// SPDX-License-Identifier: GPL-2.0-only /* * Simple PWM based backlight control, board code has to setup * 1) pin configuration so PWM waveforms can output * 2) platform_data being correctly configured */ #include #include #include #include #include #include #include #include #include #include #include #include struct pwm_bl_data { struct pwm_device *pwm; struct device *dev; unsigned int lth_brightness; unsigned int *levels; bool enabled; struct regulator *power_supply; struct gpio_desc *enable_gpio; unsigned int scale; unsigned int post_pwm_on_delay; unsigned int pwm_off_delay; int (*notify)(struct device *, int brightness); void (*notify_after)(struct device *, int brightness); void (*exit)(struct device *); }; static void pwm_backlight_power_on(struct pwm_bl_data *pb) { int err; if (pb->enabled) return; if (pb->power_supply) { err = regulator_enable(pb->power_supply); if (err < 0) dev_err(pb->dev, "failed to enable power supply\n"); } if (pb->post_pwm_on_delay) msleep(pb->post_pwm_on_delay); gpiod_set_value_cansleep(pb->enable_gpio, 1); pb->enabled = true; } static void pwm_backlight_power_off(struct pwm_bl_data *pb) { if (!pb->enabled) return; gpiod_set_value_cansleep(pb->enable_gpio, 0); if (pb->pwm_off_delay) msleep(pb->pwm_off_delay); if (pb->power_supply) regulator_disable(pb->power_supply); pb->enabled = false; } static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state) { unsigned int lth = pb->lth_brightness; u64 duty_cycle; if (pb->levels) duty_cycle = pb->levels[brightness]; else duty_cycle = brightness; duty_cycle *= state->period - lth; do_div(duty_cycle, pb->scale); return duty_cycle + lth; } static int pwm_backlight_update_status(struct backlight_device *bl) { struct pwm_bl_data *pb = bl_get_data(bl); int brightness = backlight_get_brightness(bl); struct pwm_state state; if (pb->notify) brightness = pb->notify(pb->dev, brightness); if (brightness > 0) { pwm_get_state(pb->pwm, &state); state.duty_cycle = compute_duty_cycle(pb, brightness, &state); state.enabled = true; pwm_apply_might_sleep(pb->pwm, &state); pwm_backlight_power_on(pb); } else { pwm_backlight_power_off(pb); pwm_get_state(pb->pwm, &state); state.duty_cycle = 0; /* * We cannot assume a disabled PWM to drive its output to the * inactive state. If we have an enable GPIO and/or a regulator * we assume that this isn't relevant and we can disable the PWM * to save power. If however there is neither an enable GPIO nor * a regulator keep the PWM on be sure to get a constant * inactive output. */ state.enabled = !pb->power_supply && !pb->enable_gpio; pwm_apply_might_sleep(pb->pwm, &state); } if (pb->notify_after) pb->notify_after(pb->dev, brightness); return 0; } static const struct backlight_ops pwm_backlight_ops = { .update_status = pwm_backlight_update_status, }; #ifdef CONFIG_OF #define PWM_LUMINANCE_SHIFT 16 #define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */ /* * CIE lightness to PWM conversion. * * The CIE 1931 lightness formula is what actually describes how we perceive * light: * Y = (L* / 903.3) if L* ≤ 8 * Y = ((L* + 16) / 116)^3 if L* > 8 * * Where Y is the luminance, the amount of light coming out of the screen, and * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human * perceives the screen to be, and is a number between 0 and 100. * * The following function does the fixed point maths needed to implement the * above formula. */ static u64 cie1931(unsigned int lightness) { u64 retval; /* * @lightness is given as a number between 0 and 1, expressed * as a fixed-point number in scale * PWM_LUMINANCE_SCALE. Convert to a percentage, still * expressed as a fixed-point number, so the above formulas * can be applied. */ lightness *= 100; if (lightness <= (8 * PWM_LUMINANCE_SCALE)) { retval = DIV_ROUND_CLOSEST(lightness * 10, 9033); } else { retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116; retval *= retval * retval; retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1); retval >>= 2*PWM_LUMINANCE_SHIFT; } return retval; } /* * Create a default correction table for PWM values to create linear brightness * for LED based backlights using the CIE1931 algorithm. */ static int pwm_backlight_brightness_default(struct device *dev, struct platform_pwm_backlight_data *data, unsigned int period) { unsigned int i; u64 retval; /* * Once we have 4096 levels there's little point going much higher... * neither interactive sliders nor animation benefits from having * more values in the table. */ data->max_brightness = min((int)DIV_ROUND_UP(period, fls(period)), 4096); data->levels = devm_kcalloc(dev, data->max_brightness, sizeof(*data->levels), GFP_KERNEL); if (!data->levels) return -ENOMEM; /* Fill the table using the cie1931 algorithm */ for (i = 0; i < data->max_brightness; i++) { retval = cie1931((i * PWM_LUMINANCE_SCALE) / data->max_brightness) * period; retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); if (retval > UINT_MAX) return -EINVAL; data->levels[i] = (unsigned int)retval; } data->dft_brightness = data->max_brightness / 2; data->max_brightness--; return 0; } static int pwm_backlight_parse_dt(struct device *dev, struct platform_pwm_backlight_data *data) { struct device_node *node = dev->of_node; unsigned int num_levels; unsigned int num_steps = 0; struct property *prop; unsigned int *table; int length; u32 value; int ret; if (!node) return -ENODEV; memset(data, 0, sizeof(*data)); /* * These values are optional and set as 0 by default, the out values * are modified only if a valid u32 value can be decoded. */ of_property_read_u32(node, "post-pwm-on-delay-ms", &data->post_pwm_on_delay); of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); /* * Determine the number of brightness levels, if this property is not * set a default table of brightness levels will be used. */ prop = of_find_property(node, "brightness-levels", &length); if (!prop) return 0; num_levels = length / sizeof(u32); /* read brightness levels from DT property */ if (num_levels > 0) { data->levels = devm_kcalloc(dev, num_levels, sizeof(*data->levels), GFP_KERNEL); if (!data->levels) return -ENOMEM; ret = of_property_read_u32_array(node, "brightness-levels", data->levels, num_levels); if (ret < 0) return ret; ret = of_property_read_u32(node, "default-brightness-level", &value); if (ret < 0) return ret; data->dft_brightness = value; /* * This property is optional, if is set enables linear * interpolation between each of the values of brightness levels * and creates a new pre-computed table. */ of_property_read_u32(node, "num-interpolated-steps", &num_steps); /* * Make sure that there is at least two entries in the * brightness-levels table, otherwise we can't interpolate * between two points. */ if (num_steps) { unsigned int num_input_levels = num_levels; unsigned int i; u32 x1, x2, x, dx; u32 y1, y2; s64 dy; if (num_input_levels < 2) { dev_err(dev, "can't interpolate\n"); return -EINVAL; } /* * Recalculate the number of brightness levels, now * taking in consideration the number of interpolated * steps between two levels. */ num_levels = (num_input_levels - 1) * num_steps + 1; dev_dbg(dev, "new number of brightness levels: %d\n", num_levels); /* * Create a new table of brightness levels with all the * interpolated steps. */ table = devm_kcalloc(dev, num_levels, sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; /* * Fill the interpolated table[x] = y * by draw lines between each (x1, y1) to (x2, y2). */ dx = num_steps; for (i = 0; i < num_input_levels - 1; i++) { x1 = i * dx; x2 = x1 + dx; y1 = data->levels[i]; y2 = data->levels[i + 1]; dy = (s64)y2 - y1; for (x = x1; x < x2; x++) { table[x] = y1 + div_s64(dy * (x - x1), dx); } } /* Fill in the last point, since no line starts here. */ table[x2] = y2; /* * As we use interpolation lets remove current * brightness levels table and replace for the * new interpolated table. */ devm_kfree(dev, data->levels); data->levels = table; } data->max_brightness = num_levels - 1; } return 0; } static const struct of_device_id pwm_backlight_of_match[] = { { .compatible = "pwm-backlight" }, { } }; MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); #else static int pwm_backlight_parse_dt(struct device *dev, struct platform_pwm_backlight_data *data) { return -ENODEV; } static int pwm_backlight_brightness_default(struct device *dev, struct platform_pwm_backlight_data *data, unsigned int period) { return -ENODEV; } #endif static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data) { unsigned int nlevels = data->max_brightness + 1; unsigned int min_val = data->levels[0]; unsigned int max_val = data->levels[nlevels - 1]; /* * Multiplying by 128 means that even in pathological cases such * as (max_val - min_val) == nlevels the error at max_val is less * than 1%. */ unsigned int slope = (128 * (max_val - min_val)) / nlevels; unsigned int margin = (max_val - min_val) / 20; /* 5% */ int i; for (i = 1; i < nlevels; i++) { unsigned int linear_value = min_val + ((i * slope) / 128); unsigned int delta = abs(linear_value - data->levels[i]); if (delta > margin) return false; } return true; } static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) { struct device_node *node = pb->dev->of_node; bool active = true; /* * If the enable GPIO is present, observable (either as input * or output) and off then the backlight is not currently active. * */ if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0) active = false; if (pb->power_supply && !regulator_is_enabled(pb->power_supply)) active = false; if (!pwm_is_enabled(pb->pwm)) active = false; /* * Synchronize the enable_gpio with the observed state of the * hardware. */ gpiod_direction_output(pb->enable_gpio, active); /* * Do not change pb->enabled here! pb->enabled essentially * tells us if we own one of the regulator's use counts and * right now we do not. */ /* Not booted with device tree or no phandle link to the node */ if (!node || !node->phandle) return BACKLIGHT_POWER_ON; /* * If the driver is probed from the device tree and there is a * phandle link pointing to the backlight node, it is safe to * assume that another driver will enable the backlight at the * appropriate time. Therefore, if it is disabled, keep it so. */ return active ? BACKLIGHT_POWER_ON : BACKLIGHT_POWER_OFF; } static int pwm_backlight_probe(struct platform_device *pdev) { struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); struct platform_pwm_backlight_data defdata; struct backlight_properties props; struct backlight_device *bl; struct pwm_bl_data *pb; struct pwm_state state; unsigned int i; int ret; if (!data) { ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "failed to find platform data\n"); data = &defdata; } if (data->init) { ret = data->init(&pdev->dev); if (ret < 0) return ret; } pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); if (!pb) { ret = -ENOMEM; goto err_alloc; } pb->notify = data->notify; pb->notify_after = data->notify_after; pb->exit = data->exit; pb->dev = &pdev->dev; pb->enabled = false; pb->post_pwm_on_delay = data->post_pwm_on_delay; pb->pwm_off_delay = data->pwm_off_delay; pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", GPIOD_ASIS); if (IS_ERR(pb->enable_gpio)) { ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->enable_gpio), "failed to acquire enable GPIO\n"); goto err_alloc; } pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power"); if (IS_ERR(pb->power_supply)) { ret = PTR_ERR(pb->power_supply); if (ret == -ENODEV) { pb->power_supply = NULL; } else { dev_err_probe(&pdev->dev, ret, "failed to acquire power regulator\n"); goto err_alloc; } } pb->pwm = devm_pwm_get(&pdev->dev, NULL); if (IS_ERR(pb->pwm)) { ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->pwm), "unable to request PWM\n"); goto err_alloc; } dev_dbg(&pdev->dev, "got pwm for backlight\n"); /* Sync up PWM state. */ pwm_init_state(pb->pwm, &state); /* * The DT case will set the pwm_period_ns field to 0 and store the * period, parsed from the DT, in the PWM device. For the non-DT case, * set the period from platform data if it has not already been set * via the PWM lookup table. */ if (!state.period && (data->pwm_period_ns > 0)) state.period = data->pwm_period_ns; ret = pwm_apply_might_sleep(pb->pwm, &state); if (ret) { dev_err_probe(&pdev->dev, ret, "failed to apply initial PWM state"); goto err_alloc; } memset(&props, 0, sizeof(struct backlight_properties)); if (data->levels) { pb->levels = data->levels; /* * For the DT case, only when brightness levels is defined * data->levels is filled. For the non-DT case, data->levels * can come from platform data, however is not usual. */ for (i = 0; i <= data->max_brightness; i++) if (data->levels[i] > pb->scale) pb->scale = data->levels[i]; if (pwm_backlight_is_linear(data)) props.scale = BACKLIGHT_SCALE_LINEAR; else props.scale = BACKLIGHT_SCALE_NON_LINEAR; } else if (!data->max_brightness) { /* * If no brightness levels are provided and max_brightness is * not set, use the default brightness table. For the DT case, * max_brightness is set to 0 when brightness levels is not * specified. For the non-DT case, max_brightness is usually * set to some value. */ /* Get the PWM period (in nanoseconds) */ pwm_get_state(pb->pwm, &state); ret = pwm_backlight_brightness_default(&pdev->dev, data, state.period); if (ret < 0) { dev_err_probe(&pdev->dev, ret, "failed to setup default brightness table\n"); goto err_alloc; } for (i = 0; i <= data->max_brightness; i++) { if (data->levels[i] > pb->scale) pb->scale = data->levels[i]; pb->levels = data->levels; } props.scale = BACKLIGHT_SCALE_NON_LINEAR; } else { /* * That only happens for the non-DT case, where platform data * sets the max_brightness value. */ pb->scale = data->max_brightness; } pb->lth_brightness = data->lth_brightness * (div_u64(state.period, pb->scale)); props.type = BACKLIGHT_RAW; props.max_brightness = data->max_brightness; bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, &pwm_backlight_ops, &props); if (IS_ERR(bl)) { ret = dev_err_probe(&pdev->dev, PTR_ERR(bl), "failed to register backlight\n"); goto err_alloc; } if (data->dft_brightness > data->max_brightness) { dev_warn(&pdev->dev, "invalid default brightness level: %u, using %u\n", data->dft_brightness, data->max_brightness); data->dft_brightness = data->max_brightness; } bl->props.brightness = data->dft_brightness; bl->props.power = pwm_backlight_initial_power_state(pb); backlight_update_status(bl); platform_set_drvdata(pdev, bl); return 0; err_alloc: if (data->exit) data->exit(&pdev->dev); return ret; } static void pwm_backlight_remove(struct platform_device *pdev) { struct backlight_device *bl = platform_get_drvdata(pdev); struct pwm_bl_data *pb = bl_get_data(bl); struct pwm_state state; backlight_device_unregister(bl); pwm_backlight_power_off(pb); pwm_get_state(pb->pwm, &state); state.duty_cycle = 0; state.enabled = false; pwm_apply_might_sleep(pb->pwm, &state); if (pb->exit) pb->exit(&pdev->dev); } static void pwm_backlight_shutdown(struct platform_device *pdev) { struct backlight_device *bl = platform_get_drvdata(pdev); struct pwm_bl_data *pb = bl_get_data(bl); struct pwm_state state; pwm_backlight_power_off(pb); pwm_get_state(pb->pwm, &state); state.duty_cycle = 0; state.enabled = false; pwm_apply_might_sleep(pb->pwm, &state); } #ifdef CONFIG_PM_SLEEP static int pwm_backlight_suspend(struct device *dev) { struct backlight_device *bl = dev_get_drvdata(dev); struct pwm_bl_data *pb = bl_get_data(bl); struct pwm_state state; if (pb->notify) pb->notify(pb->dev, 0); pwm_backlight_power_off(pb); /* * Note that disabling the PWM doesn't guarantee that the output stays * at its inactive state. However without the PWM disabled, the PWM * driver refuses to suspend. So disable here even though this might * enable the backlight on poorly designed boards. */ pwm_get_state(pb->pwm, &state); state.duty_cycle = 0; state.enabled = false; pwm_apply_might_sleep(pb->pwm, &state); if (pb->notify_after) pb->notify_after(pb->dev, 0); return 0; } static int pwm_backlight_resume(struct device *dev) { struct backlight_device *bl = dev_get_drvdata(dev); backlight_update_status(bl); return 0; } #endif static const struct dev_pm_ops pwm_backlight_pm_ops = { #ifdef CONFIG_PM_SLEEP .suspend = pwm_backlight_suspend, .resume = pwm_backlight_resume, .poweroff = pwm_backlight_suspend, .restore = pwm_backlight_resume, #endif }; static struct platform_driver pwm_backlight_driver = { .driver = { .name = "pwm-backlight", .pm = &pwm_backlight_pm_ops, .of_match_table = of_match_ptr(pwm_backlight_of_match), }, .probe = pwm_backlight_probe, .remove = pwm_backlight_remove, .shutdown = pwm_backlight_shutdown, }; module_platform_driver(pwm_backlight_driver); MODULE_DESCRIPTION("PWM based Backlight Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:pwm-backlight");