// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_ag.h" #include "xfs_inode.h" #include "xfs_errortag.h" #include "xfs_error.h" #include "xfs_icache.h" #include "xfs_trans.h" #include "xfs_ialloc.h" #include "xfs_dir2.h" #include "xfs_health.h" #include "xfs_metafile.h" #include /* * If we are doing readahead on an inode buffer, we might be in log recovery * reading an inode allocation buffer that hasn't yet been replayed, and hence * has not had the inode cores stamped into it. Hence for readahead, the buffer * may be potentially invalid. * * If the readahead buffer is invalid, we need to mark it with an error and * clear the DONE status of the buffer so that a followup read will re-read it * from disk. We don't report the error otherwise to avoid warnings during log * recovery and we don't get unnecessary panics on debug kernels. We use EIO here * because all we want to do is say readahead failed; there is no-one to report * the error to, so this will distinguish it from a non-ra verifier failure. * Changes to this readahead error behaviour also need to be reflected in * xfs_dquot_buf_readahead_verify(). */ static void xfs_inode_buf_verify( struct xfs_buf *bp, bool readahead) { struct xfs_mount *mp = bp->b_mount; int i; int ni; /* * Validate the magic number and version of every inode in the buffer */ ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; for (i = 0; i < ni; i++) { struct xfs_dinode *dip; xfs_agino_t unlinked_ino; int di_ok; dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); unlinked_ino = be32_to_cpu(dip->di_next_unlinked); di_ok = xfs_verify_magic16(bp, dip->di_magic) && xfs_dinode_good_version(mp, dip->di_version) && xfs_verify_agino_or_null(bp->b_pag, unlinked_ino); if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP))) { if (readahead) { bp->b_flags &= ~XBF_DONE; xfs_buf_ioerror(bp, -EIO); return; } #ifdef DEBUG xfs_alert(mp, "bad inode magic/vsn daddr %lld #%d (magic=%x)", (unsigned long long)xfs_buf_daddr(bp), i, be16_to_cpu(dip->di_magic)); #endif xfs_buf_verifier_error(bp, -EFSCORRUPTED, __func__, dip, sizeof(*dip), NULL); return; } } } static void xfs_inode_buf_read_verify( struct xfs_buf *bp) { xfs_inode_buf_verify(bp, false); } static void xfs_inode_buf_readahead_verify( struct xfs_buf *bp) { xfs_inode_buf_verify(bp, true); } static void xfs_inode_buf_write_verify( struct xfs_buf *bp) { xfs_inode_buf_verify(bp, false); } const struct xfs_buf_ops xfs_inode_buf_ops = { .name = "xfs_inode", .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC), cpu_to_be16(XFS_DINODE_MAGIC) }, .verify_read = xfs_inode_buf_read_verify, .verify_write = xfs_inode_buf_write_verify, }; const struct xfs_buf_ops xfs_inode_buf_ra_ops = { .name = "xfs_inode_ra", .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC), cpu_to_be16(XFS_DINODE_MAGIC) }, .verify_read = xfs_inode_buf_readahead_verify, .verify_write = xfs_inode_buf_write_verify, }; /* * This routine is called to map an inode to the buffer containing the on-disk * version of the inode. It returns a pointer to the buffer containing the * on-disk inode in the bpp parameter. */ int xfs_imap_to_bp( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_imap *imap, struct xfs_buf **bpp) { int error; error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, imap->im_len, XBF_UNMAPPED, bpp, &xfs_inode_buf_ops); if (xfs_metadata_is_sick(error)) xfs_agno_mark_sick(mp, xfs_daddr_to_agno(mp, imap->im_blkno), XFS_SICK_AG_INODES); return error; } static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts) { struct timespec64 tv; uint32_t n; tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n)); tv.tv_nsec = n; return tv; } /* Convert an ondisk timestamp to an incore timestamp. */ struct timespec64 xfs_inode_from_disk_ts( struct xfs_dinode *dip, const xfs_timestamp_t ts) { struct timespec64 tv; struct xfs_legacy_timestamp *lts; if (xfs_dinode_has_bigtime(dip)) return xfs_inode_decode_bigtime(be64_to_cpu(ts)); lts = (struct xfs_legacy_timestamp *)&ts; tv.tv_sec = (int)be32_to_cpu(lts->t_sec); tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec); return tv; } int xfs_inode_from_disk( struct xfs_inode *ip, struct xfs_dinode *from) { struct inode *inode = VFS_I(ip); int error; xfs_failaddr_t fa; ASSERT(ip->i_cowfp == NULL); fa = xfs_dinode_verify(ip->i_mount, ip->i_ino, from); if (fa) { xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", from, sizeof(*from), fa); return -EFSCORRUPTED; } /* * First get the permanent information that is needed to allocate an * inode. If the inode is unused, mode is zero and we shouldn't mess * with the uninitialized part of it. */ if (!xfs_has_v3inodes(ip->i_mount)) ip->i_flushiter = be16_to_cpu(from->di_flushiter); inode->i_generation = be32_to_cpu(from->di_gen); inode->i_mode = be16_to_cpu(from->di_mode); if (!inode->i_mode) return 0; /* * Convert v1 inodes immediately to v2 inode format as this is the * minimum inode version format we support in the rest of the code. * They will also be unconditionally written back to disk as v2 inodes. */ if (unlikely(from->di_version == 1)) { /* di_metatype used to be di_onlink */ set_nlink(inode, be16_to_cpu(from->di_metatype)); ip->i_projid = 0; } else { set_nlink(inode, be32_to_cpu(from->di_nlink)); ip->i_projid = (prid_t)be16_to_cpu(from->di_projid_hi) << 16 | be16_to_cpu(from->di_projid_lo); if (xfs_dinode_is_metadir(from)) ip->i_metatype = be16_to_cpu(from->di_metatype); } i_uid_write(inode, be32_to_cpu(from->di_uid)); i_gid_write(inode, be32_to_cpu(from->di_gid)); /* * Time is signed, so need to convert to signed 32 bit before * storing in inode timestamp which may be 64 bit. Otherwise * a time before epoch is converted to a time long after epoch * on 64 bit systems. */ inode_set_atime_to_ts(inode, xfs_inode_from_disk_ts(from, from->di_atime)); inode_set_mtime_to_ts(inode, xfs_inode_from_disk_ts(from, from->di_mtime)); inode_set_ctime_to_ts(inode, xfs_inode_from_disk_ts(from, from->di_ctime)); ip->i_disk_size = be64_to_cpu(from->di_size); ip->i_nblocks = be64_to_cpu(from->di_nblocks); ip->i_extsize = be32_to_cpu(from->di_extsize); ip->i_forkoff = from->di_forkoff; ip->i_diflags = be16_to_cpu(from->di_flags); ip->i_next_unlinked = be32_to_cpu(from->di_next_unlinked); if (from->di_dmevmask || from->di_dmstate) xfs_iflags_set(ip, XFS_IPRESERVE_DM_FIELDS); if (xfs_has_v3inodes(ip->i_mount)) { inode_set_iversion_queried(inode, be64_to_cpu(from->di_changecount)); ip->i_crtime = xfs_inode_from_disk_ts(from, from->di_crtime); ip->i_diflags2 = be64_to_cpu(from->di_flags2); ip->i_cowextsize = be32_to_cpu(from->di_cowextsize); } error = xfs_iformat_data_fork(ip, from); if (error) return error; if (from->di_forkoff) { error = xfs_iformat_attr_fork(ip, from); if (error) goto out_destroy_data_fork; } if (xfs_is_reflink_inode(ip)) xfs_ifork_init_cow(ip); return 0; out_destroy_data_fork: xfs_idestroy_fork(&ip->i_df); return error; } /* Convert an incore timestamp to an ondisk timestamp. */ static inline xfs_timestamp_t xfs_inode_to_disk_ts( struct xfs_inode *ip, const struct timespec64 tv) { struct xfs_legacy_timestamp *lts; xfs_timestamp_t ts; if (xfs_inode_has_bigtime(ip)) return cpu_to_be64(xfs_inode_encode_bigtime(tv)); lts = (struct xfs_legacy_timestamp *)&ts; lts->t_sec = cpu_to_be32(tv.tv_sec); lts->t_nsec = cpu_to_be32(tv.tv_nsec); return ts; } static inline void xfs_inode_to_disk_iext_counters( struct xfs_inode *ip, struct xfs_dinode *to) { if (xfs_inode_has_large_extent_counts(ip)) { to->di_big_nextents = cpu_to_be64(xfs_ifork_nextents(&ip->i_df)); to->di_big_anextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_af)); /* * We might be upgrading the inode to use larger extent counters * than was previously used. Hence zero the unused field. */ to->di_nrext64_pad = cpu_to_be16(0); } else { to->di_nextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_df)); to->di_anextents = cpu_to_be16(xfs_ifork_nextents(&ip->i_af)); } } void xfs_inode_to_disk( struct xfs_inode *ip, struct xfs_dinode *to, xfs_lsn_t lsn) { struct inode *inode = VFS_I(ip); to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); if (xfs_is_metadir_inode(ip)) to->di_metatype = cpu_to_be16(ip->i_metatype); else to->di_metatype = 0; to->di_format = xfs_ifork_format(&ip->i_df); to->di_uid = cpu_to_be32(i_uid_read(inode)); to->di_gid = cpu_to_be32(i_gid_read(inode)); to->di_projid_lo = cpu_to_be16(ip->i_projid & 0xffff); to->di_projid_hi = cpu_to_be16(ip->i_projid >> 16); to->di_atime = xfs_inode_to_disk_ts(ip, inode_get_atime(inode)); to->di_mtime = xfs_inode_to_disk_ts(ip, inode_get_mtime(inode)); to->di_ctime = xfs_inode_to_disk_ts(ip, inode_get_ctime(inode)); to->di_nlink = cpu_to_be32(inode->i_nlink); to->di_gen = cpu_to_be32(inode->i_generation); to->di_mode = cpu_to_be16(inode->i_mode); to->di_size = cpu_to_be64(ip->i_disk_size); to->di_nblocks = cpu_to_be64(ip->i_nblocks); to->di_extsize = cpu_to_be32(ip->i_extsize); to->di_forkoff = ip->i_forkoff; to->di_aformat = xfs_ifork_format(&ip->i_af); to->di_flags = cpu_to_be16(ip->i_diflags); if (xfs_has_v3inodes(ip->i_mount)) { to->di_version = 3; to->di_changecount = cpu_to_be64(inode_peek_iversion(inode)); to->di_crtime = xfs_inode_to_disk_ts(ip, ip->i_crtime); to->di_flags2 = cpu_to_be64(ip->i_diflags2); to->di_cowextsize = cpu_to_be32(ip->i_cowextsize); to->di_ino = cpu_to_be64(ip->i_ino); to->di_lsn = cpu_to_be64(lsn); memset(to->di_pad2, 0, sizeof(to->di_pad2)); uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); to->di_v3_pad = 0; } else { to->di_version = 2; to->di_flushiter = cpu_to_be16(ip->i_flushiter); memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); } xfs_inode_to_disk_iext_counters(ip, to); } static xfs_failaddr_t xfs_dinode_verify_fork( struct xfs_dinode *dip, struct xfs_mount *mp, int whichfork) { xfs_extnum_t di_nextents; xfs_extnum_t max_extents; mode_t mode = be16_to_cpu(dip->di_mode); uint32_t fork_size = XFS_DFORK_SIZE(dip, mp, whichfork); uint32_t fork_format = XFS_DFORK_FORMAT(dip, whichfork); di_nextents = xfs_dfork_nextents(dip, whichfork); /* * For fork types that can contain local data, check that the fork * format matches the size of local data contained within the fork. */ if (whichfork == XFS_DATA_FORK) { /* * A directory small enough to fit in the inode must be stored * in local format. The directory sf <-> extents conversion * code updates the directory size accordingly. Directories * being truncated have zero size and are not subject to this * check. */ if (S_ISDIR(mode)) { if (dip->di_size && be64_to_cpu(dip->di_size) <= fork_size && fork_format != XFS_DINODE_FMT_LOCAL) return __this_address; } /* * A symlink with a target small enough to fit in the inode can * be stored in extents format if xattrs were added (thus * converting the data fork from shortform to remote format) * and then removed. */ if (S_ISLNK(mode)) { if (be64_to_cpu(dip->di_size) <= fork_size && fork_format != XFS_DINODE_FMT_EXTENTS && fork_format != XFS_DINODE_FMT_LOCAL) return __this_address; } /* * For all types, check that when the size says the fork should * be in extent or btree format, the inode isn't claiming to be * in local format. */ if (be64_to_cpu(dip->di_size) > fork_size && fork_format == XFS_DINODE_FMT_LOCAL) return __this_address; } switch (fork_format) { case XFS_DINODE_FMT_LOCAL: /* * No local regular files yet. */ if (S_ISREG(mode) && whichfork == XFS_DATA_FORK) return __this_address; if (di_nextents) return __this_address; break; case XFS_DINODE_FMT_EXTENTS: if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork)) return __this_address; break; case XFS_DINODE_FMT_BTREE: max_extents = xfs_iext_max_nextents( xfs_dinode_has_large_extent_counts(dip), whichfork); if (di_nextents > max_extents) return __this_address; break; default: return __this_address; } return NULL; } static xfs_failaddr_t xfs_dinode_verify_forkoff( struct xfs_dinode *dip, struct xfs_mount *mp) { if (!dip->di_forkoff) return NULL; switch (dip->di_format) { case XFS_DINODE_FMT_DEV: if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3)) return __this_address; break; case XFS_DINODE_FMT_LOCAL: /* fall through ... */ case XFS_DINODE_FMT_EXTENTS: /* fall through ... */ case XFS_DINODE_FMT_BTREE: if (dip->di_forkoff >= (XFS_LITINO(mp) >> 3)) return __this_address; break; default: return __this_address; } return NULL; } static xfs_failaddr_t xfs_dinode_verify_nrext64( struct xfs_mount *mp, struct xfs_dinode *dip) { if (xfs_dinode_has_large_extent_counts(dip)) { if (!xfs_has_large_extent_counts(mp)) return __this_address; if (dip->di_nrext64_pad != 0) return __this_address; } else if (dip->di_version >= 3) { if (dip->di_v3_pad != 0) return __this_address; } return NULL; } /* * Validate all the picky requirements we have for a file that claims to be * filesystem metadata. */ xfs_failaddr_t xfs_dinode_verify_metadir( struct xfs_mount *mp, struct xfs_dinode *dip, uint16_t mode, uint16_t flags, uint64_t flags2) { if (!xfs_has_metadir(mp)) return __this_address; /* V5 filesystem only */ if (dip->di_version < 3) return __this_address; if (be16_to_cpu(dip->di_metatype) >= XFS_METAFILE_MAX) return __this_address; /* V3 inode fields that are always zero */ if ((flags2 & XFS_DIFLAG2_NREXT64) && dip->di_nrext64_pad) return __this_address; if (!(flags2 & XFS_DIFLAG2_NREXT64) && dip->di_flushiter) return __this_address; /* Metadata files can only be directories or regular files */ if (!S_ISDIR(mode) && !S_ISREG(mode)) return __this_address; /* They must have zero access permissions */ if (mode & 0777) return __this_address; /* DMAPI event and state masks are zero */ if (dip->di_dmevmask || dip->di_dmstate) return __this_address; /* * User and group IDs must be zero. The project ID is used for * grouping inodes. Metadata inodes are never accounted to quotas. */ if (dip->di_uid || dip->di_gid) return __this_address; /* Mandatory inode flags must be set */ if (S_ISDIR(mode)) { if ((flags & XFS_METADIR_DIFLAGS) != XFS_METADIR_DIFLAGS) return __this_address; } else { if ((flags & XFS_METAFILE_DIFLAGS) != XFS_METAFILE_DIFLAGS) return __this_address; } /* dax flags2 must not be set */ if (flags2 & XFS_DIFLAG2_DAX) return __this_address; return NULL; } xfs_failaddr_t xfs_dinode_verify( struct xfs_mount *mp, xfs_ino_t ino, struct xfs_dinode *dip) { xfs_failaddr_t fa; uint16_t mode; uint16_t flags; uint64_t flags2; uint64_t di_size; xfs_extnum_t nextents; xfs_extnum_t naextents; xfs_filblks_t nblocks; if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) return __this_address; /* Verify v3 integrity information first */ if (dip->di_version >= 3) { if (!xfs_has_v3inodes(mp)) return __this_address; if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, XFS_DINODE_CRC_OFF)) return __this_address; if (be64_to_cpu(dip->di_ino) != ino) return __this_address; if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; } /* * Historical note: xfsprogs in the 3.2 era set up its incore inodes to * have di_nlink track the link count, even if the actual filesystem * only supported V1 inodes (i.e. di_onlink). When writing out the * ondisk inode, it would set both the ondisk di_nlink and di_onlink to * the the incore di_nlink value, which is why we cannot check for * di_nlink==0 on a V1 inode. V2/3 inodes would get written out with * di_onlink==0, so we can check that. */ if (dip->di_version == 2) { if (dip->di_metatype) return __this_address; } else if (dip->di_version >= 3) { if (!xfs_dinode_is_metadir(dip) && dip->di_metatype) return __this_address; } /* don't allow invalid i_size */ di_size = be64_to_cpu(dip->di_size); if (di_size & (1ULL << 63)) return __this_address; mode = be16_to_cpu(dip->di_mode); if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN) return __this_address; /* * No zero-length symlinks/dirs unless they're unlinked and hence being * inactivated. */ if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) { if (dip->di_version > 1) { if (dip->di_nlink) return __this_address; } else { /* di_metatype used to be di_onlink */ if (dip->di_metatype) return __this_address; } } fa = xfs_dinode_verify_nrext64(mp, dip); if (fa) return fa; nextents = xfs_dfork_data_extents(dip); naextents = xfs_dfork_attr_extents(dip); nblocks = be64_to_cpu(dip->di_nblocks); /* Fork checks carried over from xfs_iformat_fork */ if (mode && nextents + naextents > nblocks) return __this_address; if (nextents + naextents == 0 && nblocks != 0) return __this_address; if (S_ISDIR(mode) && nextents > mp->m_dir_geo->max_extents) return __this_address; if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize) return __this_address; flags = be16_to_cpu(dip->di_flags); if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp) return __this_address; /* check for illegal values of forkoff */ fa = xfs_dinode_verify_forkoff(dip, mp); if (fa) return fa; /* Do we have appropriate data fork formats for the mode? */ switch (mode & S_IFMT) { case S_IFIFO: case S_IFCHR: case S_IFBLK: case S_IFSOCK: if (dip->di_format != XFS_DINODE_FMT_DEV) return __this_address; break; case S_IFREG: case S_IFLNK: case S_IFDIR: fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK); if (fa) return fa; break; case 0: /* Uninitialized inode ok. */ break; default: return __this_address; } if (dip->di_forkoff) { fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK); if (fa) return fa; } else { /* * If there is no fork offset, this may be a freshly-made inode * in a new disk cluster, in which case di_aformat is zeroed. * Otherwise, such an inode must be in EXTENTS format; this goes * for freed inodes as well. */ switch (dip->di_aformat) { case 0: case XFS_DINODE_FMT_EXTENTS: break; default: return __this_address; } if (naextents) return __this_address; } /* extent size hint validation */ fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize), mode, flags); if (fa) return fa; /* only version 3 or greater inodes are extensively verified here */ if (dip->di_version < 3) return NULL; flags2 = be64_to_cpu(dip->di_flags2); /* don't allow reflink/cowextsize if we don't have reflink */ if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) && !xfs_has_reflink(mp)) return __this_address; /* only regular files get reflink */ if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG) return __this_address; /* don't let reflink and realtime mix */ if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME)) return __this_address; /* COW extent size hint validation */ fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize), mode, flags, flags2); if (fa) return fa; /* bigtime iflag can only happen on bigtime filesystems */ if (xfs_dinode_has_bigtime(dip) && !xfs_has_bigtime(mp)) return __this_address; if (flags2 & XFS_DIFLAG2_METADATA) { fa = xfs_dinode_verify_metadir(mp, dip, mode, flags, flags2); if (fa) return fa; } return NULL; } void xfs_dinode_calc_crc( struct xfs_mount *mp, struct xfs_dinode *dip) { uint32_t crc; if (dip->di_version < 3) return; ASSERT(xfs_has_crc(mp)); crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize, XFS_DINODE_CRC_OFF); dip->di_crc = xfs_end_cksum(crc); } /* * Validate di_extsize hint. * * 1. Extent size hint is only valid for directories and regular files. * 2. FS_XFLAG_EXTSIZE is only valid for regular files. * 3. FS_XFLAG_EXTSZINHERIT is only valid for directories. * 4. Hint cannot be larger than MAXTEXTLEN. * 5. Can be changed on directories at any time. * 6. Hint value of 0 turns off hints, clears inode flags. * 7. Extent size must be a multiple of the appropriate block size. * For realtime files, this is the rt extent size. * 8. For non-realtime files, the extent size hint must be limited * to half the AG size to avoid alignment extending the extent beyond the * limits of the AG. */ xfs_failaddr_t xfs_inode_validate_extsize( struct xfs_mount *mp, uint32_t extsize, uint16_t mode, uint16_t flags) { bool rt_flag; bool hint_flag; bool inherit_flag; uint32_t extsize_bytes; uint32_t blocksize_bytes; rt_flag = (flags & XFS_DIFLAG_REALTIME); hint_flag = (flags & XFS_DIFLAG_EXTSIZE); inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT); extsize_bytes = XFS_FSB_TO_B(mp, extsize); /* * This comment describes a historic gap in this verifier function. * * For a directory with both RTINHERIT and EXTSZINHERIT flags set, this * function has never checked that the extent size hint is an integer * multiple of the realtime extent size. Since we allow users to set * this combination on non-rt filesystems /and/ to change the rt * extent size when adding a rt device to a filesystem, the net effect * is that users can configure a filesystem anticipating one rt * geometry and change their minds later. Directories do not use the * extent size hint, so this is harmless for them. * * If a directory with a misaligned extent size hint is allowed to * propagate that hint into a new regular realtime file, the result * is that the inode cluster buffer verifier will trigger a corruption * shutdown the next time it is run, because the verifier has always * enforced the alignment rule for regular files. * * Because we allow administrators to set a new rt extent size when * adding a rt section, we cannot add a check to this verifier because * that will result a new source of directory corruption errors when * reading an existing filesystem. Instead, we rely on callers to * decide when alignment checks are appropriate, and fix things up as * needed. */ if (rt_flag) blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); else blocksize_bytes = mp->m_sb.sb_blocksize; if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode))) return __this_address; if (hint_flag && !S_ISREG(mode)) return __this_address; if (inherit_flag && !S_ISDIR(mode)) return __this_address; if ((hint_flag || inherit_flag) && extsize == 0) return __this_address; /* free inodes get flags set to zero but extsize remains */ if (mode && !(hint_flag || inherit_flag) && extsize != 0) return __this_address; if (extsize_bytes % blocksize_bytes) return __this_address; if (extsize > XFS_MAX_BMBT_EXTLEN) return __this_address; if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2) return __this_address; return NULL; } /* * Validate di_cowextsize hint. * * 1. CoW extent size hint can only be set if reflink is enabled on the fs. * The inode does not have to have any shared blocks, but it must be a v3. * 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files; * for a directory, the hint is propagated to new files. * 3. Can be changed on files & directories at any time. * 4. Hint value of 0 turns off hints, clears inode flags. * 5. Extent size must be a multiple of the appropriate block size. * 6. The extent size hint must be limited to half the AG size to avoid * alignment extending the extent beyond the limits of the AG. */ xfs_failaddr_t xfs_inode_validate_cowextsize( struct xfs_mount *mp, uint32_t cowextsize, uint16_t mode, uint16_t flags, uint64_t flags2) { bool rt_flag; bool hint_flag; uint32_t cowextsize_bytes; rt_flag = (flags & XFS_DIFLAG_REALTIME); hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE); cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize); if (hint_flag && !xfs_has_reflink(mp)) return __this_address; if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode))) return __this_address; if (hint_flag && cowextsize == 0) return __this_address; /* free inodes get flags set to zero but cowextsize remains */ if (mode && !hint_flag && cowextsize != 0) return __this_address; if (hint_flag && rt_flag) return __this_address; if (cowextsize_bytes % mp->m_sb.sb_blocksize) return __this_address; if (cowextsize > XFS_MAX_BMBT_EXTLEN) return __this_address; if (cowextsize > mp->m_sb.sb_agblocks / 2) return __this_address; return NULL; }