// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/open.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" int do_truncate(struct mnt_idmap *idmap, struct dentry *dentry, loff_t length, unsigned int time_attrs, struct file *filp) { int ret; struct iattr newattrs; /* Not pretty: "inode->i_size" shouldn't really be signed. But it is. */ if (length < 0) return -EINVAL; newattrs.ia_size = length; newattrs.ia_valid = ATTR_SIZE | time_attrs; if (filp) { newattrs.ia_file = filp; newattrs.ia_valid |= ATTR_FILE; } /* Remove suid, sgid, and file capabilities on truncate too */ ret = dentry_needs_remove_privs(idmap, dentry); if (ret < 0) return ret; if (ret) newattrs.ia_valid |= ret | ATTR_FORCE; inode_lock(dentry->d_inode); /* Note any delegations or leases have already been broken: */ ret = notify_change(idmap, dentry, &newattrs, NULL); inode_unlock(dentry->d_inode); return ret; } long vfs_truncate(const struct path *path, loff_t length) { struct mnt_idmap *idmap; struct inode *inode; long error; inode = path->dentry->d_inode; /* For directories it's -EISDIR, for other non-regulars - -EINVAL */ if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode)) return -EINVAL; error = mnt_want_write(path->mnt); if (error) goto out; idmap = mnt_idmap(path->mnt); error = inode_permission(idmap, inode, MAY_WRITE); if (error) goto mnt_drop_write_and_out; error = -EPERM; if (IS_APPEND(inode)) goto mnt_drop_write_and_out; error = get_write_access(inode); if (error) goto mnt_drop_write_and_out; /* * Make sure that there are no leases. get_write_access() protects * against the truncate racing with a lease-granting setlease(). */ error = break_lease(inode, O_WRONLY); if (error) goto put_write_and_out; error = security_path_truncate(path); if (!error) error = do_truncate(idmap, path->dentry, length, 0, NULL); put_write_and_out: put_write_access(inode); mnt_drop_write_and_out: mnt_drop_write(path->mnt); out: return error; } EXPORT_SYMBOL_GPL(vfs_truncate); long do_sys_truncate(const char __user *pathname, loff_t length) { unsigned int lookup_flags = LOOKUP_FOLLOW; struct path path; int error; if (length < 0) /* sorry, but loff_t says... */ return -EINVAL; retry: error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path); if (!error) { error = vfs_truncate(&path, length); path_put(&path); } if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } return error; } SYSCALL_DEFINE2(truncate, const char __user *, path, long, length) { return do_sys_truncate(path, length); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(truncate, const char __user *, path, compat_off_t, length) { return do_sys_truncate(path, length); } #endif long do_ftruncate(struct file *file, loff_t length, int small) { struct inode *inode; struct dentry *dentry; int error; /* explicitly opened as large or we are on 64-bit box */ if (file->f_flags & O_LARGEFILE) small = 0; dentry = file->f_path.dentry; inode = dentry->d_inode; if (!S_ISREG(inode->i_mode) || !(file->f_mode & FMODE_WRITE)) return -EINVAL; /* Cannot ftruncate over 2^31 bytes without large file support */ if (small && length > MAX_NON_LFS) return -EINVAL; /* Check IS_APPEND on real upper inode */ if (IS_APPEND(file_inode(file))) return -EPERM; sb_start_write(inode->i_sb); error = security_file_truncate(file); if (!error) error = do_truncate(file_mnt_idmap(file), dentry, length, ATTR_MTIME | ATTR_CTIME, file); sb_end_write(inode->i_sb); return error; } long do_sys_ftruncate(unsigned int fd, loff_t length, int small) { if (length < 0) return -EINVAL; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; return do_ftruncate(fd_file(f), length, small); } SYSCALL_DEFINE2(ftruncate, unsigned int, fd, off_t, length) { return do_sys_ftruncate(fd, length, 1); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(ftruncate, unsigned int, fd, compat_off_t, length) { return do_sys_ftruncate(fd, length, 1); } #endif /* LFS versions of truncate are only needed on 32 bit machines */ #if BITS_PER_LONG == 32 SYSCALL_DEFINE2(truncate64, const char __user *, path, loff_t, length) { return do_sys_truncate(path, length); } SYSCALL_DEFINE2(ftruncate64, unsigned int, fd, loff_t, length) { return do_sys_ftruncate(fd, length, 0); } #endif /* BITS_PER_LONG == 32 */ #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_TRUNCATE64) COMPAT_SYSCALL_DEFINE3(truncate64, const char __user *, pathname, compat_arg_u64_dual(length)) { return ksys_truncate(pathname, compat_arg_u64_glue(length)); } #endif #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_FTRUNCATE64) COMPAT_SYSCALL_DEFINE3(ftruncate64, unsigned int, fd, compat_arg_u64_dual(length)) { return ksys_ftruncate(fd, compat_arg_u64_glue(length)); } #endif int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret; loff_t sum; if (offset < 0 || len <= 0) return -EINVAL; if (mode & ~(FALLOC_FL_MODE_MASK | FALLOC_FL_KEEP_SIZE)) return -EOPNOTSUPP; /* * Modes are exclusive, even if that is not obvious from the encoding * as bit masks and the mix with the flag in the same namespace. * * To make things even more complicated, FALLOC_FL_ALLOCATE_RANGE is * encoded as no bit set. */ switch (mode & FALLOC_FL_MODE_MASK) { case FALLOC_FL_ALLOCATE_RANGE: case FALLOC_FL_UNSHARE_RANGE: case FALLOC_FL_ZERO_RANGE: break; case FALLOC_FL_PUNCH_HOLE: if (!(mode & FALLOC_FL_KEEP_SIZE)) return -EOPNOTSUPP; break; case FALLOC_FL_COLLAPSE_RANGE: case FALLOC_FL_INSERT_RANGE: if (mode & FALLOC_FL_KEEP_SIZE) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } if (!(file->f_mode & FMODE_WRITE)) return -EBADF; /* * On append-only files only space preallocation is supported. */ if ((mode & ~FALLOC_FL_KEEP_SIZE) && IS_APPEND(inode)) return -EPERM; if (IS_IMMUTABLE(inode)) return -EPERM; /* * We cannot allow any fallocate operation on an active swapfile */ if (IS_SWAPFILE(inode)) return -ETXTBSY; /* * Revalidate the write permissions, in case security policy has * changed since the files were opened. */ ret = security_file_permission(file, MAY_WRITE); if (ret) return ret; ret = fsnotify_file_area_perm(file, MAY_WRITE, &offset, len); if (ret) return ret; if (S_ISFIFO(inode->i_mode)) return -ESPIPE; if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) return -ENODEV; /* Check for wraparound */ if (check_add_overflow(offset, len, &sum)) return -EFBIG; if (sum > inode->i_sb->s_maxbytes) return -EFBIG; if (!file->f_op->fallocate) return -EOPNOTSUPP; file_start_write(file); ret = file->f_op->fallocate(file, mode, offset, len); /* * Create inotify and fanotify events. * * To keep the logic simple always create events if fallocate succeeds. * This implies that events are even created if the file size remains * unchanged, e.g. when using flag FALLOC_FL_KEEP_SIZE. */ if (ret == 0) fsnotify_modify(file); file_end_write(file); return ret; } EXPORT_SYMBOL_GPL(vfs_fallocate); int ksys_fallocate(int fd, int mode, loff_t offset, loff_t len) { CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; return vfs_fallocate(fd_file(f), mode, offset, len); } SYSCALL_DEFINE4(fallocate, int, fd, int, mode, loff_t, offset, loff_t, len) { return ksys_fallocate(fd, mode, offset, len); } #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_FALLOCATE) COMPAT_SYSCALL_DEFINE6(fallocate, int, fd, int, mode, compat_arg_u64_dual(offset), compat_arg_u64_dual(len)) { return ksys_fallocate(fd, mode, compat_arg_u64_glue(offset), compat_arg_u64_glue(len)); } #endif /* * access() needs to use the real uid/gid, not the effective uid/gid. * We do this by temporarily clearing all FS-related capabilities and * switching the fsuid/fsgid around to the real ones. * * Creating new credentials is expensive, so we try to skip doing it, * which we can if the result would match what we already got. */ static bool access_need_override_creds(int flags) { const struct cred *cred; if (flags & AT_EACCESS) return false; cred = current_cred(); if (!uid_eq(cred->fsuid, cred->uid) || !gid_eq(cred->fsgid, cred->gid)) return true; if (!issecure(SECURE_NO_SETUID_FIXUP)) { kuid_t root_uid = make_kuid(cred->user_ns, 0); if (!uid_eq(cred->uid, root_uid)) { if (!cap_isclear(cred->cap_effective)) return true; } else { if (!cap_isidentical(cred->cap_effective, cred->cap_permitted)) return true; } } return false; } static const struct cred *access_override_creds(void) { const struct cred *old_cred; struct cred *override_cred; override_cred = prepare_creds(); if (!override_cred) return NULL; /* * XXX access_need_override_creds performs checks in hopes of skipping * this work. Make sure it stays in sync if making any changes in this * routine. */ override_cred->fsuid = override_cred->uid; override_cred->fsgid = override_cred->gid; if (!issecure(SECURE_NO_SETUID_FIXUP)) { /* Clear the capabilities if we switch to a non-root user */ kuid_t root_uid = make_kuid(override_cred->user_ns, 0); if (!uid_eq(override_cred->uid, root_uid)) cap_clear(override_cred->cap_effective); else override_cred->cap_effective = override_cred->cap_permitted; } /* * The new set of credentials can *only* be used in * task-synchronous circumstances, and does not need * RCU freeing, unless somebody then takes a separate * reference to it. * * NOTE! This is _only_ true because this credential * is used purely for override_creds() that installs * it as the subjective cred. Other threads will be * accessing ->real_cred, not the subjective cred. * * If somebody _does_ make a copy of this (using the * 'get_current_cred()' function), that will clear the * non_rcu field, because now that other user may be * expecting RCU freeing. But normal thread-synchronous * cred accesses will keep things non-racy to avoid RCU * freeing. */ override_cred->non_rcu = 1; old_cred = override_creds(override_cred); /* override_cred() gets its own ref */ put_cred(override_cred); return old_cred; } static long do_faccessat(int dfd, const char __user *filename, int mode, int flags) { struct path path; struct inode *inode; int res; unsigned int lookup_flags = LOOKUP_FOLLOW; const struct cred *old_cred = NULL; if (mode & ~S_IRWXO) /* where's F_OK, X_OK, W_OK, R_OK? */ return -EINVAL; if (flags & ~(AT_EACCESS | AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) return -EINVAL; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (access_need_override_creds(flags)) { old_cred = access_override_creds(); if (!old_cred) return -ENOMEM; } retry: res = user_path_at(dfd, filename, lookup_flags, &path); if (res) goto out; inode = d_backing_inode(path.dentry); if ((mode & MAY_EXEC) && S_ISREG(inode->i_mode)) { /* * MAY_EXEC on regular files is denied if the fs is mounted * with the "noexec" flag. */ res = -EACCES; if (path_noexec(&path)) goto out_path_release; } res = inode_permission(mnt_idmap(path.mnt), inode, mode | MAY_ACCESS); /* SuS v2 requires we report a read only fs too */ if (res || !(mode & S_IWOTH) || special_file(inode->i_mode)) goto out_path_release; /* * This is a rare case where using __mnt_is_readonly() * is OK without a mnt_want/drop_write() pair. Since * no actual write to the fs is performed here, we do * not need to telegraph to that to anyone. * * By doing this, we accept that this access is * inherently racy and know that the fs may change * state before we even see this result. */ if (__mnt_is_readonly(path.mnt)) res = -EROFS; out_path_release: path_put(&path); if (retry_estale(res, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: if (old_cred) revert_creds(old_cred); return res; } SYSCALL_DEFINE3(faccessat, int, dfd, const char __user *, filename, int, mode) { return do_faccessat(dfd, filename, mode, 0); } SYSCALL_DEFINE4(faccessat2, int, dfd, const char __user *, filename, int, mode, int, flags) { return do_faccessat(dfd, filename, mode, flags); } SYSCALL_DEFINE2(access, const char __user *, filename, int, mode) { return do_faccessat(AT_FDCWD, filename, mode, 0); } SYSCALL_DEFINE1(chdir, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = path_permission(&path, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; set_fs_pwd(current->fs, &path); dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE1(fchdir, unsigned int, fd) { CLASS(fd_raw, f)(fd); int error; if (fd_empty(f)) return -EBADF; if (!d_can_lookup(fd_file(f)->f_path.dentry)) return -ENOTDIR; error = file_permission(fd_file(f), MAY_EXEC | MAY_CHDIR); if (!error) set_fs_pwd(current->fs, &fd_file(f)->f_path); return error; } SYSCALL_DEFINE1(chroot, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = path_permission(&path, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; error = -EPERM; if (!ns_capable(current_user_ns(), CAP_SYS_CHROOT)) goto dput_and_out; error = security_path_chroot(&path); if (error) goto dput_and_out; set_fs_root(current->fs, &path); error = 0; dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } int chmod_common(const struct path *path, umode_t mode) { struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; struct iattr newattrs; int error; error = mnt_want_write(path->mnt); if (error) return error; retry_deleg: inode_lock(inode); error = security_path_chmod(path, mode); if (error) goto out_unlock; newattrs.ia_mode = (mode & S_IALLUGO) | (inode->i_mode & ~S_IALLUGO); newattrs.ia_valid = ATTR_MODE | ATTR_CTIME; error = notify_change(mnt_idmap(path->mnt), path->dentry, &newattrs, &delegated_inode); out_unlock: inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(path->mnt); return error; } int vfs_fchmod(struct file *file, umode_t mode) { audit_file(file); return chmod_common(&file->f_path, mode); } SYSCALL_DEFINE2(fchmod, unsigned int, fd, umode_t, mode) { CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; return vfs_fchmod(fd_file(f), mode); } static int do_fchmodat(int dfd, const char __user *filename, umode_t mode, unsigned int flags) { struct path path; int error; unsigned int lookup_flags; if (unlikely(flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH))) return -EINVAL; lookup_flags = (flags & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (!error) { error = chmod_common(&path, mode); path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } } return error; } SYSCALL_DEFINE4(fchmodat2, int, dfd, const char __user *, filename, umode_t, mode, unsigned int, flags) { return do_fchmodat(dfd, filename, mode, flags); } SYSCALL_DEFINE3(fchmodat, int, dfd, const char __user *, filename, umode_t, mode) { return do_fchmodat(dfd, filename, mode, 0); } SYSCALL_DEFINE2(chmod, const char __user *, filename, umode_t, mode) { return do_fchmodat(AT_FDCWD, filename, mode, 0); } /* * Check whether @kuid is valid and if so generate and set vfsuid_t in * ia_vfsuid. * * Return: true if @kuid is valid, false if not. */ static inline bool setattr_vfsuid(struct iattr *attr, kuid_t kuid) { if (!uid_valid(kuid)) return false; attr->ia_valid |= ATTR_UID; attr->ia_vfsuid = VFSUIDT_INIT(kuid); return true; } /* * Check whether @kgid is valid and if so generate and set vfsgid_t in * ia_vfsgid. * * Return: true if @kgid is valid, false if not. */ static inline bool setattr_vfsgid(struct iattr *attr, kgid_t kgid) { if (!gid_valid(kgid)) return false; attr->ia_valid |= ATTR_GID; attr->ia_vfsgid = VFSGIDT_INIT(kgid); return true; } int chown_common(const struct path *path, uid_t user, gid_t group) { struct mnt_idmap *idmap; struct user_namespace *fs_userns; struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; int error; struct iattr newattrs; kuid_t uid; kgid_t gid; uid = make_kuid(current_user_ns(), user); gid = make_kgid(current_user_ns(), group); idmap = mnt_idmap(path->mnt); fs_userns = i_user_ns(inode); retry_deleg: newattrs.ia_vfsuid = INVALID_VFSUID; newattrs.ia_vfsgid = INVALID_VFSGID; newattrs.ia_valid = ATTR_CTIME; if ((user != (uid_t)-1) && !setattr_vfsuid(&newattrs, uid)) return -EINVAL; if ((group != (gid_t)-1) && !setattr_vfsgid(&newattrs, gid)) return -EINVAL; inode_lock(inode); if (!S_ISDIR(inode->i_mode)) newattrs.ia_valid |= ATTR_KILL_SUID | ATTR_KILL_PRIV | setattr_should_drop_sgid(idmap, inode); /* Continue to send actual fs values, not the mount values. */ error = security_path_chown( path, from_vfsuid(idmap, fs_userns, newattrs.ia_vfsuid), from_vfsgid(idmap, fs_userns, newattrs.ia_vfsgid)); if (!error) error = notify_change(idmap, path->dentry, &newattrs, &delegated_inode); inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } return error; } int do_fchownat(int dfd, const char __user *filename, uid_t user, gid_t group, int flag) { struct path path; int error = -EINVAL; int lookup_flags; if ((flag & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) goto out; lookup_flags = (flag & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; if (flag & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (error) goto out; error = mnt_want_write(path.mnt); if (error) goto out_release; error = chown_common(&path, user, group); mnt_drop_write(path.mnt); out_release: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE5(fchownat, int, dfd, const char __user *, filename, uid_t, user, gid_t, group, int, flag) { return do_fchownat(dfd, filename, user, group, flag); } SYSCALL_DEFINE3(chown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, 0); } SYSCALL_DEFINE3(lchown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, AT_SYMLINK_NOFOLLOW); } int vfs_fchown(struct file *file, uid_t user, gid_t group) { int error; error = mnt_want_write_file(file); if (error) return error; audit_file(file); error = chown_common(&file->f_path, user, group); mnt_drop_write_file(file); return error; } int ksys_fchown(unsigned int fd, uid_t user, gid_t group) { CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; return vfs_fchown(fd_file(f), user, group); } SYSCALL_DEFINE3(fchown, unsigned int, fd, uid_t, user, gid_t, group) { return ksys_fchown(fd, user, group); } static inline int file_get_write_access(struct file *f) { int error; error = get_write_access(f->f_inode); if (unlikely(error)) return error; error = mnt_get_write_access(f->f_path.mnt); if (unlikely(error)) goto cleanup_inode; if (unlikely(f->f_mode & FMODE_BACKING)) { error = mnt_get_write_access(backing_file_user_path(f)->mnt); if (unlikely(error)) goto cleanup_mnt; } return 0; cleanup_mnt: mnt_put_write_access(f->f_path.mnt); cleanup_inode: put_write_access(f->f_inode); return error; } static int do_dentry_open(struct file *f, int (*open)(struct inode *, struct file *)) { static const struct file_operations empty_fops = {}; struct inode *inode = f->f_path.dentry->d_inode; int error; path_get(&f->f_path); f->f_inode = inode; f->f_mapping = inode->i_mapping; f->f_wb_err = filemap_sample_wb_err(f->f_mapping); f->f_sb_err = file_sample_sb_err(f); if (unlikely(f->f_flags & O_PATH)) { f->f_mode = FMODE_PATH | FMODE_OPENED; f->f_op = &empty_fops; return 0; } if ((f->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) { i_readcount_inc(inode); } else if (f->f_mode & FMODE_WRITE && !special_file(inode->i_mode)) { error = file_get_write_access(f); if (unlikely(error)) goto cleanup_file; f->f_mode |= FMODE_WRITER; } /* POSIX.1-2008/SUSv4 Section XSI 2.9.7 */ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)) f->f_mode |= FMODE_ATOMIC_POS; f->f_op = fops_get(inode->i_fop); if (WARN_ON(!f->f_op)) { error = -ENODEV; goto cleanup_all; } error = security_file_open(f); if (error) goto cleanup_all; error = fsnotify_open_perm(f); if (error) goto cleanup_all; error = break_lease(file_inode(f), f->f_flags); if (error) goto cleanup_all; /* normally all 3 are set; ->open() can clear them if needed */ f->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; if (!open) open = f->f_op->open; if (open) { error = open(inode, f); if (error) goto cleanup_all; } f->f_mode |= FMODE_OPENED; if ((f->f_mode & FMODE_READ) && likely(f->f_op->read || f->f_op->read_iter)) f->f_mode |= FMODE_CAN_READ; if ((f->f_mode & FMODE_WRITE) && likely(f->f_op->write || f->f_op->write_iter)) f->f_mode |= FMODE_CAN_WRITE; if ((f->f_mode & FMODE_LSEEK) && !f->f_op->llseek) f->f_mode &= ~FMODE_LSEEK; if (f->f_mapping->a_ops && f->f_mapping->a_ops->direct_IO) f->f_mode |= FMODE_CAN_ODIRECT; f->f_flags &= ~(O_CREAT | O_EXCL | O_NOCTTY | O_TRUNC); f->f_iocb_flags = iocb_flags(f); file_ra_state_init(&f->f_ra, f->f_mapping->host->i_mapping); if ((f->f_flags & O_DIRECT) && !(f->f_mode & FMODE_CAN_ODIRECT)) return -EINVAL; /* * XXX: Huge page cache doesn't support writing yet. Drop all page * cache for this file before processing writes. */ if (f->f_mode & FMODE_WRITE) { /* * Depends on full fence from get_write_access() to synchronize * against collapse_file() regarding i_writecount and nr_thps * updates. Ensures subsequent insertion of THPs into the page * cache will fail. */ if (filemap_nr_thps(inode->i_mapping)) { struct address_space *mapping = inode->i_mapping; filemap_invalidate_lock(inode->i_mapping); /* * unmap_mapping_range just need to be called once * here, because the private pages is not need to be * unmapped mapping (e.g. data segment of dynamic * shared libraries here). */ unmap_mapping_range(mapping, 0, 0, 0); truncate_inode_pages(mapping, 0); filemap_invalidate_unlock(inode->i_mapping); } } return 0; cleanup_all: if (WARN_ON_ONCE(error > 0)) error = -EINVAL; fops_put(f->f_op); put_file_access(f); cleanup_file: path_put(&f->f_path); f->f_path.mnt = NULL; f->f_path.dentry = NULL; f->f_inode = NULL; return error; } /** * finish_open - finish opening a file * @file: file pointer * @dentry: pointer to dentry * @open: open callback * * This can be used to finish opening a file passed to i_op->atomic_open(). * * If the open callback is set to NULL, then the standard f_op->open() * filesystem callback is substituted. * * NB: the dentry reference is _not_ consumed. If, for example, the dentry is * the return value of d_splice_alias(), then the caller needs to perform dput() * on it after finish_open(). * * Returns zero on success or -errno if the open failed. */ int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)) { BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ file->f_path.dentry = dentry; return do_dentry_open(file, open); } EXPORT_SYMBOL(finish_open); /** * finish_no_open - finish ->atomic_open() without opening the file * * @file: file pointer * @dentry: dentry or NULL (as returned from ->lookup()) * * This can be used to set the result of a successful lookup in ->atomic_open(). * * NB: unlike finish_open() this function does consume the dentry reference and * the caller need not dput() it. * * Returns "0" which must be the return value of ->atomic_open() after having * called this function. */ int finish_no_open(struct file *file, struct dentry *dentry) { file->f_path.dentry = dentry; return 0; } EXPORT_SYMBOL(finish_no_open); char *file_path(struct file *filp, char *buf, int buflen) { return d_path(&filp->f_path, buf, buflen); } EXPORT_SYMBOL(file_path); /** * vfs_open - open the file at the given path * @path: path to open * @file: newly allocated file with f_flag initialized */ int vfs_open(const struct path *path, struct file *file) { int ret; file->f_path = *path; ret = do_dentry_open(file, NULL); if (!ret) { /* * Once we return a file with FMODE_OPENED, __fput() will call * fsnotify_close(), so we need fsnotify_open() here for * symmetry. */ fsnotify_open(file); } return ret; } struct file *dentry_open(const struct path *path, int flags, const struct cred *cred) { int error; struct file *f; /* We must always pass in a valid mount pointer. */ BUG_ON(!path->mnt); f = alloc_empty_file(flags, cred); if (!IS_ERR(f)) { error = vfs_open(path, f); if (error) { fput(f); f = ERR_PTR(error); } } return f; } EXPORT_SYMBOL(dentry_open); /** * dentry_create - Create and open a file * @path: path to create * @flags: O_ flags * @mode: mode bits for new file * @cred: credentials to use * * Caller must hold the parent directory's lock, and have prepared * a negative dentry, placed in @path->dentry, for the new file. * * Caller sets @path->mnt to the vfsmount of the filesystem where * the new file is to be created. The parent directory and the * negative dentry must reside on the same filesystem instance. * * On success, returns a "struct file *". Otherwise a ERR_PTR * is returned. */ struct file *dentry_create(const struct path *path, int flags, umode_t mode, const struct cred *cred) { struct file *f; int error; f = alloc_empty_file(flags, cred); if (IS_ERR(f)) return f; error = vfs_create(mnt_idmap(path->mnt), d_inode(path->dentry->d_parent), path->dentry, mode, true); if (!error) error = vfs_open(path, f); if (unlikely(error)) { fput(f); return ERR_PTR(error); } return f; } EXPORT_SYMBOL(dentry_create); /** * kernel_file_open - open a file for kernel internal use * @path: path of the file to open * @flags: open flags * @cred: credentials for open * * Open a file for use by in-kernel consumers. The file is not accounted * against nr_files and must not be installed into the file descriptor * table. * * Return: Opened file on success, an error pointer on failure. */ struct file *kernel_file_open(const struct path *path, int flags, const struct cred *cred) { struct file *f; int error; f = alloc_empty_file_noaccount(flags, cred); if (IS_ERR(f)) return f; f->f_path = *path; error = do_dentry_open(f, NULL); if (error) { fput(f); return ERR_PTR(error); } fsnotify_open(f); return f; } EXPORT_SYMBOL_GPL(kernel_file_open); #define WILL_CREATE(flags) (flags & (O_CREAT | __O_TMPFILE)) #define O_PATH_FLAGS (O_DIRECTORY | O_NOFOLLOW | O_PATH | O_CLOEXEC) inline struct open_how build_open_how(int flags, umode_t mode) { struct open_how how = { .flags = flags & VALID_OPEN_FLAGS, .mode = mode & S_IALLUGO, }; /* O_PATH beats everything else. */ if (how.flags & O_PATH) how.flags &= O_PATH_FLAGS; /* Modes should only be set for create-like flags. */ if (!WILL_CREATE(how.flags)) how.mode = 0; return how; } inline int build_open_flags(const struct open_how *how, struct open_flags *op) { u64 flags = how->flags; u64 strip = __FMODE_NONOTIFY | O_CLOEXEC; int lookup_flags = 0; int acc_mode = ACC_MODE(flags); BUILD_BUG_ON_MSG(upper_32_bits(VALID_OPEN_FLAGS), "struct open_flags doesn't yet handle flags > 32 bits"); /* * Strip flags that either shouldn't be set by userspace like * FMODE_NONOTIFY or that aren't relevant in determining struct * open_flags like O_CLOEXEC. */ flags &= ~strip; /* * Older syscalls implicitly clear all of the invalid flags or argument * values before calling build_open_flags(), but openat2(2) checks all * of its arguments. */ if (flags & ~VALID_OPEN_FLAGS) return -EINVAL; if (how->resolve & ~VALID_RESOLVE_FLAGS) return -EINVAL; /* Scoping flags are mutually exclusive. */ if ((how->resolve & RESOLVE_BENEATH) && (how->resolve & RESOLVE_IN_ROOT)) return -EINVAL; /* Deal with the mode. */ if (WILL_CREATE(flags)) { if (how->mode & ~S_IALLUGO) return -EINVAL; op->mode = how->mode | S_IFREG; } else { if (how->mode != 0) return -EINVAL; op->mode = 0; } /* * Block bugs where O_DIRECTORY | O_CREAT created regular files. * Note, that blocking O_DIRECTORY | O_CREAT here also protects * O_TMPFILE below which requires O_DIRECTORY being raised. */ if ((flags & (O_DIRECTORY | O_CREAT)) == (O_DIRECTORY | O_CREAT)) return -EINVAL; /* Now handle the creative implementation of O_TMPFILE. */ if (flags & __O_TMPFILE) { /* * In order to ensure programs get explicit errors when trying * to use O_TMPFILE on old kernels we enforce that O_DIRECTORY * is raised alongside __O_TMPFILE. */ if (!(flags & O_DIRECTORY)) return -EINVAL; if (!(acc_mode & MAY_WRITE)) return -EINVAL; } if (flags & O_PATH) { /* O_PATH only permits certain other flags to be set. */ if (flags & ~O_PATH_FLAGS) return -EINVAL; acc_mode = 0; } /* * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only * check for O_DSYNC if the need any syncing at all we enforce it's * always set instead of having to deal with possibly weird behaviour * for malicious applications setting only __O_SYNC. */ if (flags & __O_SYNC) flags |= O_DSYNC; op->open_flag = flags; /* O_TRUNC implies we need access checks for write permissions */ if (flags & O_TRUNC) acc_mode |= MAY_WRITE; /* Allow the LSM permission hook to distinguish append access from general write access. */ if (flags & O_APPEND) acc_mode |= MAY_APPEND; op->acc_mode = acc_mode; op->intent = flags & O_PATH ? 0 : LOOKUP_OPEN; if (flags & O_CREAT) { op->intent |= LOOKUP_CREATE; if (flags & O_EXCL) { op->intent |= LOOKUP_EXCL; flags |= O_NOFOLLOW; } } if (flags & O_DIRECTORY) lookup_flags |= LOOKUP_DIRECTORY; if (!(flags & O_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; if (how->resolve & RESOLVE_NO_XDEV) lookup_flags |= LOOKUP_NO_XDEV; if (how->resolve & RESOLVE_NO_MAGICLINKS) lookup_flags |= LOOKUP_NO_MAGICLINKS; if (how->resolve & RESOLVE_NO_SYMLINKS) lookup_flags |= LOOKUP_NO_SYMLINKS; if (how->resolve & RESOLVE_BENEATH) lookup_flags |= LOOKUP_BENEATH; if (how->resolve & RESOLVE_IN_ROOT) lookup_flags |= LOOKUP_IN_ROOT; if (how->resolve & RESOLVE_CACHED) { /* Don't bother even trying for create/truncate/tmpfile open */ if (flags & (O_TRUNC | O_CREAT | __O_TMPFILE)) return -EAGAIN; lookup_flags |= LOOKUP_CACHED; } op->lookup_flags = lookup_flags; return 0; } /** * file_open_name - open file and return file pointer * * @name: struct filename containing path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *file_open_name(struct filename *name, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_filp_open(AT_FDCWD, name, &op); } /** * filp_open - open file and return file pointer * * @filename: path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *filp_open(const char *filename, int flags, umode_t mode) { struct filename *name = getname_kernel(filename); struct file *file = ERR_CAST(name); if (!IS_ERR(name)) { file = file_open_name(name, flags, mode); putname(name); } return file; } EXPORT_SYMBOL(filp_open); struct file *file_open_root(const struct path *root, const char *filename, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_file_open_root(root, filename, &op); } EXPORT_SYMBOL(file_open_root); static long do_sys_openat2(int dfd, const char __user *filename, struct open_how *how) { struct open_flags op; int fd = build_open_flags(how, &op); struct filename *tmp; if (fd) return fd; tmp = getname(filename); if (IS_ERR(tmp)) return PTR_ERR(tmp); fd = get_unused_fd_flags(how->flags); if (fd >= 0) { struct file *f = do_filp_open(dfd, tmp, &op); if (IS_ERR(f)) { put_unused_fd(fd); fd = PTR_ERR(f); } else { fd_install(fd, f); } } putname(tmp); return fd; } long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode) { struct open_how how = build_open_how(flags, mode); return do_sys_openat2(dfd, filename, &how); } SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, filename, flags, mode); } SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(dfd, filename, flags, mode); } SYSCALL_DEFINE4(openat2, int, dfd, const char __user *, filename, struct open_how __user *, how, size_t, usize) { int err; struct open_how tmp; BUILD_BUG_ON(sizeof(struct open_how) < OPEN_HOW_SIZE_VER0); BUILD_BUG_ON(sizeof(struct open_how) != OPEN_HOW_SIZE_LATEST); if (unlikely(usize < OPEN_HOW_SIZE_VER0)) return -EINVAL; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; err = copy_struct_from_user(&tmp, sizeof(tmp), how, usize); if (err) return err; audit_openat2_how(&tmp); /* O_LARGEFILE is only allowed for non-O_PATH. */ if (!(tmp.flags & O_PATH) && force_o_largefile()) tmp.flags |= O_LARGEFILE; return do_sys_openat2(dfd, filename, &tmp); } #ifdef CONFIG_COMPAT /* * Exactly like sys_open(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(AT_FDCWD, filename, flags, mode); } /* * Exactly like sys_openat(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(dfd, filename, flags, mode); } #endif #ifndef __alpha__ /* * For backward compatibility? Maybe this should be moved * into arch/i386 instead? */ SYSCALL_DEFINE2(creat, const char __user *, pathname, umode_t, mode) { int flags = O_CREAT | O_WRONLY | O_TRUNC; if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, pathname, flags, mode); } #endif /* * "id" is the POSIX thread ID. We use the * files pointer for this.. */ static int filp_flush(struct file *filp, fl_owner_t id) { int retval = 0; if (CHECK_DATA_CORRUPTION(file_count(filp) == 0, "VFS: Close: file count is 0 (f_op=%ps)", filp->f_op)) { return 0; } if (filp->f_op->flush) retval = filp->f_op->flush(filp, id); if (likely(!(filp->f_mode & FMODE_PATH))) { dnotify_flush(filp, id); locks_remove_posix(filp, id); } return retval; } int filp_close(struct file *filp, fl_owner_t id) { int retval; retval = filp_flush(filp, id); fput(filp); return retval; } EXPORT_SYMBOL(filp_close); /* * Careful here! We test whether the file pointer is NULL before * releasing the fd. This ensures that one clone task can't release * an fd while another clone is opening it. */ SYSCALL_DEFINE1(close, unsigned int, fd) { int retval; struct file *file; file = file_close_fd(fd); if (!file) return -EBADF; retval = filp_flush(file, current->files); /* * We're returning to user space. Don't bother * with any delayed fput() cases. */ __fput_sync(file); /* can't restart close syscall because file table entry was cleared */ if (unlikely(retval == -ERESTARTSYS || retval == -ERESTARTNOINTR || retval == -ERESTARTNOHAND || retval == -ERESTART_RESTARTBLOCK)) retval = -EINTR; return retval; } /* * This routine simulates a hangup on the tty, to arrange that users * are given clean terminals at login time. */ SYSCALL_DEFINE0(vhangup) { if (capable(CAP_SYS_TTY_CONFIG)) { tty_vhangup_self(); return 0; } return -EPERM; } /* * Called when an inode is about to be open. * We use this to disallow opening large files on 32bit systems if * the caller didn't specify O_LARGEFILE. On 64bit systems we force * on this flag in sys_open. */ int generic_file_open(struct inode * inode, struct file * filp) { if (!(filp->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) return -EOVERFLOW; return 0; } EXPORT_SYMBOL(generic_file_open); /* * This is used by subsystems that don't want seekable * file descriptors. The function is not supposed to ever fail, the only * reason it returns an 'int' and not 'void' is so that it can be plugged * directly into file_operations structure. */ int nonseekable_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); return 0; } EXPORT_SYMBOL(nonseekable_open); /* * stream_open is used by subsystems that want stream-like file descriptors. * Such file descriptors are not seekable and don't have notion of position * (file.f_pos is always 0 and ppos passed to .read()/.write() is always NULL). * Contrary to file descriptors of other regular files, .read() and .write() * can run simultaneously. * * stream_open never fails and is marked to return int so that it could be * directly used as file_operations.open . */ int stream_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE | FMODE_ATOMIC_POS); filp->f_mode |= FMODE_STREAM; return 0; } EXPORT_SYMBOL(stream_open);