp); u64 new_period; new_period = adjust_by_scaled_ppm(priv->period, scaled_ppm); netc_timer_adjust_period(priv, new_period); return 0; } static int netc_timer_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct netc_timer *priv = ptp_to_netc_timer(ptp); unsigned long flags; s64 tmr_off; spin_lock_irqsave(&priv->lock, flags); netc_timer_disable_fiper(priv); /* Adjusting TMROFF instead of TMR_CNT is that the timer * counter keeps increasing during reading and writing * TMR_CNT, which will cause latency. */ tmr_off = netc_timer_offset_read(priv); tmr_off += delta; netc_timer_offset_write(priv, tmr_off); netc_timer_enable_fiper(priv); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static int netc_timer_gettimex64(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct netc_timer *priv = ptp_to_netc_timer(ptp); unsigned long flags; u64 ns; spin_lock_irqsave(&priv->lock, flags); ptp_read_system_prets(sts); ns = netc_timer_cur_time_read(priv); ptp_read_system_postts(sts); spin_unlock_irqrestore(&priv->lock, flags); *ts = ns_to_timespec64(ns); return 0; } static int netc_timer_settime64(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct netc_timer *priv = ptp_to_netc_timer(ptp); u64 ns = timespec64_to_ns(ts); unsigned long flags; spin_lock_irqsave(&priv->lock, flags); netc_timer_disable_fiper(priv); netc_timer_offset_write(priv, 0); netc_timer_cnt_write(priv, ns); netc_timer_enable_fiper(priv); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static const struct ptp_clock_info netc_timer_ptp_caps = { .owner = THIS_MODULE, .name = "NETC Timer PTP clock", .max_adj = 500000000, .n_pins = 0, .n_alarm = 2, .pps = 1, .n_per_out = 3, .n_ext_ts = 2, .supported_extts_flags = PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS, .adjfine = netc_timer_adjfine, .adjtime = netc_timer_adjtime, .gettimex64 = netc_timer_gettimex64, .settime64 = netc_timer_settime64, .enable = netc_timer_enable, }; static void netc_timer_init(struct netc_timer *priv) { u32 fractional_period = lower_32_bits(priv->period); u32 integral_period = upper_32_bits(priv->period); u32 tmr_ctrl, fiper_ctrl; struct timespec64 now; u64 ns; int i; /* Software must enable timer first and the clock selected must be * active, otherwise, the registers which are in the timer clock * domain are not accessible. */ tmr_ctrl = FIELD_PREP(TMR_CTRL_CK_SEL, priv->clk_select) | TMR_CTRL_TE | TMR_CTRL_FS; netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl); netc_timer_wr(priv, NETC_TMR_PRSC, priv->oclk_prsc); /* Disable FIPER by default */ fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL); for (i = 0; i < NETC_TMR_FIPER_NUM; i++) { fiper_ctrl |= FIPER_CTRL_DIS(i); fiper_ctrl &= ~FIPER_CTRL_PG(i); } netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl); netc_timer_wr(priv, NETC_TMR_ECTRL, NETC_TMR_DEFAULT_ETTF_THR); ktime_get_real_ts64(&now); ns = timespec64_to_ns(&now); netc_timer_cnt_write(priv, ns); /* Allow atomic writes to TCLK_PERIOD and TMR_ADD, An update to * TCLK_PERIOD does not take effect until TMR_ADD is written. */ tmr_ctrl |= FIELD_PREP(TMR_CTRL_TCLK_PERIOD, integral_period) | TMR_COMP_MODE; netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl); netc_timer_wr(priv, NETC_TMR_ADD, fractional_period); } static int netc_timer_pci_probe(struct pci_dev *pdev) { struct device *dev = &pdev->dev; struct netc_timer *priv; int err; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; pcie_flr(pdev); err = pci_enable_device_mem(pdev); if (err) return dev_err_probe(dev, err, "Failed to enable device\n"); dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); err = pci_request_mem_regions(pdev, KBUILD_MODNAME); if (err) { dev_err(dev, "pci_request_regions() failed, err:%pe\n", ERR_PTR(err)); goto disable_dev; } pci_set_master(pdev); priv->pdev = pdev; priv->base = pci_ioremap_bar(pdev, NETC_TMR_REGS_BAR); if (!priv->base) { err = -ENOMEM; goto release_mem_regions; } pci_set_drvdata(pdev, priv); return 0; release_mem_regions: pci_release_mem_regions(pdev); disable_dev: pci_disable_device(pdev); return err; } static void netc_timer_pci_remove(struct pci_dev *pdev) { struct netc_timer *priv = pci_get_drvdata(pdev); iounmap(priv->base); pci_release_mem_regions(pdev); pci_disable_device(pdev); } static int netc_timer_get_reference_clk_source(struct netc_timer *priv) { struct device *dev = &priv->pdev->dev; struct clk *clk; int i; /* Select NETC system clock as the reference clock by default */ priv->clk_select = NETC_TMR_SYSTEM_CLK; priv->clk_freq = NETC_TMR_SYSCLK_333M; /* Update the clock source of the reference clock if the clock * is specified in DT node. */ for (i = 0; i < ARRAY_SIZE(timer_clk_src); i++) { clk = devm_clk_get_optional_enabled(dev, timer_clk_src[i]); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "Failed to enable clock\n"); if (clk) { priv->clk_freq = clk_get_rate(clk); priv->clk_select = i ? NETC_TMR_EXT_OSC : NETC_TMR_CCM_TIMER1; break; } } /* The period is a 64-bit number, the high 32-bit is the integer * part of the period, the low 32-bit is the fractional part of * the period. In order to get the desired 32-bit fixed-point * format, multiply the numerator of the fraction by 2^32. */ priv->period = div_u64((u64)NSEC_PER_SEC << 32, priv->clk_freq); return 0; } static int netc_timer_parse_dt(struct netc_timer *priv) { return netc_timer_get_reference_clk_source(priv); } static irqreturn_t netc_timer_isr(int irq, void *data) { struct netc_timer *priv = data; struct ptp_clock_event event; u32 tmr_event; spin_lock(&priv->lock); tmr_event = netc_timer_rd(priv, NETC_TMR_TEVENT); tmr_event &= priv->tmr_emask; /* Clear interrupts status */ netc_timer_wr(priv, NETC_TMR_TEVENT, tmr_event); if (tmr_event & TMR_TEVENT_ALMEN(0)) netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0); if (tmr_event & TMR_TEVENT_ALMEN(1)) netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 1); if (tmr_event & TMR_TEVENT_PPEN_ALL) { event.type = PTP_CLOCK_PPS; ptp_clock_event(priv->clock, &event); } if (tmr_event & TMR_TEVENT_ETS(0)) netc_timer_handle_etts_event(priv, 0, true); if (tmr_event & TMR_TEVENT_ETS(1)) netc_timer_handle_etts_event(priv, 1, true); spin_unlock(&priv->lock); return IRQ_HANDLED; } static int netc_timer_init_msix_irq(struct netc_timer *priv) { struct pci_dev *pdev = priv->pdev; int err, n; n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX); if (n != 1) { err = (n < 0) ? n : -EPERM; dev_err(&pdev->dev, "pci_alloc_irq_vectors() failed\n"); return err; } priv->irq = pci_irq_vector(pdev, 0); err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv); if (err) { dev_err(&pdev->dev, "request_irq() failed\n"); pci_free_irq_vectors(pdev); return err; } return 0; } static void netc_timer_free_msix_irq(struct netc_timer *priv) { struct pci_dev *pdev = priv->pdev; disable_irq(priv->irq); free_irq(priv->irq, priv); pci_free_irq_vectors(pdev); } static int netc_timer_get_global_ip_rev(struct netc_timer *priv) { u32 val; val = netc_timer_rd(priv, NETC_GLOBAL_OFFSET + NETC_GLOBAL_IPBRR0); return val & IPBRR0_IP_REV; } static int netc_timer_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct netc_timer *priv; int err; err = netc_timer_pci_probe(pdev); if (err) return err; priv = pci_get_drvdata(pdev); priv->revision = netc_timer_get_global_ip_rev(priv); if (priv->revision == NETC_REV_4_1) priv->fs_alarm_num = 1; else priv->fs_alarm_num = NETC_TMR_ALARM_NUM; err = netc_timer_parse_dt(priv); if (err) goto timer_pci_remove; priv->caps = netc_timer_ptp_caps; priv->oclk_prsc = NETC_TMR_DEFAULT_PRSC; priv->pps_channel = NETC_TMR_INVALID_CHANNEL; spin_lock_init(&priv->lock); snprintf(priv->irq_name, sizeof(priv->irq_name), "ptp-netc %s", pci_name(pdev)); err = netc_timer_init_msix_irq(priv); if (err) goto timer_pci_remove; netc_timer_init(priv); priv->clock = ptp_clock_register(&priv->caps, dev); if (IS_ERR(priv->clock)) { err = PTR_ERR(priv->clock); goto free_msix_irq; } return 0; free_msix_irq: netc_timer_free_msix_irq(priv); timer_pci_remove: netc_timer_pci_remove(pdev); return err; } static void netc_timer_remove(struct pci_dev *pdev) { struct netc_timer *priv = pci_get_drvdata(pdev); netc_timer_wr(priv, NETC_TMR_TEMASK, 0); netc_timer_wr(priv, NETC_TMR_CTRL, 0); ptp_clock_unregister(priv->clock); netc_timer_free_msix_irq(priv); netc_timer_pci_remove(pdev); } static const struct pci_device_id netc_timer_id_table[] = { { PCI_DEVICE(NETC_TMR_PCI_VENDOR_NXP, 0xee02) }, { } }; MODULE_DEVICE_TABLE(pci, netc_timer_id_table); static struct pci_driver netc_timer_driver = { .name = KBUILD_MODNAME, .id_table = netc_timer_id_table, .probe = netc_timer_probe, .remove = netc_timer_remove, }; module_pci_driver(netc_timer_driver); MODULE_DESCRIPTION("NXP NETC Timer PTP Driver"); MODULE_LICENSE("Dual BSD/GPL");