// SPDX-License-Identifier: GPL-2.0+ /*****************************************************************************/ /* * devio.c -- User space communication with USB devices. * * Copyright (C) 1999-2000 Thomas Sailer (sailer@ife.ee.ethz.ch) * * This file implements the usbfs/x/y files, where * x is the bus number and y the device number. * * It allows user space programs/"drivers" to communicate directly * with USB devices without intervening kernel driver. * * Revision history * 22.12.1999 0.1 Initial release (split from proc_usb.c) * 04.01.2000 0.2 Turned into its own filesystem * 30.09.2005 0.3 Fix user-triggerable oops in async URB delivery * (CAN-2005-3055) */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include /* for usbcore internals */ #include #include #include #include #include #include #include #include #include #include #include "usb.h" #ifdef CONFIG_PM #define MAYBE_CAP_SUSPEND USBDEVFS_CAP_SUSPEND #else #define MAYBE_CAP_SUSPEND 0 #endif #define USB_MAXBUS 64 #define USB_DEVICE_MAX (USB_MAXBUS * 128) #define USB_SG_SIZE 16384 /* split-size for large txs */ /* Mutual exclusion for ps->list in resume vs. release and remove */ static DEFINE_MUTEX(usbfs_mutex); struct usb_dev_state { struct list_head list; /* state list */ struct usb_device *dev; struct file *file; spinlock_t lock; /* protects the async urb lists */ struct list_head async_pending; struct list_head async_completed; struct list_head memory_list; wait_queue_head_t wait; /* wake up if a request completed */ wait_queue_head_t wait_for_resume; /* wake up upon runtime resume */ unsigned int discsignr; struct pid *disc_pid; const struct cred *cred; sigval_t disccontext; unsigned long ifclaimed; u32 disabled_bulk_eps; unsigned long interface_allowed_mask; int not_yet_resumed; bool suspend_allowed; bool privileges_dropped; }; struct usb_memory { struct list_head memlist; int vma_use_count; int urb_use_count; u32 size; void *mem; dma_addr_t dma_handle; unsigned long vm_start; struct usb_dev_state *ps; }; struct async { struct list_head asynclist; struct usb_dev_state *ps; struct pid *pid; const struct cred *cred; unsigned int signr; unsigned int ifnum; void __user *userbuffer; void __user *userurb; sigval_t userurb_sigval; struct urb *urb; struct usb_memory *usbm; unsigned int mem_usage; int status; u8 bulk_addr; u8 bulk_status; }; static bool usbfs_snoop; module_param(usbfs_snoop, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(usbfs_snoop, "true to log all usbfs traffic"); static unsigned usbfs_snoop_max = 65536; module_param(usbfs_snoop_max, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(usbfs_snoop_max, "maximum number of bytes to print while snooping"); #define snoop(dev, format, arg...) \ do { \ if (usbfs_snoop) \ dev_info(dev, format, ## arg); \ } while (0) enum snoop_when { SUBMIT, COMPLETE }; #define USB_DEVICE_DEV MKDEV(USB_DEVICE_MAJOR, 0) /* Limit on the total amount of memory we can allocate for transfers */ static u32 usbfs_memory_mb = 16; module_param(usbfs_memory_mb, uint, 0644); MODULE_PARM_DESC(usbfs_memory_mb, "maximum MB allowed for usbfs buffers (0 = no limit)"); /* Hard limit, necessary to avoid arithmetic overflow */ #define USBFS_XFER_MAX (UINT_MAX / 2 - 1000000) static DEFINE_SPINLOCK(usbfs_memory_usage_lock); static u64 usbfs_memory_usage; /* Total memory currently allocated */ /* Check whether it's okay to allocate more memory for a transfer */ static int usbfs_increase_memory_usage(u64 amount) { u64 lim, total_mem; unsigned long flags; int ret; lim = READ_ONCE(usbfs_memory_mb); lim <<= 20; ret = 0; spin_lock_irqsave(&usbfs_memory_usage_lock, flags); total_mem = usbfs_memory_usage + amount; if (lim > 0 && total_mem > lim) ret = -ENOMEM; else usbfs_memory_usage = total_mem; spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags); return ret; } /* Memory for a transfer is being deallocated */ static void usbfs_decrease_memory_usage(u64 amount) { unsigned long flags; spin_lock_irqsave(&usbfs_memory_usage_lock, flags); if (amount > usbfs_memory_usage) usbfs_memory_usage = 0; else usbfs_memory_usage -= amount; spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags); } static int connected(struct usb_dev_state *ps) { return (!list_empty(&ps->list) && ps->dev->state != USB_STATE_NOTATTACHED); } static void dec_usb_memory_use_count(struct usb_memory *usbm, int *count) { struct usb_dev_state *ps = usbm->ps; struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus); unsigned long flags; spin_lock_irqsave(&ps->lock, flags); --*count; if (usbm->urb_use_count == 0 && usbm->vma_use_count == 0) { list_del(&usbm->memlist); spin_unlock_irqrestore(&ps->lock, flags); hcd_buffer_free_pages(hcd, usbm->size, usbm->mem, usbm->dma_handle); usbfs_decrease_memory_usage( usbm->size + sizeof(struct usb_memory)); kfree(usbm); } else { spin_unlock_irqrestore(&ps->lock, flags); } } static void usbdev_vm_open(struct vm_area_struct *vma) { struct usb_memory *usbm = vma->vm_private_data; unsigned long flags; spin_lock_irqsave(&usbm->ps->lock, flags); ++usbm->vma_use_count; spin_unlock_irqrestore(&usbm->ps->lock, flags); } static void usbdev_vm_close(struct vm_area_struct *vma) { struct usb_memory *usbm = vma->vm_private_data; dec_usb_memory_use_count(usbm, &usbm->vma_use_count); } static const struct vm_operations_struct usbdev_vm_ops = { .open = usbdev_vm_open, .close = usbdev_vm_close }; static int usbdev_mmap(struct file *file, struct vm_area_struct *vma) { struct usb_memory *usbm = NULL; struct usb_dev_state *ps = file->private_data; struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus); size_t size = vma->vm_end - vma->vm_start; void *mem; unsigned long flags; dma_addr_t dma_handle = DMA_MAPPING_ERROR; int ret; if (!(file->f_mode & FMODE_WRITE)) return -EPERM; ret = usbfs_increase_memory_usage(size + sizeof(struct usb_memory)); if (ret) goto error; usbm = kzalloc(sizeof(struct usb_memory), GFP_KERNEL); if (!usbm) { ret = -ENOMEM; goto error_decrease_mem; } mem = hcd_buffer_alloc_pages(hcd, size, GFP_USER | __GFP_NOWARN, &dma_handle); if (!mem) { ret = -ENOMEM; goto error_free_usbm; } memset(mem, 0, size); usbm->mem = mem; usbm->dma_handle = dma_handle; usbm->size = size; usbm->ps = ps; usbm->vm_start = vma->vm_start; usbm->vma_use_count = 1; INIT_LIST_HEAD(&usbm->memlist); /* * In DMA-unavailable cases, hcd_buffer_alloc_pages allocates * normal pages and assigns DMA_MAPPING_ERROR to dma_handle. Check * whether we are in such cases, and then use remap_pfn_range (or * dma_mmap_coherent) to map normal (or DMA) pages into the user * space, respectively. */ if (dma_handle == DMA_MAPPING_ERROR) { if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(usbm->mem) >> PAGE_SHIFT, size, vma->vm_page_prot) < 0) { dec_usb_memory_use_count(usbm, &usbm->vma_use_count); return -EAGAIN; } } else { if (dma_mmap_coherent(hcd->self.sysdev, vma, mem, dma_handle, size)) { dec_usb_memory_use_count(usbm, &usbm->vma_use_count); return -EAGAIN; } } vm_flags_set(vma, VM_IO | VM_DONTEXPAND | VM_DONTDUMP); vma->vm_ops = &usbdev_vm_ops; vma->vm_private_data = usbm; spin_lock_irqsave(&ps->lock, flags); list_add_tail(&usbm->memlist, &ps->memory_list); spin_unlock_irqrestore(&ps->lock, flags); return 0; error_free_usbm: kfree(usbm); error_decrease_mem: usbfs_decrease_memory_usage(size + sizeof(struct usb_memory)); error: return ret; } static ssize_t usbdev_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct usb_dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; ssize_t ret = 0; unsigned len; loff_t pos; int i; pos = *ppos; usb_lock_device(dev); if (!connected(ps)) { ret = -ENODEV; goto err; } else if (pos < 0) { ret = -EINVAL; goto err; } if (pos < sizeof(struct usb_device_descriptor)) { /* 18 bytes - fits on the stack */ struct usb_device_descriptor temp_desc; memcpy(&temp_desc, &dev->descriptor, sizeof(dev->descriptor)); le16_to_cpus(&temp_desc.bcdUSB); le16_to_cpus(&temp_desc.idVendor); le16_to_cpus(&temp_desc.idProduct); le16_to_cpus(&temp_desc.bcdDevice); len = sizeof(struct usb_device_descriptor) - pos; if (len > nbytes) len = nbytes; if (copy_to_user(buf, ((char *)&temp_desc) + pos, len)) { ret = -EFAULT; goto err; } *ppos += len; buf += len; nbytes -= len; ret += len; } pos = sizeof(struct usb_device_descriptor); for (i = 0; nbytes && i < dev->descriptor.bNumConfigurations; i++) { struct usb_config_descriptor *config = (struct usb_config_descriptor *)dev->rawdescriptors[i]; unsigned int length = le16_to_cpu(config->wTotalLength); if (*ppos < pos + length) { /* The descriptor may claim to be longer than it * really is. Here is the actual allocated length. */ unsigned alloclen = le16_to_cpu(dev->config[i].desc.wTotalLength); len = length - (*ppos - pos); if (len > nbytes) len = nbytes; /* Simply don't write (skip over) unallocated parts */ if (alloclen > (*ppos - pos)) { alloclen -= (*ppos - pos); if (copy_to_user(buf, dev->rawdescriptors[i] + (*ppos - pos), min(len, alloclen))) { ret = -EFAULT; goto err; } } *ppos += len; buf += len; nbytes -= len; ret += len; } pos += length; } err: usb_unlock_device(dev); return ret; } /* * async list handling */ static struct async *alloc_async(unsigned int numisoframes) { struct async *as; as = kzalloc(sizeof(struct async), GFP_KERNEL); if (!as) return NULL; as->urb = usb_alloc_urb(numisoframes, GFP_KERNEL); if (!as->urb) { kfree(as); return NULL; } return as; } static void free_async(struct async *as) { int i; put_pid(as->pid); if (as->cred) put_cred(as->cred); for (i = 0; i < as->urb->num_sgs; i++) { if (sg_page(&as->urb->sg[i])) kfree(sg_virt(&as->urb->sg[i])); } kfree(as->urb->sg); if (as->usbm == NULL) kfree(as->urb->transfer_buffer); else dec_usb_memory_use_count(as->usbm, &as->usbm->urb_use_count); kfree(as->urb->setup_packet); usb_free_urb(as->urb); usbfs_decrease_memory_usage(as->mem_usage); kfree(as); } static void async_newpending(struct async *as) { struct usb_dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_add_tail(&as->asynclist, &ps->async_pending); spin_unlock_irqrestore(&ps->lock, flags); } static void async_removepending(struct async *as) { struct usb_dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_del_init(&as->asynclist); spin_unlock_irqrestore(&ps->lock, flags); } static struct async *async_getcompleted(struct usb_dev_state *ps) { unsigned long flags; struct async *as = NULL; spin_lock_irqsave(&ps->lock, flags); if (!list_empty(&ps->async_completed)) { as = list_entry(ps->async_completed.next, struct async, asynclist); list_del_init(&as->asynclist); } spin_unlock_irqrestore(&ps->lock, flags); return as; } static struct async *async_getpending(struct usb_dev_state *ps, void __user *userurb) { struct async *as; list_for_each_entry(as, &ps->async_pending, asynclist) if (as->userurb == userurb) { list_del_init(&as->asynclist); return as; } return NULL; } static void snoop_urb(struct usb_device *udev, void __user *userurb, int pipe, unsigned length, int timeout_or_status, enum snoop_when when, unsigned char *data, unsigned data_len) { static const char *types[] = {"isoc", "int", "ctrl", "bulk"}; static const char *dirs[] = {"out", "in"}; int ep; const char *t, *d; if (!usbfs_snoop) return; ep = usb_pipeendpoint(pipe); t = types[usb_pipetype(pipe)]; d = dirs[!!usb_pipein(pipe)]; if (userurb) { /* Async */ if (when == SUBMIT) dev_info(&udev->dev, "userurb %px, ep%d %s-%s, " "length %u\n", userurb, ep, t, d, length); else dev_info(&udev->dev, "userurb %px, ep%d %s-%s, " "actual_length %u status %d\n", userurb, ep, t, d, length, timeout_or_status); } else { if (when == SUBMIT) dev_info(&udev->dev, "ep%d %s-%s, length %u, " "timeout %d\n", ep, t, d, length, timeout_or_status); else dev_info(&udev->dev, "ep%d %s-%s, actual_length %u, " "status %d\n", ep, t, d, length, timeout_or_status); } data_len = min(data_len, usbfs_snoop_max); if (data && data_len > 0) { print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, data, data_len, 1); } } static void snoop_urb_data(struct urb *urb, unsigned len) { int i, size; len = min(len, usbfs_snoop_max); if (!usbfs_snoop || len == 0) return; if (urb->num_sgs == 0) { print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, urb->transfer_buffer, len, 1); return; } for (i = 0; i < urb->num_sgs && len; i++) { size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len; print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, sg_virt(&urb->sg[i]), size, 1); len -= size; } } static int copy_urb_data_to_user(u8 __user *userbuffer, struct urb *urb) { unsigned i, len, size; if (urb->number_of_packets > 0) /* Isochronous */ len = urb->transfer_buffer_length; else /* Non-Isoc */ len = urb->actual_length; if (urb->num_sgs == 0) { if (copy_to_user(userbuffer, urb->transfer_buffer, len)) return -EFAULT; return 0; } for (i = 0; i < urb->num_sgs && len; i++) { size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len; if (copy_to_user(userbuffer, sg_virt(&urb->sg[i]), size)) return -EFAULT; userbuffer += size; len -= size; } return 0; } #define AS_CONTINUATION 1 #define AS_UNLINK 2 static void cancel_bulk_urbs(struct usb_dev_state *ps, unsigned bulk_addr) __releases(ps->lock) __acquires(ps->lock) { struct urb *urb; struct async *as; /* Mark all the pending URBs that match bulk_addr, up to but not * including the first one without AS_CONTINUATION. If such an * URB is encountered then a new transfer has already started so * the endpoint doesn't need to be disabled; otherwise it does. */ list_for_each_entry(as, &ps->async_pending, asynclist) { if (as->bulk_addr == bulk_addr) { if (as->bulk_status != AS_CONTINUATION) goto rescan; as->bulk_status = AS_UNLINK; as->bulk_addr = 0; } } ps->disabled_bulk_eps |= (1 << bulk_addr); /* Now carefully unlink all the marked pending URBs */ rescan: list_for_each_entry_reverse(as, &ps->async_pending, asynclist) { if (as->bulk_status == AS_UNLINK) { as->bulk_status = 0; /* Only once */ urb = as->urb; usb_get_urb(urb); spin_unlock(&ps->lock); /* Allow completions */ usb_unlink_urb(urb); usb_put_urb(urb); spin_lock(&ps->lock); goto rescan; } } } static void async_completed(struct urb *urb) { struct async *as = urb->context; struct usb_dev_state *ps = as->ps; struct pid *pid = NULL; const struct cred *cred = NULL; unsigned long flags; sigval_t addr; int signr, errno; spin_lock_irqsave(&ps->lock, flags); list_move_tail(&as->asynclist, &ps->async_completed); as->status = urb->status; signr = as->signr; if (signr) { errno = as->status; addr = as->userurb_sigval; pid = get_pid(as->pid); cred = get_cred(as->cred); } snoop(&urb->dev->dev, "urb complete\n"); snoop_urb(urb->dev, as->userurb, urb->pipe, urb->actual_length, as->status, COMPLETE, NULL, 0); if (usb_urb_dir_in(urb)) snoop_urb_data(urb, urb->actual_length); if (as->status < 0 && as->bulk_addr && as->status != -ECONNRESET && as->status != -ENOENT) cancel_bulk_urbs(ps, as->bulk_addr); wake_up(&ps->wait); spin_unlock_irqrestore(&ps->lock, flags); if (signr) { kill_pid_usb_asyncio(signr, errno, addr, pid, cred); put_pid(pid); put_cred(cred); } } static void destroy_async(struct usb_dev_state *ps, struct list_head *list) { struct urb *urb; struct async *as; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); while (!list_empty(list)) { as = list_last_entry(list, struct async, asynclist); list_del_init(&as->asynclist); urb = as->urb; usb_get_urb(urb); /* drop the spinlock so the completion handler can run */ spin_unlock_irqrestore(&ps->lock, flags); usb_kill_urb(urb); usb_put_urb(urb); spin_lock_irqsave(&ps->lock, flags); } spin_unlock_irqrestore(&ps->lock, flags); } static void destroy_async_on_interface(struct usb_dev_state *ps, unsigned int ifnum) { struct list_head *p, *q, hitlist; unsigned long flags; INIT_LIST_HEAD(&hitlist); spin_lock_irqsave(&ps->lock, flags); list_for_each_safe(p, q, &ps->async_pending) if (ifnum == list_entry(p, struct async, asynclist)->ifnum) list_move_tail(p, &hitlist); spin_unlock_irqrestore(&ps->lock, flags); destroy_async(ps, &hitlist); } static void destroy_all_async(struct usb_dev_state *ps) { destroy_async(ps, &ps->async_pending); } /* * interface claims are made only at the request of user level code, * which can also release them (explicitly or by closing files). * they're also undone when devices disconnect. */ static int driver_probe(struct usb_interface *intf, const struct usb_device_id *id) { return -ENODEV; } static void driver_disconnect(struct usb_interface *intf) { struct usb_dev_state *ps = usb_get_intfdata(intf); unsigned int ifnum = intf->altsetting->desc.bInterfaceNumber; if (!ps) return; /* NOTE: this relies on usbcore having canceled and completed * all pending I/O requests; 2.6 does that. */ if (likely(ifnum < 8*sizeof(ps->ifclaimed))) clear_bit(ifnum, &ps->ifclaimed); else dev_warn(&intf->dev, "interface number %u out of range\n", ifnum); usb_set_intfdata(intf, NULL); /* force async requests to complete */ destroy_async_on_interface(ps, ifnum); } /* We don't care about suspend/resume of claimed interfaces */ static int driver_suspend(struct usb_interface *intf, pm_message_t msg) { return 0; } static int driver_resume(struct usb_interface *intf) { return 0; } #ifdef CONFIG_PM /* The following routines apply to the entire device, not interfaces */ void usbfs_notify_suspend(struct usb_device *udev) { /* We don't need to handle this */ } void usbfs_notify_resume(struct usb_device *udev) { struct usb_dev_state *ps; /* Protect against simultaneous remove or release */ mutex_lock(&usbfs_mutex); list_for_each_entry(ps, &udev->filelist, list) { WRITE_ONCE(ps->not_yet_resumed, 0); wake_up_all(&ps->wait_for_resume); } mutex_unlock(&usbfs_mutex); } #endif struct usb_driver usbfs_driver = { .name = "usbfs", .probe = driver_probe, .disconnect = driver_disconnect, .suspend = driver_suspend, .resume = driver_resume, .supports_autosuspend = 1, }; static int claimintf(struct usb_dev_state *ps, unsigned int ifnum) { struct usb_device *dev = ps->dev; struct usb_interface *intf; int err; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; /* already claimed */ if (test_bit(ifnum, &ps->ifclaimed)) return 0; if (ps->privileges_dropped && !test_bit(ifnum, &ps->interface_allowed_mask)) return -EACCES; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else { unsigned int old_suppress; /* suppress uevents while claiming interface */ old_suppress = dev_get_uevent_suppress(&intf->dev); dev_set_uevent_suppress(&intf->dev, 1); err = usb_driver_claim_interface(&usbfs_driver, intf, ps); dev_set_uevent_suppress(&intf->dev, old_suppress); } if (err == 0) set_bit(ifnum, &ps->ifclaimed); return err; } static int releaseintf(struct usb_dev_state *ps, unsigned int ifnum) { struct usb_device *dev; struct usb_interface *intf; int err; err = -EINVAL; if (ifnum >= 8*sizeof(ps->ifclaimed)) return err; dev = ps->dev; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else if (test_and_clear_bit(ifnum, &ps->ifclaimed)) { unsigned int old_suppress; /* suppress uevents while releasing interface */ old_suppress = dev_get_uevent_suppress(&intf->dev); dev_set_uevent_suppress(&intf->dev, 1); usb_driver_release_interface(&usbfs_driver, intf); dev_set_uevent_suppress(&intf->dev, old_suppress); err = 0; } return err; } static int checkintf(struct usb_dev_state *ps, unsigned int ifnum) { if (ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; if (test_bit(ifnum, &ps->ifclaimed)) return 0; /* if not yet claimed, claim it for the driver */ dev_warn(&ps->dev->dev, "usbfs: process %d (%s) did not claim " "interface %u before use\n", task_pid_nr(current), current->comm, ifnum); return claimintf(ps, ifnum); } static int findintfep(struct usb_device *dev, unsigned int ep) { unsigned int i, j, e; struct usb_interface *intf; struct usb_host_interface *alts; struct usb_endpoint_descriptor *endpt; if (ep & ~(USB_DIR_IN|0xf)) return -EINVAL; if (!dev->actconfig) return -ESRCH; for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { intf = dev->actconfig->interface[i]; for (j = 0; j < intf->num_altsetting; j++) { alts = &intf->altsetting[j]; for (e = 0; e < alts->desc.bNumEndpoints; e++) { endpt = &alts->endpoint[e].desc; if (endpt->bEndpointAddress == ep) return alts->desc.bInterfaceNumber; } } } return -ENOENT; } static int check_ctrlrecip(struct usb_dev_state *ps, unsigned int requesttype, unsigned int request, unsigned int index) { int ret = 0; struct usb_host_interface *alt_setting; if (ps->dev->state != USB_STATE_UNAUTHENTICATED && ps->dev->state != USB_STATE_ADDRESS && ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (USB_TYPE_VENDOR == (USB_TYPE_MASK & requesttype)) return 0; /* * check for the special corner case 'get_device_id' in the printer * class specification, which we always want to allow as it is used * to query things like ink level, etc. */ if (requesttype == 0xa1 && request == 0) { alt_setting = usb_find_alt_setting(ps->dev->actconfig, index >> 8, index & 0xff); if (alt_setting && alt_setting->desc.bInterfaceClass == USB_CLASS_PRINTER) return 0; } index &= 0xff; switch (requesttype & USB_RECIP_MASK) { case USB_RECIP_ENDPOINT: if ((index & ~USB_DIR_IN) == 0) return 0; ret = findintfep(ps->dev, index); if (ret < 0) { /* * Some not fully compliant Win apps seem to get * index wrong and have the endpoint number here * rather than the endpoint address (with the * correct direction). Win does let this through, * so we'll not reject it here but leave it to * the device to not break KVM. But we warn. */ ret = findintfep(ps->dev, index ^ 0x80); if (ret >= 0) dev_info(&ps->dev->dev, "%s: process %i (%s) requesting ep %02x but needs %02x\n", __func__, task_pid_nr(current), current->comm, index, index ^ 0x80); } if (ret >= 0) ret = checkintf(ps, ret); break; case USB_RECIP_INTERFACE: ret = checkintf(ps, index); break; } return ret; } static struct usb_host_endpoint *ep_to_host_endpoint(struct usb_device *dev, unsigned char ep) { if (ep & USB_ENDPOINT_DIR_MASK) return dev->ep_in[ep & USB_ENDPOINT_NUMBER_MASK]; else return dev->ep_out[ep & USB_ENDPOINT_NUMBER_MASK]; } static int parse_usbdevfs_streams(struct usb_dev_state *ps, struct usbdevfs_streams __user *streams, unsigned int *num_streams_ret, unsigned int *num_eps_ret, struct usb_host_endpoint ***eps_ret, struct usb_interface **intf_ret) { unsigned int i, num_streams, num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf = NULL; unsigned char ep; int ifnum, ret; if (get_user(num_streams, &streams->num_streams) || get_user(num_eps, &streams->num_eps)) return -EFAULT; if (num_eps < 1 || num_eps > USB_MAXENDPOINTS) return -EINVAL; /* The XHCI controller allows max 2 ^ 16 streams */ if (num_streams_ret && (num_streams < 2 || num_streams > 65536)) return -EINVAL; eps = kmalloc_array(num_eps, sizeof(*eps), GFP_KERNEL); if (!eps) return -ENOMEM; for (i = 0; i < num_eps; i++) { if (get_user(ep, &streams->eps[i])) { ret = -EFAULT; goto error; } eps[i] = ep_to_host_endpoint(ps->dev, ep); if (!eps[i]) { ret = -EINVAL; goto error; } /* usb_alloc/free_streams operate on an usb_interface */ ifnum = findintfep(ps->dev, ep); if (ifnum < 0) { ret = ifnum; goto error; } if (i == 0) { ret = checkintf(ps, ifnum); if (ret < 0) goto error; intf = usb_ifnum_to_if(ps->dev, ifnum); } else { /* Verify all eps belong to the same interface */ if (ifnum != intf->altsetting->desc.bInterfaceNumber) { ret = -EINVAL; goto error; } } } if (num_streams_ret) *num_streams_ret = num_streams; *num_eps_ret = num_eps; *eps_ret = eps; *intf_ret = intf; return 0; error: kfree(eps); return ret; } static struct usb_device *usbdev_lookup_by_devt(dev_t devt) { struct device *dev; dev = bus_find_device_by_devt(&usb_bus_type, devt); if (!dev) return NULL; return to_usb_device(dev); } /* * file operations */ static int usbdev_open(struct inode *inode, struct file *file) { struct usb_device *dev = NULL; struct usb_dev_state *ps; int ret; ret = -ENOMEM; ps = kzalloc(sizeof(struct usb_dev_state), GFP_KERNEL); if (!ps) goto out_free_ps; ret = -ENODEV; /* usbdev device-node */ if (imajor(inode) == USB_DEVICE_MAJOR) dev = usbdev_lookup_by_devt(inode->i_rdev); if (!dev) goto out_free_ps; usb_lock_device(dev); if (dev->state == USB_STATE_NOTATTACHED) goto out_unlock_device; ret = usb_autoresume_device(dev); if (ret) goto out_unlock_device; ps->dev = dev; ps->file = file; ps->interface_allowed_mask = 0xFFFFFFFF; /* 32 bits */ spin_lock_init(&ps->lock); INIT_LIST_HEAD(&ps->list); INIT_LIST_HEAD(&ps->async_pending); INIT_LIST_HEAD(&ps->async_completed); INIT_LIST_HEAD(&ps->memory_list); init_waitqueue_head(&ps->wait); init_waitqueue_head(&ps->wait_for_resume); ps->disc_pid = get_pid(task_pid(current)); ps->cred = get_current_cred(); smp_wmb(); /* Can't race with resume; the device is already active */ list_add_tail(&ps->list, &dev->filelist); file->private_data = ps; usb_unlock_device(dev); snoop(&dev->dev, "opened by process %d: %s\n", task_pid_nr(current), current->comm); return ret; out_unlock_device: usb_unlock_device(dev); usb_put_dev(dev); out_free_ps: kfree(ps); return ret; } static int usbdev_release(struct inode *inode, struct file *file) { struct usb_dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; unsigned int ifnum; struct async *as; usb_lock_device(dev); usb_hub_release_all_ports(dev, ps); /* Protect against simultaneous resume */ mutex_lock(&usbfs_mutex); list_del_init(&ps->list); mutex_unlock(&usbfs_mutex); for (ifnum = 0; ps->ifclaimed && ifnum < 8*sizeof(ps->ifclaimed); ifnum++) { if (test_bit(ifnum, &ps->ifclaimed)) releaseintf(ps, ifnum); } destroy_all_async(ps); if (!ps->suspend_allowed) usb_autosuspend_device(dev); usb_unlock_device(dev); usb_put_dev(dev); put_pid(ps->disc_pid); put_cred(ps->cred); as = async_getcompleted(ps); while (as) { free_async(as); as = async_getcompleted(ps); } kfree(ps); return 0; } static void usbfs_blocking_completion(struct urb *urb) { complete((struct completion *) urb->context); } /* * Much like usb_start_wait_urb, but returns status separately from * actual_length and uses a killable wait. */ static int usbfs_start_wait_urb(struct urb *urb, int timeout, unsigned int *actlen) { DECLARE_COMPLETION_ONSTACK(ctx); unsigned long expire; int rc; urb->context = &ctx; urb->complete = usbfs_blocking_completion; *actlen = 0; rc = usb_submit_urb(urb, GFP_KERNEL); if (unlikely(rc)) return rc; expire = (timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT); rc = wait_for_completion_killable_timeout(&ctx, expire); if (rc <= 0) { usb_kill_urb(urb); *actlen = urb->actual_length; if (urb->status != -ENOENT) ; /* Completed before it was killed */ else if (rc < 0) return -EINTR; else return -ETIMEDOUT; } *actlen = urb->actual_length; return urb->status; } static int do_proc_control(struct usb_dev_state *ps, struct usbdevfs_ctrltransfer *ctrl) { struct usb_device *dev = ps->dev; unsigned int tmo; unsigned char *tbuf; unsigned int wLength, actlen; int i, pipe, ret; struct urb *urb = NULL; struct usb_ctrlrequest *dr = NULL; ret = check_ctrlrecip(ps, ctrl->bRequestType, ctrl->bRequest, ctrl->wIndex); if (ret) return ret; wLength = ctrl->wLength; /* To suppress 64k PAGE_SIZE warning */ if (wLength > PAGE_SIZE) return -EINVAL; ret = usbfs_increase_memory_usage(PAGE_SIZE + sizeof(struct urb) + sizeof(struct usb_ctrlrequest)); if (ret) return ret; ret = -ENOMEM; tbuf = (unsigned char *)__get_free_page(GFP_KERNEL); if (!tbuf) goto done; urb = usb_alloc_urb(0, GFP_NOIO); if (!urb) goto done; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); if (!dr) goto done; dr->bRequestType = ctrl->bRequestType; dr->bRequest = ctrl->bRequest; dr->wValue = cpu_to_le16(ctrl->wValue); dr->wIndex = cpu_to_le16(ctrl->wIndex); dr->wLength = cpu_to_le16(ctrl->wLength); tmo = ctrl->timeout; snoop(&dev->dev, "control urb: bRequestType=%02x " "bRequest=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, ctrl->wIndex, ctrl->wLength); if ((ctrl->bRequestType & USB_DIR_IN) && wLength) { pipe = usb_rcvctrlpipe(dev, 0); usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf, wLength, NULL, NULL); snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, NULL, 0); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &actlen); /* Linger a bit, prior to the next control message. */ if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) msleep(200); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, tbuf, actlen); if (!i && actlen) { if (copy_to_user(ctrl->data, tbuf, actlen)) { ret = -EFAULT; goto done; } } } else { if (wLength) { if (copy_from_user(tbuf, ctrl->data, wLength)) { ret = -EFAULT; goto done; } } pipe = usb_sndctrlpipe(dev, 0); usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf, wLength, NULL, NULL); snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, tbuf, wLength); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &actlen); /* Linger a bit, prior to the next control message. */ if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) msleep(200); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, NULL, 0); } if (i < 0 && i != -EPIPE) { dev_printk(KERN_DEBUG, &dev->dev, "usbfs: USBDEVFS_CONTROL " "failed cmd %s rqt %u rq %u len %u ret %d\n", current->comm, ctrl->bRequestType, ctrl->bRequest, ctrl->wLength, i); } ret = (i < 0 ? i : actlen); done: kfree(dr); usb_free_urb(urb); free_page((unsigned long) tbuf); usbfs_decrease_memory_usage(PAGE_SIZE + sizeof(struct urb) + sizeof(struct usb_ctrlrequest)); return ret; } static int proc_control(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_ctrltransfer ctrl; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; return do_proc_control(ps, &ctrl); } static int do_proc_bulk(struct usb_dev_state *ps, struct usbdevfs_bulktransfer *bulk) { struct usb_device *dev = ps->dev; unsigned int tmo, len1, len2, pipe; unsigned char *tbuf; int i, ret; struct urb *urb = NULL; struct usb_host_endpoint *ep; ret = findintfep(ps->dev, bulk->ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; len1 = bulk->len; if (len1 >= (INT_MAX - sizeof(struct urb))) return -EINVAL; if (bulk->ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(dev, bulk->ep & 0x7f); else pipe = usb_sndbulkpipe(dev, bulk->ep & 0x7f); ep = usb_pipe_endpoint(dev, pipe); if (!ep || !usb_endpoint_maxp(&ep->desc)) return -EINVAL; ret = usbfs_increase_memory_usage(len1 + sizeof(struct urb)); if (ret) return ret; /* * len1 can be almost arbitrarily large. Don't WARN if it's * too big, just fail the request. */ ret = -ENOMEM; tbuf = kmalloc(len1, GFP_KERNEL | __GFP_NOWARN); if (!tbuf) goto done; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) goto done; if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) { pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); usb_fill_int_urb(urb, dev, pipe, tbuf, len1, NULL, NULL, ep->desc.bInterval); } else { usb_fill_bulk_urb(urb, dev, pipe, tbuf, len1, NULL, NULL); } tmo = bulk->timeout; if (bulk->ep & 0x80) { snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, NULL, 0); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &len2); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, tbuf, len2); if (!i && len2) { if (copy_to_user(bulk->data, tbuf, len2)) { ret = -EFAULT; goto done; } } } else { if (len1) { if (copy_from_user(tbuf, bulk->data, len1)) { ret = -EFAULT; goto done; } } snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, tbuf, len1); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &len2); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, NULL, 0); } ret = (i < 0 ? i : len2); done: usb_free_urb(urb); kfree(tbuf); usbfs_decrease_memory_usage(len1 + sizeof(struct urb)); return ret; } static int proc_bulk(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_bulktransfer bulk; if (copy_from_user(&bulk, arg, sizeof(bulk))) return -EFAULT; return do_proc_bulk(ps, &bulk); } static void check_reset_of_active_ep(struct usb_device *udev, unsigned int epnum, char *ioctl_name) { struct usb_host_endpoint **eps; struct usb_host_endpoint *ep; eps = (epnum & USB_DIR_IN) ? udev->ep_in : udev->ep_out; ep = eps[epnum & 0x0f]; if (ep && !list_empty(&ep->urb_list)) dev_warn(&udev->dev, "Process %d (%s) called USBDEVFS_%s for active endpoint 0x%02x\n", task_pid_nr(current), current->comm, ioctl_name, epnum); } static int proc_resetep(struct usb_dev_state *ps, void __user *arg) { unsigned int ep; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; check_reset_of_active_ep(ps->dev, ep, "RESETEP"); usb_reset_endpoint(ps->dev, ep); return 0; } static int proc_clearhalt(struct usb_dev_state *ps, void __user *arg) { unsigned int ep; int pipe; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; check_reset_of_active_ep(ps->dev, ep, "CLEAR_HALT"); if (ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(ps->dev, ep & 0x7f); else pipe = usb_sndbulkpipe(ps->dev, ep & 0x7f); return usb_clear_halt(ps->dev, pipe); } static int proc_getdriver(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_getdriver gd; struct usb_interface *intf; int ret; if (copy_from_user(&gd, arg, sizeof(gd))) return -EFAULT; intf = usb_ifnum_to_if(ps->dev, gd.interface); if (!intf || !intf->dev.driver) ret = -ENODATA; else { strscpy(gd.driver, intf->dev.driver->name, sizeof(gd.driver)); ret = (copy_to_user(arg, &gd, sizeof(gd)) ? -EFAULT : 0); } return ret; } static int proc_connectinfo(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_connectinfo ci; memset(&ci, 0, sizeof(ci)); ci.devnum = ps->dev->devnum; ci.slow = ps->dev->speed == USB_SPEED_LOW; if (copy_to_user(arg, &ci, sizeof(ci))) return -EFAULT; return 0; } static int proc_conninfo_ex(struct usb_dev_state *ps, void __user *arg, size_t size) { struct usbdevfs_conninfo_ex ci; struct usb_device *udev = ps->dev; if (size < sizeof(ci.size)) return -EINVAL; memset(&ci, 0, sizeof(ci)); ci.size = sizeof(ci); ci.busnum = udev->bus->busnum; ci.devnum = udev->devnum; ci.speed = udev->speed; while (udev && udev->portnum != 0) { if (++ci.num_ports <= ARRAY_SIZE(ci.ports)) ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports] = udev->portnum; udev = udev->parent; } if (ci.num_ports < ARRAY_SIZE(ci.ports)) memmove(&ci.ports[0], &ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports], ci.num_ports); if (copy_to_user(arg, &ci, min(sizeof(ci), size))) return -EFAULT; return 0; } static int proc_resetdevice(struct usb_dev_state *ps) { struct usb_host_config *actconfig = ps->dev->actconfig; struct usb_interface *interface; int i, number; /* Don't allow a device reset if the process has dropped the * privilege to do such things and any of the interfaces are * currently claimed. */ if (ps->privileges_dropped && actconfig) { for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) { interface = actconfig->interface[i]; number = interface->cur_altsetting->desc.bInterfaceNumber; if (usb_interface_claimed(interface) && !test_bit(number, &ps->ifclaimed)) { dev_warn(&ps->dev->dev, "usbfs: interface %d claimed by %s while '%s' resets device\n", number, interface->dev.driver->name, current->comm); return -EACCES; } } } return usb_reset_device(ps->dev); } static int proc_setintf(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_setinterface setintf; int ret; if (copy_from_user(&setintf, arg, sizeof(setintf))) return -EFAULT; ret = checkintf(ps, setintf.interface); if (ret) return ret; destroy_async_on_interface(ps, setintf.interface); return usb_set_interface(ps->dev, setintf.interface, setintf.altsetting); } static int proc_setconfig(struct usb_dev_state *ps, void __user *arg) { int u; int status = 0; struct usb_host_config *actconfig; if (get_user(u, (int __user *)arg)) return -EFAULT; actconfig = ps->dev->actconfig; /* Don't touch the device if any interfaces are claimed. * It could interfere with other drivers' operations, and if * an interface is claimed by usbfs it could easily deadlock. */ if (actconfig) { int i; for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) { if (usb_interface_claimed(actconfig->interface[i])) { dev_warn(&ps->dev->dev, "usbfs: interface %d claimed by %s " "while '%s' sets config #%d\n", actconfig->interface[i] ->cur_altsetting ->desc.bInterfaceNumber, actconfig->interface[i] ->dev.driver->name, current->comm, u); status = -EBUSY; break; } } } /* SET_CONFIGURATION is often abused as a "cheap" driver reset, * so avoid usb_set_configuration()'s kick to sysfs */ if (status == 0) { if (actconfig && actconfig->desc.bConfigurationValue == u) status = usb_reset_configuration(ps->dev); else status = usb_set_configuration(ps->dev, u); } return status; } static struct usb_memory * find_memory_area(struct usb_dev_state *ps, const struct usbdevfs_urb *uurb) { struct usb_memory *usbm = NULL, *iter; unsigned long flags; unsigned long uurb_start = (unsigned long)uurb->buffer; spin_lock_irqsave(&ps->lock, flags); list_for_each_entry(iter, &ps->memory_list, memlist) { if (uurb_start >= iter->vm_start && uurb_start < iter->vm_start + iter->size) { if (uurb->buffer_length > iter->vm_start + iter->size - uurb_start) { usbm = ERR_PTR(-EINVAL); } else { usbm = iter; usbm->urb_use_count++; } break; } } spin_unlock_irqrestore(&ps->lock, flags); return usbm; } static int proc_do_submiturb(struct usb_dev_state *ps, struct usbdevfs_urb *uurb, struct usbdevfs_iso_packet_desc __user *iso_frame_desc, void __user *arg, sigval_t userurb_sigval) { struct usbdevfs_iso_packet_desc *isopkt = NULL; struct usb_host_endpoint *ep; struct async *as = NULL; struct usb_ctrlrequest *dr = NULL; unsigned int u, totlen, isofrmlen; int i, ret, num_sgs = 0, ifnum = -1; int number_of_packets = 0; unsigned int stream_id = 0; void *buf; bool is_in; bool allow_short = false; bool allow_zero = false; unsigned long mask = USBDEVFS_URB_SHORT_NOT_OK | USBDEVFS_URB_BULK_CONTINUATION | USBDEVFS_URB_NO_FSBR | USBDEVFS_URB_ZERO_PACKET | USBDEVFS_URB_NO_INTERRUPT; /* USBDEVFS_URB_ISO_ASAP is a special case */ if (uurb->type == USBDEVFS_URB_TYPE_ISO) mask |= USBDEVFS_URB_ISO_ASAP; if (uurb->flags & ~mask) return -EINVAL; if ((unsigned int)uurb->buffer_length >= USBFS_XFER_MAX) return -EINVAL; if (uurb->buffer_length > 0 && !uurb->buffer) return -EINVAL; if (!(uurb->type == USBDEVFS_URB_TYPE_CONTROL && (uurb->endpoint & ~USB_ENDPOINT_DIR_MASK) == 0)) { ifnum = findintfep(ps->dev, uurb->endpoint); if (ifnum < 0) return ifnum; ret = checkintf(ps, ifnum); if (ret) return ret; } ep = ep_to_host_endpoint(ps->dev, uurb->endpoint); if (!ep) return -ENOENT; is_in = (uurb->endpoint & USB_ENDPOINT_DIR_MASK) != 0; u = 0; switch (uurb->type) { case USBDEVFS_URB_TYPE_CONTROL: if (!usb_endpoint_xfer_control(&ep->desc)) return -EINVAL; /* min 8 byte setup packet */ if (uurb->buffer_length < 8) return -EINVAL; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!dr) return -ENOMEM; if (copy_from_user(dr, uurb->buffer, 8)) { ret = -EFAULT; goto error; } if (uurb->buffer_length < (le16_to_cpu(dr->wLength) + 8)) { ret = -EINVAL; goto error; } ret = check_ctrlrecip(ps, dr->bRequestType, dr->bRequest, le16_to_cpu(dr->wIndex)); if (ret) goto error; uurb->buffer_length = le16_to_cpu(dr->wLength); uurb->buffer += 8; if ((dr->bRequestType & USB_DIR_IN) && uurb->buffer_length) { is_in = true; uurb->endpoint |= USB_DIR_IN; } else { is_in = false; uurb->endpoint &= ~USB_DIR_IN; } if (is_in) allow_short = true; snoop(&ps->dev->dev, "control urb: bRequestType=%02x " "bRequest=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", dr->bRequestType, dr->bRequest, __le16_to_cpu(dr->wValue), __le16_to_cpu(dr->wIndex), __le16_to_cpu(dr->wLength)); u = sizeof(struct usb_ctrlrequest); break; case USBDEVFS_URB_TYPE_BULK: if (!is_in) allow_zero = true; else allow_short = true; switch (usb_endpoint_type(&ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_ISOC: return -EINVAL; case USB_ENDPOINT_XFER_INT: /* allow single-shot interrupt transfers */ uurb->type = USBDEVFS_URB_TYPE_INTERRUPT; goto interrupt_urb; } num_sgs = DIV_ROUND_UP(uurb->buffer_length, USB_SG_SIZE); if (num_sgs == 1 || num_sgs > ps->dev->bus->sg_tablesize) num_sgs = 0; if (ep->streams) stream_id = uurb->stream_id; break; case USBDEVFS_URB_TYPE_INTERRUPT: if (!usb_endpoint_xfer_int(&ep->desc)) return -EINVAL; interrupt_urb: if (!is_in) allow_zero = true; else allow_short = true; break; case USBDEVFS_URB_TYPE_ISO: /* arbitrary limit */ if (uurb->number_of_packets < 1 || uurb->number_of_packets > 128) return -EINVAL; if (!usb_endpoint_xfer_isoc(&ep->desc)) return -EINVAL; number_of_packets = uurb->number_of_packets; isofrmlen = sizeof(struct usbdevfs_iso_packet_desc) * number_of_packets; isopkt = memdup_user(iso_frame_desc, isofrmlen); if (IS_ERR(isopkt)) { ret = PTR_ERR(isopkt); isopkt = NULL; goto error; } for (totlen = u = 0; u < number_of_packets; u++) { /* * arbitrary limit need for USB 3.1 Gen2 * sizemax: 96 DPs at SSP, 96 * 1024 = 98304 */ if (isopkt[u].length > 98304) { ret = -EINVAL; goto error; } totlen += isopkt[u].length; } u *= sizeof(struct usb_iso_packet_descriptor); uurb->buffer_length = totlen; break; default: return -EINVAL; } if (uurb->buffer_length > 0 && !access_ok(uurb->buffer, uurb->buffer_length)) { ret = -EFAULT; goto error; } as = alloc_async(number_of_packets); if (!as) { ret = -ENOMEM; goto error; } as->usbm = find_memory_area(ps, uurb); if (IS_ERR(as->usbm)) { ret = PTR_ERR(as->usbm); as->usbm = NULL; goto error; } /* do not use SG buffers when memory mapped segments * are in use */ if (as->usbm) num_sgs = 0; u += sizeof(struct async) + sizeof(struct urb) + (as->usbm ? 0 : uurb->buffer_length) + num_sgs * sizeof(struct scatterlist); ret = usbfs_increase_memory_usage(u); if (ret) goto error; as->mem_usage = u; if (num_sgs) { as->urb->sg = kmalloc_array(num_sgs, sizeof(struct scatterlist), GFP_KERNEL | __GFP_NOWARN); if (!as->urb->sg) { ret = -ENOMEM; goto error; } as->urb->num_sgs = num_sgs; sg_init_table(as->urb->sg, as->urb->num_sgs); totlen = uurb->buffer_length; for (i = 0; i < as->urb->num_sgs; i++) { u = (totlen > USB_SG_SIZE) ? USB_SG_SIZE : totlen; buf = kmalloc(u, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto error; } sg_set_buf(&as->urb->sg[i], buf, u); if (!is_in) { if (copy_from_user(buf, uurb->buffer, u)) { ret = -EFAULT; goto error; } uurb->buffer += u; } totlen -= u; } } else if (uurb->buffer_length > 0) { if (as->usbm) { unsigned long uurb_start = (unsigned long)uurb->buffer; as->urb->transfer_buffer = as->usbm->mem + (uurb_start - as->usbm->vm_start); } else { as->urb->transfer_buffer = kmalloc(uurb->buffer_length, GFP_KERNEL | __GFP_NOWARN); if (!as->urb->transfer_buffer) { ret = -ENOMEM; goto error; } if (!is_in) { if (copy_from_user(as->urb->transfer_buffer, uurb->buffer, uurb->buffer_length)) { ret = -EFAULT; goto error; } } else if (uurb->type == USBDEVFS_URB_TYPE_ISO) { /* * Isochronous input data may end up being * discontiguous if some of the packets are * short. Clear the buffer so that the gaps * don't leak kernel data to userspace. */ memset(as->urb->transfer_buffer, 0, uurb->buffer_length); } } } as->urb->dev = ps->dev; as->urb->pipe = (uurb->type << 30) | __create_pipe(ps->dev, uurb->endpoint & 0xf) | (uurb->endpoint & USB_DIR_IN); /* This tedious sequence is necessary because the URB_* flags * are internal to the kernel and subject to change, whereas * the USBDEVFS_URB_* flags are a user API and must not be changed. */ u = (is_in ? URB_DIR_IN : URB_DIR_OUT); if (uurb->flags & USBDEVFS_URB_ISO_ASAP) u |= URB_ISO_ASAP; if (allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK) u |= URB_SHORT_NOT_OK; if (allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET) u |= URB_ZERO_PACKET; if (uurb->flags & USBDEVFS_URB_NO_INTERRUPT) u |= URB_NO_INTERRUPT; as->urb->transfer_flags = u; if (!allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK) dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_SHORT_NOT_OK.\n"); if (!allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET) dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_ZERO_PACKET.\n"); as->urb->transfer_buffer_length = uurb->buffer_length; as->urb->setup_packet = (unsigned char *)dr; dr = NULL; as->urb->start_frame = uurb->start_frame; as->urb->number_of_packets = number_of_packets; as->urb->stream_id = stream_id; if (ep->desc.bInterval) { if (uurb->type == USBDEVFS_URB_TYPE_ISO || ps->dev->speed == USB_SPEED_HIGH || ps->dev->speed >= USB_SPEED_SUPER) as->urb->interval = 1 << min(15, ep->desc.bInterval - 1); else as->urb->interval = ep->desc.bInterval; } as->urb->context = as; as->urb->complete = async_completed; for (totlen = u = 0; u < number_of_packets; u++) { as->urb->iso_frame_desc[u].offset = totlen; as->urb->iso_frame_desc[u].length = isopkt[u].length; totlen += isopkt[u].length; } kfree(isopkt); isopkt = NULL; as->ps = ps; as->userurb = arg; as->userurb_sigval = userurb_sigval; if (as->usbm) { unsigned long uurb_start = (unsigned long)uurb->buffer; as->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; as->urb->transfer_dma = as->usbm->dma_handle + (uurb_start - as->usbm->vm_start); } else if (is_in && uurb->buffer_length > 0) as->userbuffer = uurb->buffer; as->signr = uurb->signr; as->ifnum = ifnum; as->pid = get_pid(task_pid(current)); as->cred = get_current_cred(); snoop_urb(ps->dev, as->userurb, as->urb->pipe, as->urb->transfer_buffer_length, 0, SUBMIT, NULL, 0); if (!is_in) snoop_urb_data(as->urb, as->urb->transfer_buffer_length); async_newpending(as); if (usb_endpoint_xfer_bulk(&ep->desc)) { spin_lock_irq(&ps->lock); /* Not exactly the endpoint address; the direction bit is * shifted to the 0x10 position so that the value will be * between 0 and 31. */ as->bulk_addr = usb_endpoint_num(&ep->desc) | ((ep->desc.bEndpointAddress & USB_ENDPOINT_DIR_MASK) >> 3); /* If this bulk URB is the start of a new transfer, re-enable * the endpoint. Otherwise mark it as a continuation URB. */ if (uurb->flags & USBDEVFS_URB_BULK_CONTINUATION) as->bulk_status = AS_CONTINUATION; else ps->disabled_bulk_eps &= ~(1 << as->bulk_addr); /* Don't accept continuation URBs if the endpoint is * disabled because of an earlier error. */ if (ps->disabled_bulk_eps & (1 << as->bulk_addr)) ret = -EREMOTEIO; else ret = usb_submit_urb(as->urb, GFP_ATOMIC); spin_unlock_irq(&ps->lock); } else { ret = usb_submit_urb(as->urb, GFP_KERNEL); } if (ret) { dev_printk(KERN_DEBUG, &ps->dev->dev, "usbfs: usb_submit_urb returned %d\n", ret); snoop_urb(ps->dev, as->userurb, as->urb->pipe, 0, ret, COMPLETE, NULL, 0); async_removepending(as); goto error; } return 0; error: kfree(isopkt); kfree(dr); if (as) free_async(as); return ret; } static int proc_submiturb(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; sigval_t userurb_sigval; if (copy_from_user(&uurb, arg, sizeof(uurb))) return -EFAULT; memset(&userurb_sigval, 0, sizeof(userurb_sigval)); userurb_sigval.sival_ptr = arg; return proc_do_submiturb(ps, &uurb, (((struct usbdevfs_urb __user *)arg)->iso_frame_desc), arg, userurb_sigval); } static int proc_unlinkurb(struct usb_dev_state *ps, void __user *arg) { struct urb *urb; struct async *as; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); as = async_getpending(ps, arg); if (!as) { spin_unlock_irqrestore(&ps->lock, flags); return -EINVAL; } urb = as->urb; usb_get_urb(urb); spin_unlock_irqrestore(&ps->lock, flags); usb_kill_urb(urb); usb_put_urb(urb); return 0; } static void compute_isochronous_actual_length(struct urb *urb) { unsigned int i; if (urb->number_of_packets > 0) { urb->actual_length = 0; for (i = 0; i < urb->number_of_packets; i++) urb->actual_length += urb->iso_frame_desc[i].actual_length; } } static int processcompl(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; compute_isochronous_actual_length(urb); if (as->userbuffer && urb->actual_length) { if (copy_urb_data_to_user(as->userbuffer, urb)) goto err_out; } if (put_user(as->status, &userurb->status)) goto err_out; if (put_user(urb->actual_length, &userurb->actual_length)) goto err_out; if (put_user(urb->error_count, &userurb->error_count)) goto err_out; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) goto err_out; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) goto err_out; } } if (put_user(addr, (void __user * __user *)arg)) return -EFAULT; return 0; err_out: return -EFAULT; } static struct async *reap_as(struct usb_dev_state *ps) { DECLARE_WAITQUEUE(wait, current); struct async *as = NULL; struct usb_device *dev = ps->dev; add_wait_queue(&ps->wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); as = async_getcompleted(ps); if (as || !connected(ps)) break; if (signal_pending(current)) break; usb_unlock_device(dev); schedule(); usb_lock_device(dev); } remove_wait_queue(&ps->wait, &wait); set_current_state(TASK_RUNNING); return as; } static int proc_reapurb(struct usb_dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) { int retval; snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl(as, (void __user * __user *)arg); free_async(as); return retval; } if (signal_pending(current)) return -EINTR; return -ENODEV; } static int proc_reapurbnonblock(struct usb_dev_state *ps, void __user *arg) { int retval; struct async *as; as = async_getcompleted(ps); if (as) { snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl(as, (void __user * __user *)arg); free_async(as); } else { retval = (connected(ps) ? -EAGAIN : -ENODEV); } return retval; } #ifdef CONFIG_COMPAT static int proc_control_compat(struct usb_dev_state *ps, struct usbdevfs_ctrltransfer32 __user *p32) { struct usbdevfs_ctrltransfer ctrl; u32 udata; if (copy_from_user(&ctrl, p32, sizeof(*p32) - sizeof(compat_caddr_t)) || get_user(udata, &p32->data)) return -EFAULT; ctrl.data = compat_ptr(udata); return do_proc_control(ps, &ctrl); } static int proc_bulk_compat(struct usb_dev_state *ps, struct usbdevfs_bulktransfer32 __user *p32) { struct usbdevfs_bulktransfer bulk; compat_caddr_t addr; if (get_user(bulk.ep, &p32->ep) || get_user(bulk.len, &p32->len) || get_user(bulk.timeout, &p32->timeout) || get_user(addr, &p32->data)) return -EFAULT; bulk.data = compat_ptr(addr); return do_proc_bulk(ps, &bulk); } static int proc_disconnectsignal_compat(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnectsignal32 ds; if (copy_from_user(&ds, arg, sizeof(ds))) return -EFAULT; ps->discsignr = ds.signr; ps->disccontext.sival_int = ds.context; return 0; } static int get_urb32(struct usbdevfs_urb *kurb, struct usbdevfs_urb32 __user *uurb) { struct usbdevfs_urb32 urb32; if (copy_from_user(&urb32, uurb, sizeof(*uurb))) return -EFAULT; kurb->type = urb32.type; kurb->endpoint = urb32.endpoint; kurb->status = urb32.status; kurb->flags = urb32.flags; kurb->buffer = compat_ptr(urb32.buffer); kurb->buffer_length = urb32.buffer_length; kurb->actual_length = urb32.actual_length; kurb->start_frame = urb32.start_frame; kurb->number_of_packets = urb32.number_of_packets; kurb->error_count = urb32.error_count; kurb->signr = urb32.signr; kurb->usercontext = compat_ptr(urb32.usercontext); return 0; } static int proc_submiturb_compat(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; sigval_t userurb_sigval; if (get_urb32(&uurb, (struct usbdevfs_urb32 __user *)arg)) return -EFAULT; memset(&userurb_sigval, 0, sizeof(userurb_sigval)); userurb_sigval.sival_int = ptr_to_compat(arg); return proc_do_submiturb(ps, &uurb, ((struct usbdevfs_urb32 __user *)arg)->iso_frame_desc, arg, userurb_sigval); } static int processcompl_compat(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb32 __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; compute_isochronous_actual_length(urb); if (as->userbuffer && urb->actual_length) { if (copy_urb_data_to_user(as->userbuffer, urb)) return -EFAULT; } if (put_user(as->status, &userurb->status)) return -EFAULT; if (put_user(urb->actual_length, &userurb->actual_length)) return -EFAULT; if (put_user(urb->error_count, &userurb->error_count)) return -EFAULT; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) return -EFAULT; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) return -EFAULT; } } if (put_user(ptr_to_compat(addr), (u32 __user *)arg)) return -EFAULT; return 0; } static int proc_reapurb_compat(struct usb_dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) { int retval; snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl_compat(as, (void __user * __user *)arg); free_async(as); return retval; } if (signal_pending(current)) return -EINTR; return -ENODEV; } static int proc_reapurbnonblock_compat(struct usb_dev_state *ps, void __user *arg) { int retval; struct async *as; as = async_getcompleted(ps); if (as) { snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl_compat(as, (void __user * __user *)arg); free_async(as); } else { retval = (connected(ps) ? -EAGAIN : -ENODEV); } return retval; } #endif static int proc_disconnectsignal(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnectsignal ds; if (copy_from_user(&ds, arg, sizeof(ds))) return -EFAULT; ps->discsignr = ds.signr; ps->disccontext.sival_ptr = ds.context; return 0; } static int proc_claiminterface(struct usb_dev_state *ps, void __user *arg) { unsigned int ifnum; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; return claimintf(ps, ifnum); } static int proc_releaseinterface(struct usb_dev_state *ps, void __user *arg) { unsigned int ifnum; int ret; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; ret = releaseintf(ps, ifnum); if (ret < 0) return ret; destroy_async_on_interface(ps, ifnum); return 0; } static int proc_ioctl(struct usb_dev_state *ps, struct usbdevfs_ioctl *ctl) { int size; void *buf = NULL; int retval = 0; struct usb_interface *intf = NULL; struct usb_driver *driver = NULL; if (ps->privileges_dropped) return -EACCES; if (!connected(ps)) return -ENODEV; /* alloc buffer */ size = _IOC_SIZE(ctl->ioctl_code); if (size > 0) { buf = kmalloc(size, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if ((_IOC_DIR(ctl->ioctl_code) & _IOC_WRITE)) { if (copy_from_user(buf, ctl->data, size)) { kfree(buf); return -EFAULT; } } else { memset(buf, 0, size); } } if (ps->dev->state != USB_STATE_CONFIGURED) retval = -EHOSTUNREACH; else if (!(intf = usb_ifnum_to_if(ps->dev, ctl->ifno))) retval = -EINVAL; else switch (ctl->ioctl_code) { /* disconnect kernel driver from interface */ case USBDEVFS_DISCONNECT: if (intf->dev.driver) { driver = to_usb_driver(intf->dev.driver); dev_dbg(&intf->dev, "disconnect by usbfs\n"); usb_driver_release_interface(driver, intf); } else retval = -ENODATA; break; /* let kernel drivers try to (re)bind to the interface */ case USBDEVFS_CONNECT: if (!intf->dev.driver) retval = device_attach(&intf->dev); else retval = -EBUSY; break; /* talk directly to the interface's driver */ default: if (intf->dev.driver) driver = to_usb_driver(intf->dev.driver); if (driver == NULL || driver->unlocked_ioctl == NULL) { retval = -ENOTTY; } else { retval = driver->unlocked_ioctl(intf, ctl->ioctl_code, buf); if (retval == -ENOIOCTLCMD) retval = -ENOTTY; } } /* cleanup and return */ if (retval >= 0 && (_IOC_DIR(ctl->ioctl_code) & _IOC_READ) != 0 && size > 0 && copy_to_user(ctl->data, buf, size) != 0) retval = -EFAULT; kfree(buf); return retval; } static int proc_ioctl_default(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_ioctl ctrl; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; return proc_ioctl(ps, &ctrl); } #ifdef CONFIG_COMPAT static int proc_ioctl_compat(struct usb_dev_state *ps, compat_uptr_t arg) { struct usbdevfs_ioctl32 ioc32; struct usbdevfs_ioctl ctrl; if (copy_from_user(&ioc32, compat_ptr(arg), sizeof(ioc32))) return -EFAULT; ctrl.ifno = ioc32.ifno; ctrl.ioctl_code = ioc32.ioctl_code; ctrl.data = compat_ptr(ioc32.data); return proc_ioctl(ps, &ctrl); } #endif static int proc_claim_port(struct usb_dev_state *ps, void __user *arg) { unsigned portnum; int rc; if (get_user(portnum, (unsigned __user *) arg)) return -EFAULT; rc = usb_hub_claim_port(ps->dev, portnum, ps); if (rc == 0) snoop(&ps->dev->dev, "port %d claimed by process %d: %s\n", portnum, task_pid_nr(current), current->comm); return rc; } static int proc_release_port(struct usb_dev_state *ps, void __user *arg) { unsigned portnum; if (get_user(portnum, (unsigned __user *) arg)) return -EFAULT; return usb_hub_release_port(ps->dev, portnum, ps); } static int proc_get_capabilities(struct usb_dev_state *ps, void __user *arg) { __u32 caps; caps = USBDEVFS_CAP_ZERO_PACKET | USBDEVFS_CAP_NO_PACKET_SIZE_LIM | USBDEVFS_CAP_REAP_AFTER_DISCONNECT | USBDEVFS_CAP_MMAP | USBDEVFS_CAP_DROP_PRIVILEGES | USBDEVFS_CAP_CONNINFO_EX | MAYBE_CAP_SUSPEND; if (!ps->dev->bus->no_stop_on_short) caps |= USBDEVFS_CAP_BULK_CONTINUATION; if (ps->dev->bus->sg_tablesize) caps |= USBDEVFS_CAP_BULK_SCATTER_GATHER; if (put_user(caps, (__u32 __user *)arg)) return -EFAULT; return 0; } static int proc_disconnect_claim(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnect_claim dc; struct usb_interface *intf; if (copy_from_user(&dc, arg, sizeof(dc))) return -EFAULT; intf = usb_ifnum_to_if(ps->dev, dc.interface); if (!intf) return -EINVAL; if (intf->dev.driver) { struct usb_driver *driver = to_usb_driver(intf->dev.driver); if (ps->privileges_dropped) return -EACCES; if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_IF_DRIVER) && strncmp(dc.driver, intf->dev.driver->name, sizeof(dc.driver)) != 0) return -EBUSY; if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_EXCEPT_DRIVER) && strncmp(dc.driver, intf->dev.driver->name, sizeof(dc.driver)) == 0) return -EBUSY; dev_dbg(&intf->dev, "disconnect by usbfs\n"); usb_driver_release_interface(driver, intf); } return claimintf(ps, dc.interface); } static int proc_alloc_streams(struct usb_dev_state *ps, void __user *arg) { unsigned num_streams, num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf; int r; r = parse_usbdevfs_streams(ps, arg, &num_streams, &num_eps, &eps, &intf); if (r) return r; destroy_async_on_interface(ps, intf->altsetting[0].desc.bInterfaceNumber); r = usb_alloc_streams(intf, eps, num_eps, num_streams, GFP_KERNEL); kfree(eps); return r; } static int proc_free_streams(struct usb_dev_state *ps, void __user *arg) { unsigned num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf; int r; r = parse_usbdevfs_streams(ps, arg, NULL, &num_eps, &eps, &intf); if (r) return r; destroy_async_on_interface(ps, intf->altsetting[0].desc.bInterfaceNumber); r = usb_free_streams(intf, eps, num_eps, GFP_KERNEL); kfree(eps); return r; } static int proc_drop_privileges(struct usb_dev_state *ps, void __user *arg) { u32 data; if (copy_from_user(&data, arg, sizeof(data))) return -EFAULT; /* This is a one way operation. Once privileges are * dropped, you cannot regain them. You may however reissue * this ioctl to shrink the allowed interfaces mask. */ ps->interface_allowed_mask &= data; ps->privileges_dropped = true; return 0; } static int proc_forbid_suspend(struct usb_dev_state *ps) { int ret = 0; if (ps->suspend_allowed) { ret = usb_autoresume_device(ps->dev); if (ret == 0) ps->suspend_allowed = false; else if (ret != -ENODEV) ret = -EIO; } return ret; } static int proc_allow_suspend(struct usb_dev_state *ps) { if (!connected(ps)) return -ENODEV; WRITE_ONCE(ps->not_yet_resumed, 1); if (!ps->suspend_allowed) { usb_autosuspend_device(ps->dev); ps->suspend_allowed = true; } return 0; } static int proc_wait_for_resume(struct usb_dev_state *ps) { int ret; usb_unlock_device(ps->dev); ret = wait_event_interruptible(ps->wait_for_resume, READ_ONCE(ps->not_yet_resumed) == 0); usb_lock_device(ps->dev); if (ret != 0) return -EINTR; return proc_forbid_suspend(ps); } /* * NOTE: All requests here that have interface numbers as parameters * are assuming that somehow the configuration has been prevented from * changing. But there's no mechanism to ensure that... */ static long usbdev_do_ioctl(struct file *file, unsigned int cmd, void __user *p) { struct usb_dev_state *ps = file->private_data; struct inode *inode = file_inode(file); struct usb_device *dev = ps->dev; int ret = -ENOTTY; if (!(file->f_mode & FMODE_WRITE)) return -EPERM; usb_lock_device(dev); /* Reap operations are allowed even after disconnection */ switch (cmd) { case USBDEVFS_REAPURB: snoop(&dev->dev, "%s: REAPURB\n", __func__); ret = proc_reapurb(ps, p); goto done; case USBDEVFS_REAPURBNDELAY: snoop(&dev->dev, "%s: REAPURBNDELAY\n", __func__); ret = proc_reapurbnonblock(ps, p); goto done; #ifdef CONFIG_COMPAT case USBDEVFS_REAPURB32: snoop(&dev->dev, "%s: REAPURB32\n", __func__); ret = proc_reapurb_compat(ps, p); goto done; case USBDEVFS_REAPURBNDELAY32: snoop(&dev->dev, "%s: REAPURBNDELAY32\n", __func__); ret = proc_reapurbnonblock_compat(ps, p); goto done; #endif } if (!connected(ps)) { usb_unlock_device(dev); return -ENODEV; } switch (cmd) { case USBDEVFS_CONTROL: snoop(&dev->dev, "%s: CONTROL\n", __func__); ret = proc_control(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_BULK: snoop(&dev->dev, "%s: BULK\n", __func__); ret = proc_bulk(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_RESETEP: snoop(&dev->dev, "%s: RESETEP\n", __func__); ret = proc_resetep(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_RESET: snoop(&dev->dev, "%s: RESET\n", __func__); ret = proc_resetdevice(ps); break; case USBDEVFS_CLEAR_HALT: snoop(&dev->dev, "%s: CLEAR_HALT\n", __func__); ret = proc_clearhalt(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_GETDRIVER: snoop(&dev->dev, "%s: GETDRIVER\n", __func__); ret = proc_getdriver(ps, p); break; case USBDEVFS_CONNECTINFO: snoop(&dev->dev, "%s: CONNECTINFO\n", __func__); ret = proc_connectinfo(ps, p); break; case USBDEVFS_SETINTERFACE: snoop(&dev->dev, "%s: SETINTERFACE\n", __func__); ret = proc_setintf(ps, p); break; case USBDEVFS_SETCONFIGURATION: snoop(&dev->dev, "%s: SETCONFIGURATION\n", __func__); ret = proc_setconfig(ps, p); break; case USBDEVFS_SUBMITURB: snoop(&dev->dev, "%s: SUBMITURB\n", __func__); ret = proc_submiturb(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; #ifdef CONFIG_COMPAT case USBDEVFS_CONTROL32: snoop(&dev->dev, "%s: CONTROL32\n", __func__); ret = proc_control_compat(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_BULK32: snoop(&dev->dev, "%s: BULK32\n", __func__); ret = proc_bulk_compat(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_DISCSIGNAL32: snoop(&dev->dev, "%s: DISCSIGNAL32\n", __func__); ret = proc_disconnectsignal_compat(ps, p); break; case USBDEVFS_SUBMITURB32: snoop(&dev->dev, "%s: SUBMITURB32\n", __func__); ret = proc_submiturb_compat(ps, p); if (ret >= 0) inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); break; case USBDEVFS_IOCTL32: snoop(&dev->dev, "%s: IOCTL32\n", __func__); ret = proc_ioctl_compat(ps, ptr_to_compat(p)); break; #endif case USBDEVFS_DISCARDURB: snoop(&dev->dev, "%s: DISCARDURB %px\n", __func__, p); ret = proc_unlinkurb(ps, p); break; case USBDEVFS_DISCSIGNAL: snoop(&dev->dev, "%s: DISCSIGNAL\n", __func__); ret = proc_disconnectsignal(ps, p); break; case USBDEVFS_CLAIMINTERFACE: snoop(&dev->dev, "%s: CLAIMINTERFACE\n", __func__); ret = proc_claiminterface(ps, p); break; case USBDEVFS_RELEASEINTERFACE: snoop(&dev->dev, "%s: RELEASEINTERFACE\n", __func__); ret = proc_releaseinterface(ps, p); break; case USBDEVFS_IOCTL: snoop(&dev->dev, "%s: IOCTL\n", __func__); ret = proc_ioctl_default(ps, p); break; case USBDEVFS_CLAIM_PORT: snoop(&dev->dev, "%s: CLAIM_PORT\n", __func__); ret = proc_claim_port(ps, p); break; case USBDEVFS_RELEASE_PORT: snoop(&dev->dev, "%s: RELEASE_PORT\n", __func__); ret = proc_release_port(ps, p); break; case USBDEVFS_GET_CAPABILITIES: ret = proc_get_capabilities(ps, p); break; case USBDEVFS_DISCONNECT_CLAIM: ret = proc_disconnect_claim(ps, p); break; case USBDEVFS_ALLOC_STREAMS: ret = proc_alloc_streams(ps, p); break; case USBDEVFS_FREE_STREAMS: ret = proc_free_streams(ps, p); break; case USBDEVFS_DROP_PRIVILEGES: ret = proc_drop_privileges(ps, p); break; case USBDEVFS_GET_SPEED: ret = ps->dev->speed; break; case USBDEVFS_FORBID_SUSPEND: ret = proc_forbid_suspend(ps); break; case USBDEVFS_ALLOW_SUSPEND: ret = proc_allow_suspend(ps); break; case USBDEVFS_WAIT_FOR_RESUME: ret = proc_wait_for_resume(ps); break; } /* Handle variable-length commands */ switch (cmd & ~IOCSIZE_MASK) { case USBDEVFS_CONNINFO_EX(0): ret = proc_conninfo_ex(ps, p, _IOC_SIZE(cmd)); break; } done: usb_unlock_device(dev); if (ret >= 0) inode_set_atime_to_ts(inode, current_time(inode)); return ret; } static long usbdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; ret = usbdev_do_ioctl(file, cmd, (void __user *)arg); return ret; } /* No kernel lock - fine */ static __poll_t usbdev_poll(struct file *file, struct poll_table_struct *wait) { struct usb_dev_state *ps = file->private_data; __poll_t mask = 0; poll_wait(file, &ps->wait, wait); if (file->f_mode & FMODE_WRITE && !list_empty(&ps->async_completed)) mask |= EPOLLOUT | EPOLLWRNORM; if (!connected(ps)) mask |= EPOLLHUP; if (list_empty(&ps->list)) mask |= EPOLLERR; return mask; } const struct file_operations usbdev_file_operations = { .owner = THIS_MODULE, .llseek = no_seek_end_llseek, .read = usbdev_read, .poll = usbdev_poll, .unlocked_ioctl = usbdev_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = usbdev_mmap, .open = usbdev_open, .release = usbdev_release, }; static void usbdev_remove(struct usb_device *udev) { struct usb_dev_state *ps; /* Protect against simultaneous resume */ mutex_lock(&usbfs_mutex); while (!list_empty(&udev->filelist)) { ps = list_entry(udev->filelist.next, struct usb_dev_state, list); destroy_all_async(ps); wake_up_all(&ps->wait); WRITE_ONCE(ps->not_yet_resumed, 0); wake_up_all(&ps->wait_for_resume); list_del_init(&ps->list); if (ps->discsignr) kill_pid_usb_asyncio(ps->discsignr, EPIPE, ps->disccontext, ps->disc_pid, ps->cred); } mutex_unlock(&usbfs_mutex); } static int usbdev_notify(struct notifier_block *self, unsigned long action, void *dev) { switch (action) { case USB_DEVICE_ADD: break; case USB_DEVICE_REMOVE: usbdev_remove(dev); break; } return NOTIFY_OK; } static struct notifier_block usbdev_nb = { .notifier_call = usbdev_notify, }; static struct cdev usb_device_cdev; int __init usb_devio_init(void) { int retval; retval = register_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX, "usb_device"); if (retval) { printk(KERN_ERR "Unable to register minors for usb_device\n"); goto out; } cdev_init(&usb_device_cdev, &usbdev_file_operations); retval = cdev_add(&usb_device_cdev, USB_DEVICE_DEV, USB_DEVICE_MAX); if (retval) { printk(KERN_ERR "Unable to get usb_device major %d\n", USB_DEVICE_MAJOR); goto error_cdev; } usb_register_notify(&usbdev_nb); out: return retval; error_cdev: unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); goto out; } void usb_devio_cleanup(void) { usb_unregister_notify(&usbdev_nb); cdev_del(&usb_device_cdev); unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); }