// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2003 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_shared.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_quota.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_trans_space.h" #include "xfs_trans_priv.h" #include "xfs_qm.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_bmap_btree.h" #include "xfs_error.h" #include "xfs_health.h" /* * Lock order: * * ip->i_lock * qi->qi_tree_lock * dquot->q_qlock (xfs_dqlock() and friends) * dquot->q_flush (xfs_dqflock() and friends) * qi->qi_lru_lock * * If two dquots need to be locked the order is user before group/project, * otherwise by the lowest id first, see xfs_dqlock2. */ struct kmem_cache *xfs_dqtrx_cache; static struct kmem_cache *xfs_dquot_cache; static struct lock_class_key xfs_dquot_group_class; static struct lock_class_key xfs_dquot_project_class; /* Record observations of quota corruption with the health tracking system. */ static void xfs_dquot_mark_sick( struct xfs_dquot *dqp) { struct xfs_mount *mp = dqp->q_mount; switch (dqp->q_type) { case XFS_DQTYPE_USER: xfs_fs_mark_sick(mp, XFS_SICK_FS_UQUOTA); break; case XFS_DQTYPE_GROUP: xfs_fs_mark_sick(mp, XFS_SICK_FS_GQUOTA); break; case XFS_DQTYPE_PROJ: xfs_fs_mark_sick(mp, XFS_SICK_FS_PQUOTA); break; default: ASSERT(0); break; } } /* * Detach the dquot buffer if it's still attached, because we can get called * through dqpurge after a log shutdown. Caller must hold the dqflock or have * otherwise isolated the dquot. */ void xfs_dquot_detach_buf( struct xfs_dquot *dqp) { struct xfs_dq_logitem *qlip = &dqp->q_logitem; struct xfs_buf *bp = NULL; spin_lock(&qlip->qli_lock); if (qlip->qli_item.li_buf) { bp = qlip->qli_item.li_buf; qlip->qli_item.li_buf = NULL; } spin_unlock(&qlip->qli_lock); if (bp) { list_del_init(&qlip->qli_item.li_bio_list); xfs_buf_rele(bp); } } /* * This is called to free all the memory associated with a dquot */ void xfs_qm_dqdestroy( struct xfs_dquot *dqp) { ASSERT(list_empty(&dqp->q_lru)); ASSERT(dqp->q_logitem.qli_item.li_buf == NULL); kvfree(dqp->q_logitem.qli_item.li_lv_shadow); mutex_destroy(&dqp->q_qlock); XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot); kmem_cache_free(xfs_dquot_cache, dqp); } /* * If default limits are in force, push them into the dquot now. * We overwrite the dquot limits only if they are zero and this * is not the root dquot. */ void xfs_qm_adjust_dqlimits( struct xfs_dquot *dq) { struct xfs_mount *mp = dq->q_mount; struct xfs_quotainfo *q = mp->m_quotainfo; struct xfs_def_quota *defq; int prealloc = 0; ASSERT(dq->q_id); defq = xfs_get_defquota(q, xfs_dquot_type(dq)); if (!dq->q_blk.softlimit) { dq->q_blk.softlimit = defq->blk.soft; prealloc = 1; } if (!dq->q_blk.hardlimit) { dq->q_blk.hardlimit = defq->blk.hard; prealloc = 1; } if (!dq->q_ino.softlimit) dq->q_ino.softlimit = defq->ino.soft; if (!dq->q_ino.hardlimit) dq->q_ino.hardlimit = defq->ino.hard; if (!dq->q_rtb.softlimit) dq->q_rtb.softlimit = defq->rtb.soft; if (!dq->q_rtb.hardlimit) dq->q_rtb.hardlimit = defq->rtb.hard; if (prealloc) xfs_dquot_set_prealloc_limits(dq); } /* Set the expiration time of a quota's grace period. */ time64_t xfs_dquot_set_timeout( struct xfs_mount *mp, time64_t timeout) { struct xfs_quotainfo *qi = mp->m_quotainfo; return clamp_t(time64_t, timeout, qi->qi_expiry_min, qi->qi_expiry_max); } /* Set the length of the default grace period. */ time64_t xfs_dquot_set_grace_period( time64_t grace) { return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX); } /* * Determine if this quota counter is over either limit and set the quota * timers as appropriate. */ static inline void xfs_qm_adjust_res_timer( struct xfs_mount *mp, struct xfs_dquot_res *res, struct xfs_quota_limits *qlim) { ASSERT(res->hardlimit == 0 || res->softlimit <= res->hardlimit); if ((res->softlimit && res->count > res->softlimit) || (res->hardlimit && res->count > res->hardlimit)) { if (res->timer == 0) res->timer = xfs_dquot_set_timeout(mp, ktime_get_real_seconds() + qlim->time); } else { res->timer = 0; } } /* * Check the limits and timers of a dquot and start or reset timers * if necessary. * This gets called even when quota enforcement is OFF, which makes our * life a little less complicated. (We just don't reject any quota * reservations in that case, when enforcement is off). * We also return 0 as the values of the timers in Q_GETQUOTA calls, when * enforcement's off. * In contrast, warnings are a little different in that they don't * 'automatically' get started when limits get exceeded. They do * get reset to zero, however, when we find the count to be under * the soft limit (they are only ever set non-zero via userspace). */ void xfs_qm_adjust_dqtimers( struct xfs_dquot *dq) { struct xfs_mount *mp = dq->q_mount; struct xfs_quotainfo *qi = mp->m_quotainfo; struct xfs_def_quota *defq; ASSERT(dq->q_id); defq = xfs_get_defquota(qi, xfs_dquot_type(dq)); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb); } /* * initialize a buffer full of dquots and log the whole thing */ void xfs_qm_init_dquot_blk( struct xfs_trans *tp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_buf *bp) { struct xfs_mount *mp = tp->t_mountp; struct xfs_quotainfo *q = mp->m_quotainfo; struct xfs_dqblk *d; xfs_dqid_t curid; unsigned int qflag; unsigned int blftype; int i; ASSERT(tp); ASSERT(xfs_buf_islocked(bp)); switch (type) { case XFS_DQTYPE_USER: qflag = XFS_UQUOTA_CHKD; blftype = XFS_BLF_UDQUOT_BUF; break; case XFS_DQTYPE_PROJ: qflag = XFS_PQUOTA_CHKD; blftype = XFS_BLF_PDQUOT_BUF; break; case XFS_DQTYPE_GROUP: qflag = XFS_GQUOTA_CHKD; blftype = XFS_BLF_GDQUOT_BUF; break; default: ASSERT(0); return; } d = bp->b_addr; /* * ID of the first dquot in the block - id's are zero based. */ curid = id - (id % q->qi_dqperchunk); memset(d, 0, BBTOB(q->qi_dqchunklen)); for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) { d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); d->dd_diskdq.d_version = XFS_DQUOT_VERSION; d->dd_diskdq.d_id = cpu_to_be32(curid); d->dd_diskdq.d_type = type; if (curid > 0 && xfs_has_bigtime(mp)) d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME; if (xfs_has_crc(mp)) { uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid); xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), XFS_DQUOT_CRC_OFF); } } xfs_trans_dquot_buf(tp, bp, blftype); /* * quotacheck uses delayed writes to update all the dquots on disk in an * efficient manner instead of logging the individual dquot changes as * they are made. However if we log the buffer allocated here and crash * after quotacheck while the logged initialisation is still in the * active region of the log, log recovery can replay the dquot buffer * initialisation over the top of the checked dquots and corrupt quota * accounting. * * To avoid this problem, quotacheck cannot log the initialised buffer. * We must still dirty the buffer and write it back before the * allocation transaction clears the log. Therefore, mark the buffer as * ordered instead of logging it directly. This is safe for quotacheck * because it detects and repairs allocated but initialized dquot blocks * in the quota inodes. */ if (!(mp->m_qflags & qflag)) xfs_trans_ordered_buf(tp, bp); else xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1); } static void xfs_dquot_set_prealloc( struct xfs_dquot_pre *pre, const struct xfs_dquot_res *res) { xfs_qcnt_t space; pre->q_prealloc_hi_wmark = res->hardlimit; pre->q_prealloc_lo_wmark = res->softlimit; space = div_u64(pre->q_prealloc_hi_wmark, 100); if (!pre->q_prealloc_lo_wmark) pre->q_prealloc_lo_wmark = space * 95; pre->q_low_space[XFS_QLOWSP_1_PCNT] = space; pre->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3; pre->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5; } /* * Initialize the dynamic speculative preallocation thresholds. The lo/hi * watermarks correspond to the soft and hard limits by default. If a soft limit * is not specified, we use 95% of the hard limit. */ void xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) { xfs_dquot_set_prealloc(&dqp->q_blk_prealloc, &dqp->q_blk); xfs_dquot_set_prealloc(&dqp->q_rtb_prealloc, &dqp->q_rtb); } /* * Ensure that the given in-core dquot has a buffer on disk backing it, and * return the buffer locked and held. This is called when the bmapi finds a * hole. */ STATIC int xfs_dquot_disk_alloc( struct xfs_dquot *dqp, struct xfs_buf **bpp) { struct xfs_bmbt_irec map; struct xfs_trans *tp; struct xfs_mount *mp = dqp->q_mount; struct xfs_buf *bp; xfs_dqtype_t qtype = xfs_dquot_type(dqp); struct xfs_inode *quotip = xfs_quota_inode(mp, qtype); int nmaps = 1; int error; trace_xfs_dqalloc(dqp); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc, XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp); if (error) return error; xfs_ilock(quotip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, quotip, 0); if (!xfs_this_quota_on(dqp->q_mount, qtype)) { /* * Return if this type of quotas is turned off while we didn't * have an inode lock */ error = -ESRCH; goto err_cancel; } error = xfs_iext_count_extend(tp, quotip, XFS_DATA_FORK, XFS_IEXT_ADD_NOSPLIT_CNT); if (error) goto err_cancel; /* Create the block mapping. */ error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset, XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map, &nmaps); if (error) goto err_cancel; ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB); ASSERT((map.br_startblock != DELAYSTARTBLOCK) && (map.br_startblock != HOLESTARTBLOCK)); /* * Keep track of the blkno to save a lookup later */ dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); /* now we can just get the buffer (there's nothing to read yet) */ error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno, mp->m_quotainfo->qi_dqchunklen, 0, &bp); if (error) goto err_cancel; bp->b_ops = &xfs_dquot_buf_ops; /* * Make a chunk of dquots out of this buffer and log * the entire thing. */ xfs_qm_init_dquot_blk(tp, dqp->q_id, qtype, bp); xfs_buf_set_ref(bp, XFS_DQUOT_REF); /* * Hold the buffer and join it to the dfops so that we'll still own * the buffer when we return to the caller. The buffer disposal on * error must be paid attention to very carefully, as it has been * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota * code when allocating a new dquot record" in 2005, and the later * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep * the buffer locked across the _defer_finish call. We can now do * this correctly with xfs_defer_bjoin. * * Above, we allocated a disk block for the dquot information and used * get_buf to initialize the dquot. If the _defer_finish fails, the old * transaction is gone but the new buffer is not joined or held to any * transaction, so we must _buf_relse it. * * If everything succeeds, the caller of this function is returned a * buffer that is locked and held to the transaction. The caller * is responsible for unlocking any buffer passed back, either * manually or by committing the transaction. On error, the buffer is * released and not passed back. * * Keep the quota inode ILOCKed until after the transaction commit to * maintain the atomicity of bmap/rmap updates. */ xfs_trans_bhold(tp, bp); error = xfs_trans_commit(tp); xfs_iunlock(quotip, XFS_ILOCK_EXCL); if (error) { xfs_buf_relse(bp); return error; } *bpp = bp; return 0; err_cancel: xfs_trans_cancel(tp); xfs_iunlock(quotip, XFS_ILOCK_EXCL); return error; } /* * Read in the in-core dquot's on-disk metadata and return the buffer. * Returns ENOENT to signal a hole. */ STATIC int xfs_dquot_disk_read( struct xfs_mount *mp, struct xfs_dquot *dqp, struct xfs_buf **bpp) { struct xfs_bmbt_irec map; struct xfs_buf *bp; xfs_dqtype_t qtype = xfs_dquot_type(dqp); struct xfs_inode *quotip = xfs_quota_inode(mp, qtype); uint lock_mode; int nmaps = 1; int error; lock_mode = xfs_ilock_data_map_shared(quotip); if (!xfs_this_quota_on(mp, qtype)) { /* * Return if this type of quotas is turned off while we * didn't have the quota inode lock. */ xfs_iunlock(quotip, lock_mode); return -ESRCH; } /* * Find the block map; no allocations yet */ error = xfs_bmapi_read(quotip, dqp->q_fileoffset, XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0); xfs_iunlock(quotip, lock_mode); if (error) return error; ASSERT(nmaps == 1); ASSERT(map.br_blockcount >= 1); ASSERT(map.br_startblock != DELAYSTARTBLOCK); if (map.br_startblock == HOLESTARTBLOCK) return -ENOENT; trace_xfs_dqtobp_read(dqp); /* * store the blkno etc so that we don't have to do the * mapping all the time */ dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, mp->m_quotainfo->qi_dqchunklen, 0, &bp, &xfs_dquot_buf_ops); if (xfs_metadata_is_sick(error)) xfs_dquot_mark_sick(dqp); if (error) { ASSERT(bp == NULL); return error; } ASSERT(xfs_buf_islocked(bp)); xfs_buf_set_ref(bp, XFS_DQUOT_REF); *bpp = bp; return 0; } /* Allocate and initialize everything we need for an incore dquot. */ STATIC struct xfs_dquot * xfs_dquot_alloc( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type) { struct xfs_dquot *dqp; dqp = kmem_cache_zalloc(xfs_dquot_cache, GFP_KERNEL | __GFP_NOFAIL); dqp->q_type = type; dqp->q_id = id; dqp->q_mount = mp; INIT_LIST_HEAD(&dqp->q_lru); mutex_init(&dqp->q_qlock); init_waitqueue_head(&dqp->q_pinwait); dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk; /* * Offset of dquot in the (fixed sized) dquot chunk. */ dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) * sizeof(struct xfs_dqblk); /* * Because we want to use a counting completion, complete * the flush completion once to allow a single access to * the flush completion without blocking. */ init_completion(&dqp->q_flush); complete(&dqp->q_flush); /* * Make sure group quotas have a different lock class than user * quotas. */ switch (type) { case XFS_DQTYPE_USER: /* uses the default lock class */ break; case XFS_DQTYPE_GROUP: lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class); break; case XFS_DQTYPE_PROJ: lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class); break; default: ASSERT(0); break; } xfs_qm_dquot_logitem_init(dqp); XFS_STATS_INC(mp, xs_qm_dquot); return dqp; } /* Check the ondisk dquot's id and type match what the incore dquot expects. */ static bool xfs_dquot_check_type( struct xfs_dquot *dqp, struct xfs_disk_dquot *ddqp) { uint8_t ddqp_type; uint8_t dqp_type; ddqp_type = ddqp->d_type & XFS_DQTYPE_REC_MASK; dqp_type = xfs_dquot_type(dqp); if (be32_to_cpu(ddqp->d_id) != dqp->q_id) return false; /* * V5 filesystems always expect an exact type match. V4 filesystems * expect an exact match for user dquots and for non-root group and * project dquots. */ if (xfs_has_crc(dqp->q_mount) || dqp_type == XFS_DQTYPE_USER || dqp->q_id != 0) return ddqp_type == dqp_type; /* * V4 filesystems support either group or project quotas, but not both * at the same time. The non-user quota file can be switched between * group and project quota uses depending on the mount options, which * means that we can encounter the other type when we try to load quota * defaults. Quotacheck will soon reset the entire quota file * (including the root dquot) anyway, but don't log scary corruption * reports to dmesg. */ return ddqp_type == XFS_DQTYPE_GROUP || ddqp_type == XFS_DQTYPE_PROJ; } /* Copy the in-core quota fields in from the on-disk buffer. */ STATIC int xfs_dquot_from_disk( struct xfs_dquot *dqp, struct xfs_buf *bp) { struct xfs_dqblk *dqb = xfs_buf_offset(bp, dqp->q_bufoffset); struct xfs_disk_dquot *ddqp = &dqb->dd_diskdq; /* * Ensure that we got the type and ID we were looking for. * Everything else was checked by the dquot buffer verifier. */ if (!xfs_dquot_check_type(dqp, ddqp)) { xfs_alert_tag(bp->b_mount, XFS_PTAG_VERIFIER_ERROR, "Metadata corruption detected at %pS, quota %u", __this_address, dqp->q_id); xfs_alert(bp->b_mount, "Unmount and run xfs_repair"); xfs_dquot_mark_sick(dqp); return -EFSCORRUPTED; } /* copy everything from disk dquot to the incore dquot */ dqp->q_type = ddqp->d_type; dqp->q_blk.hardlimit = be64_to_cpu(ddqp->d_blk_hardlimit); dqp->q_blk.softlimit = be64_to_cpu(ddqp->d_blk_softlimit); dqp->q_ino.hardlimit = be64_to_cpu(ddqp->d_ino_hardlimit); dqp->q_ino.softlimit = be64_to_cpu(ddqp->d_ino_softlimit); dqp->q_rtb.hardlimit = be64_to_cpu(ddqp->d_rtb_hardlimit); dqp->q_rtb.softlimit = be64_to_cpu(ddqp->d_rtb_softlimit); dqp->q_blk.count = be64_to_cpu(ddqp->d_bcount); dqp->q_ino.count = be64_to_cpu(ddqp->d_icount); dqp->q_rtb.count = be64_to_cpu(ddqp->d_rtbcount); dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer); dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer); dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer); /* * Reservation counters are defined as reservation plus current usage * to avoid having to add every time. */ dqp->q_blk.reserved = dqp->q_blk.count; dqp->q_ino.reserved = dqp->q_ino.count; dqp->q_rtb.reserved = dqp->q_rtb.count; /* initialize the dquot speculative prealloc thresholds */ xfs_dquot_set_prealloc_limits(dqp); return 0; } /* Copy the in-core quota fields into the on-disk buffer. */ void xfs_dquot_to_disk( struct xfs_disk_dquot *ddqp, struct xfs_dquot *dqp) { ddqp->d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); ddqp->d_version = XFS_DQUOT_VERSION; ddqp->d_type = dqp->q_type; ddqp->d_id = cpu_to_be32(dqp->q_id); ddqp->d_pad0 = 0; ddqp->d_pad = 0; ddqp->d_blk_hardlimit = cpu_to_be64(dqp->q_blk.hardlimit); ddqp->d_blk_softlimit = cpu_to_be64(dqp->q_blk.softlimit); ddqp->d_ino_hardlimit = cpu_to_be64(dqp->q_ino.hardlimit); ddqp->d_ino_softlimit = cpu_to_be64(dqp->q_ino.softlimit); ddqp->d_rtb_hardlimit = cpu_to_be64(dqp->q_rtb.hardlimit); ddqp->d_rtb_softlimit = cpu_to_be64(dqp->q_rtb.softlimit); ddqp->d_bcount = cpu_to_be64(dqp->q_blk.count); ddqp->d_icount = cpu_to_be64(dqp->q_ino.count); ddqp->d_rtbcount = cpu_to_be64(dqp->q_rtb.count); ddqp->d_bwarns = 0; ddqp->d_iwarns = 0; ddqp->d_rtbwarns = 0; ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer); ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer); ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer); } /* * Read in the ondisk dquot using dqtobp() then copy it to an incore version, * and release the buffer immediately. If @can_alloc is true, fill any * holes in the on-disk metadata. */ static int xfs_qm_dqread( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **dqpp) { struct xfs_dquot *dqp; struct xfs_buf *bp; int error; dqp = xfs_dquot_alloc(mp, id, type); trace_xfs_dqread(dqp); /* Try to read the buffer, allocating if necessary. */ error = xfs_dquot_disk_read(mp, dqp, &bp); if (error == -ENOENT && can_alloc) error = xfs_dquot_disk_alloc(dqp, &bp); if (error) goto err; /* * At this point we should have a clean locked buffer. Copy the data * to the incore dquot and release the buffer since the incore dquot * has its own locking protocol so we needn't tie up the buffer any * further. */ ASSERT(xfs_buf_islocked(bp)); error = xfs_dquot_from_disk(dqp, bp); xfs_buf_relse(bp); if (error) goto err; *dqpp = dqp; return error; err: trace_xfs_dqread_fail(dqp); xfs_qm_dqdestroy(dqp); *dqpp = NULL; return error; } /* * Advance to the next id in the current chunk, or if at the * end of the chunk, skip ahead to first id in next allocated chunk * using the SEEK_DATA interface. */ static int xfs_dq_get_next_id( struct xfs_mount *mp, xfs_dqtype_t type, xfs_dqid_t *id) { struct xfs_inode *quotip = xfs_quota_inode(mp, type); xfs_dqid_t next_id = *id + 1; /* simple advance */ uint lock_flags; struct xfs_bmbt_irec got; struct xfs_iext_cursor cur; xfs_fsblock_t start; int error = 0; /* If we'd wrap past the max ID, stop */ if (next_id < *id) return -ENOENT; /* If new ID is within the current chunk, advancing it sufficed */ if (next_id % mp->m_quotainfo->qi_dqperchunk) { *id = next_id; return 0; } /* Nope, next_id is now past the current chunk, so find the next one */ start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk; lock_flags = xfs_ilock_data_map_shared(quotip); error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK); if (error) return error; if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) { /* contiguous chunk, bump startoff for the id calculation */ if (got.br_startoff < start) got.br_startoff = start; *id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk; } else { error = -ENOENT; } xfs_iunlock(quotip, lock_flags); return error; } /* * Look up the dquot in the in-core cache. If found, the dquot is returned * locked and ready to go. */ static struct xfs_dquot * xfs_qm_dqget_cache_lookup( struct xfs_mount *mp, struct xfs_quotainfo *qi, struct radix_tree_root *tree, xfs_dqid_t id) { struct xfs_dquot *dqp; restart: mutex_lock(&qi->qi_tree_lock); dqp = radix_tree_lookup(tree, id); if (!dqp) { mutex_unlock(&qi->qi_tree_lock); XFS_STATS_INC(mp, xs_qm_dqcachemisses); return NULL; } xfs_dqlock(dqp); if (dqp->q_flags & XFS_DQFLAG_FREEING) { xfs_dqunlock(dqp); mutex_unlock(&qi->qi_tree_lock); trace_xfs_dqget_freeing(dqp); delay(1); goto restart; } dqp->q_nrefs++; mutex_unlock(&qi->qi_tree_lock); trace_xfs_dqget_hit(dqp); XFS_STATS_INC(mp, xs_qm_dqcachehits); return dqp; } /* * Try to insert a new dquot into the in-core cache. If an error occurs the * caller should throw away the dquot and start over. Otherwise, the dquot * is returned locked (and held by the cache) as if there had been a cache * hit. * * The insert needs to be done under memalloc_nofs context because the radix * tree can do memory allocation during insert. The qi->qi_tree_lock is taken in * memory reclaim when freeing unused dquots, so we cannot have the radix tree * node allocation recursing into filesystem reclaim whilst we hold the * qi_tree_lock. */ static int xfs_qm_dqget_cache_insert( struct xfs_mount *mp, struct xfs_quotainfo *qi, struct radix_tree_root *tree, xfs_dqid_t id, struct xfs_dquot *dqp) { unsigned int nofs_flags; int error; nofs_flags = memalloc_nofs_save(); mutex_lock(&qi->qi_tree_lock); error = radix_tree_insert(tree, id, dqp); if (unlikely(error)) { /* Duplicate found! Caller must try again. */ trace_xfs_dqget_dup(dqp); goto out_unlock; } /* Return a locked dquot to the caller, with a reference taken. */ xfs_dqlock(dqp); dqp->q_nrefs = 1; qi->qi_dquots++; out_unlock: mutex_unlock(&qi->qi_tree_lock); memalloc_nofs_restore(nofs_flags); return error; } /* Check our input parameters. */ static int xfs_qm_dqget_checks( struct xfs_mount *mp, xfs_dqtype_t type) { switch (type) { case XFS_DQTYPE_USER: if (!XFS_IS_UQUOTA_ON(mp)) return -ESRCH; return 0; case XFS_DQTYPE_GROUP: if (!XFS_IS_GQUOTA_ON(mp)) return -ESRCH; return 0; case XFS_DQTYPE_PROJ: if (!XFS_IS_PQUOTA_ON(mp)) return -ESRCH; return 0; default: WARN_ON_ONCE(0); return -EINVAL; } } /* * Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a * locked dquot, doing an allocation (if requested) as needed. */ int xfs_qm_dqget( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **O_dqpp) { struct xfs_quotainfo *qi = mp->m_quotainfo; struct radix_tree_root *tree = xfs_dquot_tree(qi, type); struct xfs_dquot *dqp; int error; error = xfs_qm_dqget_checks(mp, type); if (error) return error; restart: dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); if (dqp) { *O_dqpp = dqp; return 0; } error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); if (error) return error; error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); if (error) { /* * Duplicate found. Just throw away the new dquot and start * over. */ xfs_qm_dqdestroy(dqp); XFS_STATS_INC(mp, xs_qm_dquot_dups); goto restart; } trace_xfs_dqget_miss(dqp); *O_dqpp = dqp; return 0; } /* * Given a dquot id and type, read and initialize a dquot from the on-disk * metadata. This function is only for use during quota initialization so * it ignores the dquot cache assuming that the dquot shrinker isn't set up. * The caller is responsible for _qm_dqdestroy'ing the returned dquot. */ int xfs_qm_dqget_uncached( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_dquot **dqpp) { int error; error = xfs_qm_dqget_checks(mp, type); if (error) return error; return xfs_qm_dqread(mp, id, type, 0, dqpp); } /* Return the quota id for a given inode and type. */ xfs_dqid_t xfs_qm_id_for_quotatype( struct xfs_inode *ip, xfs_dqtype_t type) { switch (type) { case XFS_DQTYPE_USER: return i_uid_read(VFS_I(ip)); case XFS_DQTYPE_GROUP: return i_gid_read(VFS_I(ip)); case XFS_DQTYPE_PROJ: return ip->i_projid; } ASSERT(0); return 0; } /* * Return the dquot for a given inode and type. If @can_alloc is true, then * allocate blocks if needed. The inode's ILOCK must be held and it must not * have already had an inode attached. */ int xfs_qm_dqget_inode( struct xfs_inode *ip, xfs_dqtype_t type, bool can_alloc, struct xfs_dquot **O_dqpp) { struct xfs_mount *mp = ip->i_mount; struct xfs_quotainfo *qi = mp->m_quotainfo; struct radix_tree_root *tree = xfs_dquot_tree(qi, type); struct xfs_dquot *dqp; xfs_dqid_t id; int error; error = xfs_qm_dqget_checks(mp, type); if (error) return error; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); ASSERT(xfs_inode_dquot(ip, type) == NULL); ASSERT(!xfs_is_metadir_inode(ip)); id = xfs_qm_id_for_quotatype(ip, type); restart: dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); if (dqp) { *O_dqpp = dqp; return 0; } /* * Dquot cache miss. We don't want to keep the inode lock across * a (potential) disk read. Also we don't want to deal with the lock * ordering between quotainode and this inode. OTOH, dropping the inode * lock here means dealing with a chown that can happen before * we re-acquire the lock. */ xfs_iunlock(ip, XFS_ILOCK_EXCL); error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); xfs_ilock(ip, XFS_ILOCK_EXCL); if (error) return error; /* * A dquot could be attached to this inode by now, since we had * dropped the ilock. */ if (xfs_this_quota_on(mp, type)) { struct xfs_dquot *dqp1; dqp1 = xfs_inode_dquot(ip, type); if (dqp1) { xfs_qm_dqdestroy(dqp); dqp = dqp1; xfs_dqlock(dqp); goto dqret; } } else { /* inode stays locked on return */ xfs_qm_dqdestroy(dqp); return -ESRCH; } error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); if (error) { /* * Duplicate found. Just throw away the new dquot and start * over. */ xfs_qm_dqdestroy(dqp); XFS_STATS_INC(mp, xs_qm_dquot_dups); goto restart; } dqret: xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); trace_xfs_dqget_miss(dqp); *O_dqpp = dqp; return 0; } /* * Starting at @id and progressing upwards, look for an initialized incore * dquot, lock it, and return it. */ int xfs_qm_dqget_next( struct xfs_mount *mp, xfs_dqid_t id, xfs_dqtype_t type, struct xfs_dquot **dqpp) { struct xfs_dquot *dqp; int error = 0; *dqpp = NULL; for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) { error = xfs_qm_dqget(mp, id, type, false, &dqp); if (error == -ENOENT) continue; else if (error != 0) break; if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) { *dqpp = dqp; return 0; } xfs_qm_dqput(dqp); } return error; } /* * Release a reference to the dquot (decrement ref-count) and unlock it. * * If there is a group quota attached to this dquot, carefully release that * too without tripping over deadlocks'n'stuff. */ void xfs_qm_dqput( struct xfs_dquot *dqp) { ASSERT(dqp->q_nrefs > 0); ASSERT(XFS_DQ_IS_LOCKED(dqp)); trace_xfs_dqput(dqp); if (--dqp->q_nrefs == 0) { struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo; trace_xfs_dqput_free(dqp); if (list_lru_add_obj(&qi->qi_lru, &dqp->q_lru)) XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused); } xfs_dqunlock(dqp); } /* * Release a dquot. Flush it if dirty, then dqput() it. * dquot must not be locked. */ void xfs_qm_dqrele( struct xfs_dquot *dqp) { if (!dqp) return; trace_xfs_dqrele(dqp); xfs_dqlock(dqp); /* * We don't care to flush it if the dquot is dirty here. * That will create stutters that we want to avoid. * Instead we do a delayed write when we try to reclaim * a dirty dquot. Also xfs_sync will take part of the burden... */ xfs_qm_dqput(dqp); } /* * This is the dquot flushing I/O completion routine. It is called * from interrupt level when the buffer containing the dquot is * flushed to disk. It is responsible for removing the dquot logitem * from the AIL if it has not been re-logged, and unlocking the dquot's * flush lock. This behavior is very similar to that of inodes.. */ static void xfs_qm_dqflush_done( struct xfs_log_item *lip) { struct xfs_dq_logitem *qlip = container_of(lip, struct xfs_dq_logitem, qli_item); struct xfs_dquot *dqp = qlip->qli_dquot; struct xfs_ail *ailp = lip->li_ailp; struct xfs_buf *bp = NULL; xfs_lsn_t tail_lsn; /* * We only want to pull the item from the AIL if its * location in the log has not changed since we started the flush. * Thus, we only bother if the dquot's lsn has * not changed. First we check the lsn outside the lock * since it's cheaper, and then we recheck while * holding the lock before removing the dquot from the AIL. */ if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) && (lip->li_lsn == qlip->qli_flush_lsn || test_bit(XFS_LI_FAILED, &lip->li_flags))) { spin_lock(&ailp->ail_lock); xfs_clear_li_failed(lip); if (lip->li_lsn == qlip->qli_flush_lsn) { /* xfs_ail_update_finish() drops the AIL lock */ tail_lsn = xfs_ail_delete_one(ailp, lip); xfs_ail_update_finish(ailp, tail_lsn); } else { spin_unlock(&ailp->ail_lock); } } /* * If this dquot hasn't been dirtied since initiating the last dqflush, * release the buffer reference. We already unlinked this dquot item * from the buffer. */ spin_lock(&qlip->qli_lock); if (!qlip->qli_dirty) { bp = lip->li_buf; lip->li_buf = NULL; } spin_unlock(&qlip->qli_lock); if (bp) xfs_buf_rele(bp); /* * Release the dq's flush lock since we're done with it. */ xfs_dqfunlock(dqp); } void xfs_buf_dquot_iodone( struct xfs_buf *bp) { struct xfs_log_item *lip, *n; list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { list_del_init(&lip->li_bio_list); xfs_qm_dqflush_done(lip); } } void xfs_buf_dquot_io_fail( struct xfs_buf *bp) { struct xfs_log_item *lip; spin_lock(&bp->b_mount->m_ail->ail_lock); list_for_each_entry(lip, &bp->b_li_list, li_bio_list) set_bit(XFS_LI_FAILED, &lip->li_flags); spin_unlock(&bp->b_mount->m_ail->ail_lock); } /* Check incore dquot for errors before we flush. */ static xfs_failaddr_t xfs_qm_dqflush_check( struct xfs_dquot *dqp) { xfs_dqtype_t type = xfs_dquot_type(dqp); if (type != XFS_DQTYPE_USER && type != XFS_DQTYPE_GROUP && type != XFS_DQTYPE_PROJ) return __this_address; if (dqp->q_id == 0) return NULL; if (dqp->q_blk.softlimit && dqp->q_blk.count > dqp->q_blk.softlimit && !dqp->q_blk.timer) return __this_address; if (dqp->q_ino.softlimit && dqp->q_ino.count > dqp->q_ino.softlimit && !dqp->q_ino.timer) return __this_address; if (dqp->q_rtb.softlimit && dqp->q_rtb.count > dqp->q_rtb.softlimit && !dqp->q_rtb.timer) return __this_address; /* bigtime flag should never be set on root dquots */ if (dqp->q_type & XFS_DQTYPE_BIGTIME) { if (!xfs_has_bigtime(dqp->q_mount)) return __this_address; if (dqp->q_id == 0) return __this_address; } return NULL; } /* * Get the buffer containing the on-disk dquot. * * Requires dquot flush lock, will clear the dirty flag, delete the quota log * item from the AIL, and shut down the system if something goes wrong. */ static int xfs_dquot_read_buf( struct xfs_trans *tp, struct xfs_dquot *dqp, struct xfs_buf **bpp) { struct xfs_mount *mp = dqp->q_mount; struct xfs_buf *bp = NULL; int error; error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, dqp->q_blkno, mp->m_quotainfo->qi_dqchunklen, 0, &bp, &xfs_dquot_buf_ops); if (xfs_metadata_is_sick(error)) xfs_dquot_mark_sick(dqp); if (error) goto out_abort; *bpp = bp; return 0; out_abort: dqp->q_flags &= ~XFS_DQFLAG_DIRTY; xfs_trans_ail_delete(&dqp->q_logitem.qli_item, 0); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); return error; } /* * Attach a dquot buffer to this dquot to avoid allocating a buffer during a * dqflush, since dqflush can be called from reclaim context. */ int xfs_dquot_attach_buf( struct xfs_trans *tp, struct xfs_dquot *dqp) { struct xfs_dq_logitem *qlip = &dqp->q_logitem; struct xfs_log_item *lip = &qlip->qli_item; int error; spin_lock(&qlip->qli_lock); if (!lip->li_buf) { struct xfs_buf *bp = NULL; spin_unlock(&qlip->qli_lock); error = xfs_dquot_read_buf(tp, dqp, &bp); if (error) return error; /* * Attach the dquot to the buffer so that the AIL does not have * to read the dquot buffer to push this item. */ xfs_buf_hold(bp); spin_lock(&qlip->qli_lock); lip->li_buf = bp; xfs_trans_brelse(tp, bp); } qlip->qli_dirty = true; spin_unlock(&qlip->qli_lock); return 0; } /* * Get a new reference the dquot buffer attached to this dquot for a dqflush * operation. * * Returns 0 and a NULL bp if none was attached to the dquot; 0 and a locked * bp; or -EAGAIN if the buffer could not be locked. */ int xfs_dquot_use_attached_buf( struct xfs_dquot *dqp, struct xfs_buf **bpp) { struct xfs_buf *bp = dqp->q_logitem.qli_item.li_buf; /* * A NULL buffer can happen if the dquot dirty flag was set but the * filesystem shut down before transaction commit happened. In that * case we're not going to flush anyway. */ if (!bp) { ASSERT(xfs_is_shutdown(dqp->q_mount)); *bpp = NULL; return 0; } if (!xfs_buf_trylock(bp)) return -EAGAIN; xfs_buf_hold(bp); *bpp = bp; return 0; } /* * Write a modified dquot to disk. * The dquot must be locked and the flush lock too taken by caller. * The flush lock will not be unlocked until the dquot reaches the disk, * but the dquot is free to be unlocked and modified by the caller * in the interim. Dquot is still locked on return. This behavior is * identical to that of inodes. */ int xfs_qm_dqflush( struct xfs_dquot *dqp, struct xfs_buf *bp) { struct xfs_mount *mp = dqp->q_mount; struct xfs_dq_logitem *qlip = &dqp->q_logitem; struct xfs_log_item *lip = &qlip->qli_item; struct xfs_dqblk *dqblk; xfs_failaddr_t fa; int error; ASSERT(XFS_DQ_IS_LOCKED(dqp)); ASSERT(!completion_done(&dqp->q_flush)); trace_xfs_dqflush(dqp); xfs_qm_dqunpin_wait(dqp); fa = xfs_qm_dqflush_check(dqp); if (fa) { xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS", dqp->q_id, fa); xfs_dquot_mark_sick(dqp); error = -EFSCORRUPTED; goto out_abort; } /* Flush the incore dquot to the ondisk buffer. */ dqblk = xfs_buf_offset(bp, dqp->q_bufoffset); xfs_dquot_to_disk(&dqblk->dd_diskdq, dqp); /* * Clear the dirty field and remember the flush lsn for later use. */ dqp->q_flags &= ~XFS_DQFLAG_DIRTY; /* * We hold the dquot lock, so nobody can dirty it while we're * scheduling the write out. Clear the dirty-since-flush flag. */ spin_lock(&qlip->qli_lock); qlip->qli_dirty = false; spin_unlock(&qlip->qli_lock); xfs_trans_ail_copy_lsn(mp->m_ail, &qlip->qli_flush_lsn, &lip->li_lsn); /* * copy the lsn into the on-disk dquot now while we have the in memory * dquot here. This can't be done later in the write verifier as we * can't get access to the log item at that point in time. * * We also calculate the CRC here so that the on-disk dquot in the * buffer always has a valid CRC. This ensures there is no possibility * of a dquot without an up-to-date CRC getting to disk. */ if (xfs_has_crc(mp)) { dqblk->dd_lsn = cpu_to_be64(lip->li_lsn); xfs_update_cksum((char *)dqblk, sizeof(struct xfs_dqblk), XFS_DQUOT_CRC_OFF); } /* * Attach the dquot to the buffer so that we can remove this dquot from * the AIL and release the flush lock once the dquot is synced to disk. */ bp->b_flags |= _XBF_DQUOTS; list_add_tail(&lip->li_bio_list, &bp->b_li_list); /* * If the buffer is pinned then push on the log so we won't * get stuck waiting in the write for too long. */ if (xfs_buf_ispinned(bp)) { trace_xfs_dqflush_force(dqp); xfs_log_force(mp, 0); } trace_xfs_dqflush_done(dqp); return 0; out_abort: dqp->q_flags &= ~XFS_DQFLAG_DIRTY; xfs_trans_ail_delete(lip, 0); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); xfs_dqfunlock(dqp); return error; } /* * Lock two xfs_dquot structures. * * To avoid deadlocks we always lock the quota structure with * the lowerd id first. */ void xfs_dqlock2( struct xfs_dquot *d1, struct xfs_dquot *d2) { if (d1 && d2) { ASSERT(d1 != d2); if (d1->q_id > d2->q_id) { mutex_lock(&d2->q_qlock); mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED); } else { mutex_lock(&d1->q_qlock); mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED); } } else if (d1) { mutex_lock(&d1->q_qlock); } else if (d2) { mutex_lock(&d2->q_qlock); } } static int xfs_dqtrx_cmp( const void *a, const void *b) { const struct xfs_dqtrx *qa = a; const struct xfs_dqtrx *qb = b; if (qa->qt_dquot->q_id > qb->qt_dquot->q_id) return 1; if (qa->qt_dquot->q_id < qb->qt_dquot->q_id) return -1; return 0; } void xfs_dqlockn( struct xfs_dqtrx *q) { unsigned int i; BUILD_BUG_ON(XFS_QM_TRANS_MAXDQS > MAX_LOCKDEP_SUBCLASSES); /* Sort in order of dquot id, do not allow duplicates */ for (i = 0; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++) { unsigned int j; for (j = 0; j < i; j++) ASSERT(q[i].qt_dquot != q[j].qt_dquot); } if (i == 0) return; sort(q, i, sizeof(struct xfs_dqtrx), xfs_dqtrx_cmp, NULL); mutex_lock(&q[0].qt_dquot->q_qlock); for (i = 1; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++) mutex_lock_nested(&q[i].qt_dquot->q_qlock, XFS_QLOCK_NESTED + i - 1); } int __init xfs_qm_init(void) { xfs_dquot_cache = kmem_cache_create("xfs_dquot", sizeof(struct xfs_dquot), 0, 0, NULL); if (!xfs_dquot_cache) goto out; xfs_dqtrx_cache = kmem_cache_create("xfs_dqtrx", sizeof(struct xfs_dquot_acct), 0, 0, NULL); if (!xfs_dqtrx_cache) goto out_free_dquot_cache; return 0; out_free_dquot_cache: kmem_cache_destroy(xfs_dquot_cache); out: return -ENOMEM; } void xfs_qm_exit(void) { kmem_cache_destroy(xfs_dqtrx_cache); kmem_cache_destroy(xfs_dquot_cache); }