// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2020-2024 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_quota.h" #include "xfs_bmap_util.h" #include "xfs_reflink.h" #include "xfs_trace.h" #include "xfs_exchrange.h" #include "xfs_exchmaps.h" #include "xfs_sb.h" #include "xfs_icache.h" #include "xfs_log.h" #include "xfs_rtbitmap.h" #include /* Lock (and optionally join) two inodes for a file range exchange. */ void xfs_exchrange_ilock( struct xfs_trans *tp, struct xfs_inode *ip1, struct xfs_inode *ip2) { if (ip1 != ip2) xfs_lock_two_inodes(ip1, XFS_ILOCK_EXCL, ip2, XFS_ILOCK_EXCL); else xfs_ilock(ip1, XFS_ILOCK_EXCL); if (tp) { xfs_trans_ijoin(tp, ip1, 0); if (ip2 != ip1) xfs_trans_ijoin(tp, ip2, 0); } } /* Unlock two inodes after a file range exchange operation. */ void xfs_exchrange_iunlock( struct xfs_inode *ip1, struct xfs_inode *ip2) { if (ip2 != ip1) xfs_iunlock(ip2, XFS_ILOCK_EXCL); xfs_iunlock(ip1, XFS_ILOCK_EXCL); } /* * Estimate the resource requirements to exchange file contents between the two * files. The caller is required to hold the IOLOCK and the MMAPLOCK and to * have flushed both inodes' pagecache and active direct-ios. */ int xfs_exchrange_estimate( struct xfs_exchmaps_req *req) { int error; xfs_exchrange_ilock(NULL, req->ip1, req->ip2); error = xfs_exchmaps_estimate(req); xfs_exchrange_iunlock(req->ip1, req->ip2); return error; } /* * Check that file2's metadata agree with the snapshot that we took for the * range commit request. * * This should be called after the filesystem has locked /all/ inode metadata * against modification. */ STATIC int xfs_exchrange_check_freshness( const struct xfs_exchrange *fxr, struct xfs_inode *ip2) { struct inode *inode2 = VFS_I(ip2); struct timespec64 ctime = inode_get_ctime(inode2); struct timespec64 mtime = inode_get_mtime(inode2); trace_xfs_exchrange_freshness(fxr, ip2); /* Check that file2 hasn't otherwise been modified. */ if (fxr->file2_ino != ip2->i_ino || fxr->file2_gen != inode2->i_generation || !timespec64_equal(&fxr->file2_ctime, &ctime) || !timespec64_equal(&fxr->file2_mtime, &mtime)) return -EBUSY; return 0; } #define QRETRY_IP1 (0x1) #define QRETRY_IP2 (0x2) /* * Obtain a quota reservation to make sure we don't hit EDQUOT. We can skip * this if quota enforcement is disabled or if both inodes' dquots are the * same. The qretry structure must be initialized to zeroes before the first * call to this function. */ STATIC int xfs_exchrange_reserve_quota( struct xfs_trans *tp, const struct xfs_exchmaps_req *req, unsigned int *qretry) { int64_t ddelta, rdelta; int ip1_error = 0; int error; /* * Don't bother with a quota reservation if we're not enforcing them * or the two inodes have the same dquots. */ if (!XFS_IS_QUOTA_ON(tp->t_mountp) || req->ip1 == req->ip2 || (req->ip1->i_udquot == req->ip2->i_udquot && req->ip1->i_gdquot == req->ip2->i_gdquot && req->ip1->i_pdquot == req->ip2->i_pdquot)) return 0; *qretry = 0; /* * For each file, compute the net gain in the number of regular blocks * that will be mapped into that file and reserve that much quota. The * quota counts must be able to absorb at least that much space. */ ddelta = req->ip2_bcount - req->ip1_bcount; rdelta = req->ip2_rtbcount - req->ip1_rtbcount; if (ddelta > 0 || rdelta > 0) { error = xfs_trans_reserve_quota_nblks(tp, req->ip1, ddelta > 0 ? ddelta : 0, rdelta > 0 ? rdelta : 0, false); if (error == -EDQUOT || error == -ENOSPC) { /* * Save this error and see what happens if we try to * reserve quota for ip2. Then report both. */ *qretry |= QRETRY_IP1; ip1_error = error; error = 0; } if (error) return error; } if (ddelta < 0 || rdelta < 0) { error = xfs_trans_reserve_quota_nblks(tp, req->ip2, ddelta < 0 ? -ddelta : 0, rdelta < 0 ? -rdelta : 0, false); if (error == -EDQUOT || error == -ENOSPC) *qretry |= QRETRY_IP2; if (error) return error; } if (ip1_error) return ip1_error; /* * For each file, forcibly reserve the gross gain in mapped blocks so * that we don't trip over any quota block reservation assertions. * We must reserve the gross gain because the quota code subtracts from * bcount the number of blocks that we unmap; it does not add that * quantity back to the quota block reservation. */ error = xfs_trans_reserve_quota_nblks(tp, req->ip1, req->ip1_bcount, req->ip1_rtbcount, true); if (error) return error; return xfs_trans_reserve_quota_nblks(tp, req->ip2, req->ip2_bcount, req->ip2_rtbcount, true); } /* Exchange the mappings (and hence the contents) of two files' forks. */ STATIC int xfs_exchrange_mappings( const struct xfs_exchrange *fxr, struct xfs_inode *ip1, struct xfs_inode *ip2) { struct xfs_mount *mp = ip1->i_mount; struct xfs_exchmaps_req req = { .ip1 = ip1, .ip2 = ip2, .startoff1 = XFS_B_TO_FSBT(mp, fxr->file1_offset), .startoff2 = XFS_B_TO_FSBT(mp, fxr->file2_offset), .blockcount = XFS_B_TO_FSB(mp, fxr->length), }; struct xfs_trans *tp; unsigned int qretry; bool retried = false; int error; trace_xfs_exchrange_mappings(fxr, ip1, ip2); if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) req.flags |= XFS_EXCHMAPS_SET_SIZES; if (fxr->flags & XFS_EXCHANGE_RANGE_FILE1_WRITTEN) req.flags |= XFS_EXCHMAPS_INO1_WRITTEN; /* * Round the request length up to the nearest file allocation unit. * The prep function already checked that the request offsets and * length in @fxr are safe to round up. */ if (xfs_inode_has_bigrtalloc(ip2)) req.blockcount = xfs_blen_roundup_rtx(mp, req.blockcount); error = xfs_exchrange_estimate(&req); if (error) return error; retry: /* Allocate the transaction, lock the inodes, and join them. */ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, req.resblks, 0, XFS_TRANS_RES_FDBLKS, &tp); if (error) return error; xfs_exchrange_ilock(tp, ip1, ip2); trace_xfs_exchrange_before(ip2, 2); trace_xfs_exchrange_before(ip1, 1); error = xfs_exchmaps_check_forks(mp, &req); if (error) goto out_trans_cancel; /* * Reserve ourselves some quota if any of them are in enforcing mode. * In theory we only need enough to satisfy the change in the number * of blocks between the two ranges being remapped. */ error = xfs_exchrange_reserve_quota(tp, &req, &qretry); if ((error == -EDQUOT || error == -ENOSPC) && !retried) { xfs_trans_cancel(tp); xfs_exchrange_iunlock(ip1, ip2); if (qretry & QRETRY_IP1) xfs_blockgc_free_quota(ip1, 0); if (qretry & QRETRY_IP2) xfs_blockgc_free_quota(ip2, 0); retried = true; goto retry; } if (error) goto out_trans_cancel; /* If we got this far on a dry run, all parameters are ok. */ if (fxr->flags & XFS_EXCHANGE_RANGE_DRY_RUN) goto out_trans_cancel; /* Update the mtime and ctime of both files. */ if (fxr->flags & __XFS_EXCHANGE_RANGE_UPD_CMTIME1) xfs_trans_ichgtime(tp, ip1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); if (fxr->flags & __XFS_EXCHANGE_RANGE_UPD_CMTIME2) xfs_trans_ichgtime(tp, ip2, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); xfs_exchange_mappings(tp, &req); /* * Force the log to persist metadata updates if the caller or the * administrator requires this. The generic prep function already * flushed the relevant parts of the page cache. */ if (xfs_has_wsync(mp) || (fxr->flags & XFS_EXCHANGE_RANGE_DSYNC)) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); trace_xfs_exchrange_after(ip2, 2); trace_xfs_exchrange_after(ip1, 1); if (error) goto out_unlock; /* * If the caller wanted us to exchange the contents of two complete * files of unequal length, exchange the incore sizes now. This should * be safe because we flushed both files' page caches, exchanged all * the mappings, and updated the ondisk sizes. */ if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) { loff_t temp; temp = i_size_read(VFS_I(ip2)); i_size_write(VFS_I(ip2), i_size_read(VFS_I(ip1))); i_size_write(VFS_I(ip1), temp); } out_unlock: xfs_exchrange_iunlock(ip1, ip2); return error; out_trans_cancel: xfs_trans_cancel(tp); goto out_unlock; } /* * Generic code for exchanging ranges of two files via XFS_IOC_EXCHANGE_RANGE. * This part deals with struct file objects and byte ranges and does not deal * with XFS-specific data structures such as xfs_inodes and block ranges. This * separation may some day facilitate porting to another filesystem. * * The goal is to exchange fxr.length bytes starting at fxr.file1_offset in * file1 with the same number of bytes starting at fxr.file2_offset in file2. * Implementations must call xfs_exchange_range_prep to prepare the two * files prior to taking locks; and they must update the inode change and mod * times of both files as part of the metadata update. The timestamp update * and freshness checks must be done atomically as part of the data exchange * operation to ensure correctness of the freshness check. * xfs_exchange_range_finish must be called after the operation completes * successfully but before locks are dropped. */ /* Verify that we have security clearance to perform this operation. */ static int xfs_exchange_range_verify_area( struct xfs_exchrange *fxr) { int ret; ret = remap_verify_area(fxr->file1, fxr->file1_offset, fxr->length, true); if (ret) return ret; return remap_verify_area(fxr->file2, fxr->file2_offset, fxr->length, true); } /* * Performs necessary checks before doing a range exchange, having stabilized * mutable inode attributes via i_rwsem. */ static inline int xfs_exchange_range_checks( struct xfs_exchrange *fxr, unsigned int alloc_unit) { struct inode *inode1 = file_inode(fxr->file1); struct inode *inode2 = file_inode(fxr->file2); uint64_t allocmask = alloc_unit - 1; int64_t test_len; uint64_t blen; loff_t size1, size2, tmp; int error; /* Don't touch certain kinds of inodes */ if (IS_IMMUTABLE(inode1) || IS_IMMUTABLE(inode2)) return -EPERM; if (IS_SWAPFILE(inode1) || IS_SWAPFILE(inode2)) return -ETXTBSY; size1 = i_size_read(inode1); size2 = i_size_read(inode2); /* Ranges cannot start after EOF. */ if (fxr->file1_offset > size1 || fxr->file2_offset > size2) return -EINVAL; /* * If the caller said to exchange to EOF, we set the length of the * request large enough to cover everything to the end of both files. */ if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) { fxr->length = max_t(int64_t, size1 - fxr->file1_offset, size2 - fxr->file2_offset); error = xfs_exchange_range_verify_area(fxr); if (error) return error; } /* * The start of both ranges must be aligned to the file allocation * unit. */ if (!IS_ALIGNED(fxr->file1_offset, alloc_unit) || !IS_ALIGNED(fxr->file2_offset, alloc_unit)) return -EINVAL; /* Ensure offsets don't wrap. */ if (check_add_overflow(fxr->file1_offset, fxr->length, &tmp) || check_add_overflow(fxr->file2_offset, fxr->length, &tmp)) return -EINVAL; /* * We require both ranges to end within EOF, unless we're exchanging * to EOF. */ if (!(fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) && (fxr->file1_offset + fxr->length > size1 || fxr->file2_offset + fxr->length > size2)) return -EINVAL; /* * Make sure we don't hit any file size limits. If we hit any size * limits such that test_length was adjusted, we abort the whole * operation. */ test_len = fxr->length; error = generic_write_check_limits(fxr->file2, fxr->file2_offset, &test_len); if (error) return error; error = generic_write_check_limits(fxr->file1, fxr->file1_offset, &test_len); if (error) return error; if (test_len != fxr->length) return -EINVAL; /* * If the user wanted us to exchange up to the infile's EOF, round up * to the next allocation unit boundary for this check. Do the same * for the outfile. * * Otherwise, reject the range length if it's not aligned to an * allocation unit. */ if (fxr->file1_offset + fxr->length == size1) blen = ALIGN(size1, alloc_unit) - fxr->file1_offset; else if (fxr->file2_offset + fxr->length == size2) blen = ALIGN(size2, alloc_unit) - fxr->file2_offset; else if (!IS_ALIGNED(fxr->length, alloc_unit)) return -EINVAL; else blen = fxr->length; /* Don't allow overlapped exchanges within the same file. */ if (inode1 == inode2 && fxr->file2_offset + blen > fxr->file1_offset && fxr->file1_offset + blen > fxr->file2_offset) return -EINVAL; /* * Ensure that we don't exchange a partial EOF block into the middle of * another file. */ if ((fxr->length & allocmask) == 0) return 0; blen = fxr->length; if (fxr->file2_offset + blen < size2) blen &= ~allocmask; if (fxr->file1_offset + blen < size1) blen &= ~allocmask; return blen == fxr->length ? 0 : -EINVAL; } /* * Check that the two inodes are eligible for range exchanges, the ranges make * sense, and then flush all dirty data. Caller must ensure that the inodes * have been locked against any other modifications. */ static inline int xfs_exchange_range_prep( struct xfs_exchrange *fxr, unsigned int alloc_unit) { struct inode *inode1 = file_inode(fxr->file1); struct inode *inode2 = file_inode(fxr->file2); bool same_inode = (inode1 == inode2); int error; /* Check that we don't violate system file offset limits. */ error = xfs_exchange_range_checks(fxr, alloc_unit); if (error || fxr->length == 0) return error; /* Wait for the completion of any pending IOs on both files */ inode_dio_wait(inode1); if (!same_inode) inode_dio_wait(inode2); error = filemap_write_and_wait_range(inode1->i_mapping, fxr->file1_offset, fxr->file1_offset + fxr->length - 1); if (error) return error; error = filemap_write_and_wait_range(inode2->i_mapping, fxr->file2_offset, fxr->file2_offset + fxr->length - 1); if (error) return error; /* * If the files or inodes involved require synchronous writes, amend * the request to force the filesystem to flush all data and metadata * to disk after the operation completes. */ if (((fxr->file1->f_flags | fxr->file2->f_flags) & O_SYNC) || IS_SYNC(inode1) || IS_SYNC(inode2)) fxr->flags |= XFS_EXCHANGE_RANGE_DSYNC; return 0; } /* * Finish a range exchange operation, if it was successful. Caller must ensure * that the inodes are still locked against any other modifications. */ static inline int xfs_exchange_range_finish( struct xfs_exchrange *fxr) { int error; error = file_remove_privs(fxr->file1); if (error) return error; if (file_inode(fxr->file1) == file_inode(fxr->file2)) return 0; return file_remove_privs(fxr->file2); } /* * Check the alignment of an exchange request when the allocation unit size * isn't a power of two. The generic file-level helpers use (fast) * bitmask-based alignment checks, but here we have to use slow long division. */ static int xfs_exchrange_check_rtalign( const struct xfs_exchrange *fxr, struct xfs_inode *ip1, struct xfs_inode *ip2, unsigned int alloc_unit) { uint64_t length = fxr->length; uint64_t blen; loff_t size1, size2; size1 = i_size_read(VFS_I(ip1)); size2 = i_size_read(VFS_I(ip2)); /* The start of both ranges must be aligned to a rt extent. */ if (!isaligned_64(fxr->file1_offset, alloc_unit) || !isaligned_64(fxr->file2_offset, alloc_unit)) return -EINVAL; if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) length = max_t(int64_t, size1 - fxr->file1_offset, size2 - fxr->file2_offset); /* * If the user wanted us to exchange up to the infile's EOF, round up * to the next rt extent boundary for this check. Do the same for the * outfile. * * Otherwise, reject the range length if it's not rt extent aligned. * We already confirmed the starting offsets' rt extent block * alignment. */ if (fxr->file1_offset + length == size1) blen = roundup_64(size1, alloc_unit) - fxr->file1_offset; else if (fxr->file2_offset + length == size2) blen = roundup_64(size2, alloc_unit) - fxr->file2_offset; else if (!isaligned_64(length, alloc_unit)) return -EINVAL; else blen = length; /* Don't allow overlapped exchanges within the same file. */ if (ip1 == ip2 && fxr->file2_offset + blen > fxr->file1_offset && fxr->file1_offset + blen > fxr->file2_offset) return -EINVAL; /* * Ensure that we don't exchange a partial EOF rt extent into the * middle of another file. */ if (isaligned_64(length, alloc_unit)) return 0; blen = length; if (fxr->file2_offset + length < size2) blen = rounddown_64(blen, alloc_unit); if (fxr->file1_offset + blen < size1) blen = rounddown_64(blen, alloc_unit); return blen == length ? 0 : -EINVAL; } /* Prepare two files to have their data exchanged. */ STATIC int xfs_exchrange_prep( struct xfs_exchrange *fxr, struct xfs_inode *ip1, struct xfs_inode *ip2) { struct xfs_mount *mp = ip2->i_mount; unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip2); int error; trace_xfs_exchrange_prep(fxr, ip1, ip2); /* Verify both files are either real-time or non-realtime */ if (XFS_IS_REALTIME_INODE(ip1) != XFS_IS_REALTIME_INODE(ip2)) return -EINVAL; /* Check non-power of two alignment issues, if necessary. */ if (!is_power_of_2(alloc_unit)) { error = xfs_exchrange_check_rtalign(fxr, ip1, ip2, alloc_unit); if (error) return error; /* * Do the generic file-level checks with the regular block * alignment. */ alloc_unit = mp->m_sb.sb_blocksize; } error = xfs_exchange_range_prep(fxr, alloc_unit); if (error || fxr->length == 0) return error; if (fxr->flags & __XFS_EXCHANGE_RANGE_CHECK_FRESH2) { error = xfs_exchrange_check_freshness(fxr, ip2); if (error) return error; } /* Attach dquots to both inodes before changing block maps. */ error = xfs_qm_dqattach(ip2); if (error) return error; error = xfs_qm_dqattach(ip1); if (error) return error; trace_xfs_exchrange_flush(fxr, ip1, ip2); /* Flush the relevant ranges of both files. */ error = xfs_flush_unmap_range(ip2, fxr->file2_offset, fxr->length); if (error) return error; error = xfs_flush_unmap_range(ip1, fxr->file1_offset, fxr->length); if (error) return error; /* * Cancel CoW fork preallocations for the ranges of both files. The * prep function should have flushed all the dirty data, so the only * CoW mappings remaining should be speculative. */ if (xfs_inode_has_cow_data(ip1)) { error = xfs_reflink_cancel_cow_range(ip1, fxr->file1_offset, fxr->length, true); if (error) return error; } if (xfs_inode_has_cow_data(ip2)) { error = xfs_reflink_cancel_cow_range(ip2, fxr->file2_offset, fxr->length, true); if (error) return error; } return 0; } /* * Exchange contents of files. This is the binding between the generic * file-level concepts and the XFS inode-specific implementation. */ STATIC int xfs_exchrange_contents( struct xfs_exchrange *fxr) { struct inode *inode1 = file_inode(fxr->file1); struct inode *inode2 = file_inode(fxr->file2); struct xfs_inode *ip1 = XFS_I(inode1); struct xfs_inode *ip2 = XFS_I(inode2); struct xfs_mount *mp = ip1->i_mount; int error; if (!xfs_has_exchange_range(mp)) return -EOPNOTSUPP; if (fxr->flags & ~(XFS_EXCHANGE_RANGE_ALL_FLAGS | XFS_EXCHANGE_RANGE_PRIV_FLAGS)) return -EINVAL; if (xfs_is_shutdown(mp)) return -EIO; /* Lock both files against IO */ error = xfs_ilock2_io_mmap(ip1, ip2); if (error) goto out_err; /* Prepare and then exchange file contents. */ error = xfs_exchrange_prep(fxr, ip1, ip2); if (error) goto out_unlock; error = xfs_exchrange_mappings(fxr, ip1, ip2); if (error) goto out_unlock; /* * Finish the exchange by removing special file privileges like any * other file write would do. This may involve turning on support for * logged xattrs if either file has security capabilities. */ error = xfs_exchange_range_finish(fxr); if (error) goto out_unlock; out_unlock: xfs_iunlock2_io_mmap(ip1, ip2); out_err: if (error) trace_xfs_exchrange_error(ip2, error, _RET_IP_); return error; } /* Exchange parts of two files. */ static int xfs_exchange_range( struct xfs_exchrange *fxr) { struct inode *inode1 = file_inode(fxr->file1); struct inode *inode2 = file_inode(fxr->file2); int ret; BUILD_BUG_ON(XFS_EXCHANGE_RANGE_ALL_FLAGS & XFS_EXCHANGE_RANGE_PRIV_FLAGS); /* Both files must be on the same mount/filesystem. */ if (fxr->file1->f_path.mnt != fxr->file2->f_path.mnt) return -EXDEV; if (fxr->flags & ~(XFS_EXCHANGE_RANGE_ALL_FLAGS | __XFS_EXCHANGE_RANGE_CHECK_FRESH2)) return -EINVAL; /* Userspace requests only honored for regular files. */ if (S_ISDIR(inode1->i_mode) || S_ISDIR(inode2->i_mode)) return -EISDIR; if (!S_ISREG(inode1->i_mode) || !S_ISREG(inode2->i_mode)) return -EINVAL; /* Both files must be opened for read and write. */ if (!(fxr->file1->f_mode & FMODE_READ) || !(fxr->file1->f_mode & FMODE_WRITE) || !(fxr->file2->f_mode & FMODE_READ) || !(fxr->file2->f_mode & FMODE_WRITE)) return -EBADF; /* Neither file can be opened append-only. */ if ((fxr->file1->f_flags & O_APPEND) || (fxr->file2->f_flags & O_APPEND)) return -EBADF; /* * If we're not exchanging to EOF, we can check the areas before * stabilizing both files' i_size. */ if (!(fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF)) { ret = xfs_exchange_range_verify_area(fxr); if (ret) return ret; } /* Update cmtime if the fd/inode don't forbid it. */ if (!(fxr->file1->f_mode & FMODE_NOCMTIME) && !IS_NOCMTIME(inode1)) fxr->flags |= __XFS_EXCHANGE_RANGE_UPD_CMTIME1; if (!(fxr->file2->f_mode & FMODE_NOCMTIME) && !IS_NOCMTIME(inode2)) fxr->flags |= __XFS_EXCHANGE_RANGE_UPD_CMTIME2; file_start_write(fxr->file2); ret = xfs_exchrange_contents(fxr); file_end_write(fxr->file2); if (ret) return ret; fsnotify_modify(fxr->file1); if (fxr->file2 != fxr->file1) fsnotify_modify(fxr->file2); return 0; } /* Collect exchange-range arguments from userspace. */ long xfs_ioc_exchange_range( struct file *file, struct xfs_exchange_range __user *argp) { struct xfs_exchrange fxr = { .file2 = file, }; struct xfs_exchange_range args; if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; if (memchr_inv(&args.pad, 0, sizeof(args.pad))) return -EINVAL; if (args.flags & ~XFS_EXCHANGE_RANGE_ALL_FLAGS) return -EINVAL; fxr.file1_offset = args.file1_offset; fxr.file2_offset = args.file2_offset; fxr.length = args.length; fxr.flags = args.flags; CLASS(fd, file1)(args.file1_fd); if (fd_empty(file1)) return -EBADF; fxr.file1 = fd_file(file1); return xfs_exchange_range(&fxr); } /* Opaque freshness blob for XFS_IOC_COMMIT_RANGE */ struct xfs_commit_range_fresh { xfs_fsid_t fsid; /* m_fixedfsid */ __u64 file2_ino; /* inode number */ __s64 file2_mtime; /* modification time */ __s64 file2_ctime; /* change time */ __s32 file2_mtime_nsec; /* mod time, nsec */ __s32 file2_ctime_nsec; /* change time, nsec */ __u32 file2_gen; /* inode generation */ __u32 magic; /* zero */ }; #define XCR_FRESH_MAGIC 0x444F524B /* DORK */ /* Set up a commitrange operation by sampling file2's write-related attrs */ long xfs_ioc_start_commit( struct file *file, struct xfs_commit_range __user *argp) { struct xfs_commit_range args = { }; struct kstat kstat = { }; struct xfs_commit_range_fresh *kern_f; struct xfs_commit_range_fresh __user *user_f; struct inode *inode2 = file_inode(file); struct xfs_inode *ip2 = XFS_I(inode2); const unsigned int lockflags = XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | XFS_ILOCK_SHARED; BUILD_BUG_ON(sizeof(struct xfs_commit_range_fresh) != sizeof(args.file2_freshness)); kern_f = (struct xfs_commit_range_fresh *)&args.file2_freshness; memcpy(&kern_f->fsid, ip2->i_mount->m_fixedfsid, sizeof(xfs_fsid_t)); xfs_ilock(ip2, lockflags); /* Force writing of a distinct ctime if any writes happen. */ fill_mg_cmtime(&kstat, STATX_CTIME | STATX_MTIME, inode2); kern_f->file2_ctime = kstat.ctime.tv_sec; kern_f->file2_ctime_nsec = kstat.ctime.tv_nsec; kern_f->file2_mtime = kstat.mtime.tv_sec; kern_f->file2_mtime_nsec = kstat.mtime.tv_nsec; kern_f->file2_ino = ip2->i_ino; kern_f->file2_gen = inode2->i_generation; kern_f->magic = XCR_FRESH_MAGIC; xfs_iunlock(ip2, lockflags); user_f = (struct xfs_commit_range_fresh __user *)&argp->file2_freshness; if (copy_to_user(user_f, kern_f, sizeof(*kern_f))) return -EFAULT; return 0; } /* * Exchange file1 and file2 contents if file2 has not been written since the * start commit operation. */ long xfs_ioc_commit_range( struct file *file, struct xfs_commit_range __user *argp) { struct xfs_exchrange fxr = { .file2 = file, }; struct xfs_commit_range args; struct xfs_commit_range_fresh *kern_f; struct xfs_inode *ip2 = XFS_I(file_inode(file)); struct xfs_mount *mp = ip2->i_mount; kern_f = (struct xfs_commit_range_fresh *)&args.file2_freshness; if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; if (args.flags & ~XFS_EXCHANGE_RANGE_ALL_FLAGS) return -EINVAL; if (kern_f->magic != XCR_FRESH_MAGIC) return -EBUSY; if (memcmp(&kern_f->fsid, mp->m_fixedfsid, sizeof(xfs_fsid_t))) return -EBUSY; fxr.file1_offset = args.file1_offset; fxr.file2_offset = args.file2_offset; fxr.length = args.length; fxr.flags = args.flags | __XFS_EXCHANGE_RANGE_CHECK_FRESH2; fxr.file2_ino = kern_f->file2_ino; fxr.file2_gen = kern_f->file2_gen; fxr.file2_mtime.tv_sec = kern_f->file2_mtime; fxr.file2_mtime.tv_nsec = kern_f->file2_mtime_nsec; fxr.file2_ctime.tv_sec = kern_f->file2_ctime; fxr.file2_ctime.tv_nsec = kern_f->file2_ctime_nsec; CLASS(fd, file1)(args.file1_fd); if (fd_empty(file1)) return -EBADF; fxr.file1 = fd_file(file1); return xfs_exchange_range(&fxr); }