// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_btree.h" #include "xfs_refcount_btree.h" #include "xfs_refcount.h" #include "xfs_bmap_btree.h" #include "xfs_trans_space.h" #include "xfs_bit.h" #include "xfs_alloc.h" #include "xfs_quota.h" #include "xfs_reflink.h" #include "xfs_iomap.h" #include "xfs_ag.h" #include "xfs_ag_resv.h" #include "xfs_health.h" /* * Copy on Write of Shared Blocks * * XFS must preserve "the usual" file semantics even when two files share * the same physical blocks. This means that a write to one file must not * alter the blocks in a different file; the way that we'll do that is * through the use of a copy-on-write mechanism. At a high level, that * means that when we want to write to a shared block, we allocate a new * block, write the data to the new block, and if that succeeds we map the * new block into the file. * * XFS provides a "delayed allocation" mechanism that defers the allocation * of disk blocks to dirty-but-not-yet-mapped file blocks as long as * possible. This reduces fragmentation by enabling the filesystem to ask * for bigger chunks less often, which is exactly what we want for CoW. * * The delalloc mechanism begins when the kernel wants to make a block * writable (write_begin or page_mkwrite). If the offset is not mapped, we * create a delalloc mapping, which is a regular in-core extent, but without * a real startblock. (For delalloc mappings, the startblock encodes both * a flag that this is a delalloc mapping, and a worst-case estimate of how * many blocks might be required to put the mapping into the BMBT.) delalloc * mappings are a reservation against the free space in the filesystem; * adjacent mappings can also be combined into fewer larger mappings. * * As an optimization, the CoW extent size hint (cowextsz) creates * outsized aligned delalloc reservations in the hope of landing out of * order nearby CoW writes in a single extent on disk, thereby reducing * fragmentation and improving future performance. * * D: --RRRRRRSSSRRRRRRRR--- (data fork) * C: ------DDDDDDD--------- (CoW fork) * * When dirty pages are being written out (typically in writepage), the * delalloc reservations are converted into unwritten mappings by * allocating blocks and replacing the delalloc mapping with real ones. * A delalloc mapping can be replaced by several unwritten ones if the * free space is fragmented. * * D: --RRRRRRSSSRRRRRRRR--- * C: ------UUUUUUU--------- * * We want to adapt the delalloc mechanism for copy-on-write, since the * write paths are similar. The first two steps (creating the reservation * and allocating the blocks) are exactly the same as delalloc except that * the mappings must be stored in a separate CoW fork because we do not want * to disturb the mapping in the data fork until we're sure that the write * succeeded. IO completion in this case is the process of removing the old * mapping from the data fork and moving the new mapping from the CoW fork to * the data fork. This will be discussed shortly. * * For now, unaligned directio writes will be bounced back to the page cache. * Block-aligned directio writes will use the same mechanism as buffered * writes. * * Just prior to submitting the actual disk write requests, we convert * the extents representing the range of the file actually being written * (as opposed to extra pieces created for the cowextsize hint) to real * extents. This will become important in the next step: * * D: --RRRRRRSSSRRRRRRRR--- * C: ------UUrrUUU--------- * * CoW remapping must be done after the data block write completes, * because we don't want to destroy the old data fork map until we're sure * the new block has been written. Since the new mappings are kept in a * separate fork, we can simply iterate these mappings to find the ones * that cover the file blocks that we just CoW'd. For each extent, simply * unmap the corresponding range in the data fork, map the new range into * the data fork, and remove the extent from the CoW fork. Because of * the presence of the cowextsize hint, however, we must be careful * only to remap the blocks that we've actually written out -- we must * never remap delalloc reservations nor CoW staging blocks that have * yet to be written. This corresponds exactly to the real extents in * the CoW fork: * * D: --RRRRRRrrSRRRRRRRR--- * C: ------UU--UUU--------- * * Since the remapping operation can be applied to an arbitrary file * range, we record the need for the remap step as a flag in the ioend * instead of declaring a new IO type. This is required for direct io * because we only have ioend for the whole dio, and we have to be able to * remember the presence of unwritten blocks and CoW blocks with a single * ioend structure. Better yet, the more ground we can cover with one * ioend, the better. */ /* * Given an AG extent, find the lowest-numbered run of shared blocks * within that range and return the range in fbno/flen. If * find_end_of_shared is true, return the longest contiguous extent of * shared blocks. If there are no shared extents, fbno and flen will * be set to NULLAGBLOCK and 0, respectively. */ static int xfs_reflink_find_shared( struct xfs_perag *pag, struct xfs_trans *tp, xfs_agblock_t agbno, xfs_extlen_t aglen, xfs_agblock_t *fbno, xfs_extlen_t *flen, bool find_end_of_shared) { struct xfs_buf *agbp; struct xfs_btree_cur *cur; int error; error = xfs_alloc_read_agf(pag, tp, 0, &agbp); if (error) return error; cur = xfs_refcountbt_init_cursor(pag_mount(pag), tp, agbp, pag); error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, find_end_of_shared); xfs_btree_del_cursor(cur, error); xfs_trans_brelse(tp, agbp); return error; } /* * Trim the mapping to the next block where there's a change in the * shared/unshared status. More specifically, this means that we * find the lowest-numbered extent of shared blocks that coincides with * the given block mapping. If the shared extent overlaps the start of * the mapping, trim the mapping to the end of the shared extent. If * the shared region intersects the mapping, trim the mapping to the * start of the shared extent. If there are no shared regions that * overlap, just return the original extent. */ int xfs_reflink_trim_around_shared( struct xfs_inode *ip, struct xfs_bmbt_irec *irec, bool *shared) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; xfs_agblock_t agbno; xfs_extlen_t aglen; xfs_agblock_t fbno; xfs_extlen_t flen; int error = 0; /* Holes, unwritten, and delalloc extents cannot be shared */ if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { *shared = false; return 0; } trace_xfs_reflink_trim_around_shared(ip, irec); pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); aglen = irec->br_blockcount; error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, true); xfs_perag_put(pag); if (error) return error; *shared = false; if (fbno == NULLAGBLOCK) { /* No shared blocks at all. */ return 0; } if (fbno == agbno) { /* * The start of this extent is shared. Truncate the * mapping at the end of the shared region so that a * subsequent iteration starts at the start of the * unshared region. */ irec->br_blockcount = flen; *shared = true; return 0; } /* * There's a shared extent midway through this extent. * Truncate the mapping at the start of the shared * extent so that a subsequent iteration starts at the * start of the shared region. */ irec->br_blockcount = fbno - agbno; return 0; } int xfs_bmap_trim_cow( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, bool *shared) { /* We can't update any real extents in always COW mode. */ if (xfs_is_always_cow_inode(ip) && !isnullstartblock(imap->br_startblock)) { *shared = true; return 0; } /* Trim the mapping to the nearest shared extent boundary. */ return xfs_reflink_trim_around_shared(ip, imap, shared); } static int xfs_reflink_convert_cow_locked( struct xfs_inode *ip, xfs_fileoff_t offset_fsb, xfs_filblks_t count_fsb) { struct xfs_iext_cursor icur; struct xfs_bmbt_irec got; struct xfs_btree_cur *dummy_cur = NULL; int dummy_logflags; int error = 0; if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) return 0; do { if (got.br_startoff >= offset_fsb + count_fsb) break; if (got.br_state == XFS_EXT_NORM) continue; if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) return -EIO; xfs_trim_extent(&got, offset_fsb, count_fsb); if (!got.br_blockcount) continue; got.br_state = XFS_EXT_NORM; error = xfs_bmap_add_extent_unwritten_real(NULL, ip, XFS_COW_FORK, &icur, &dummy_cur, &got, &dummy_logflags); if (error) return error; } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); return error; } /* Convert all of the unwritten CoW extents in a file's range to real ones. */ int xfs_reflink_convert_cow( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t count) { struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); xfs_filblks_t count_fsb = end_fsb - offset_fsb; int error; ASSERT(count != 0); xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * Find the extent that maps the given range in the COW fork. Even if the extent * is not shared we might have a preallocation for it in the COW fork. If so we * use it that rather than trigger a new allocation. */ static int xfs_find_trim_cow_extent( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, struct xfs_bmbt_irec *cmap, bool *shared, bool *found) { xfs_fileoff_t offset_fsb = imap->br_startoff; xfs_filblks_t count_fsb = imap->br_blockcount; struct xfs_iext_cursor icur; *found = false; /* * If we don't find an overlapping extent, trim the range we need to * allocate to fit the hole we found. */ if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) cmap->br_startoff = offset_fsb + count_fsb; if (cmap->br_startoff > offset_fsb) { xfs_trim_extent(imap, imap->br_startoff, cmap->br_startoff - imap->br_startoff); return xfs_bmap_trim_cow(ip, imap, shared); } *shared = true; if (isnullstartblock(cmap->br_startblock)) { xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); return 0; } /* real extent found - no need to allocate */ xfs_trim_extent(cmap, offset_fsb, count_fsb); *found = true; return 0; } static int xfs_reflink_convert_unwritten( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, struct xfs_bmbt_irec *cmap, bool convert_now) { xfs_fileoff_t offset_fsb = imap->br_startoff; xfs_filblks_t count_fsb = imap->br_blockcount; int error; /* * cmap might larger than imap due to cowextsize hint. */ xfs_trim_extent(cmap, offset_fsb, count_fsb); /* * COW fork extents are supposed to remain unwritten until we're ready * to initiate a disk write. For direct I/O we are going to write the * data and need the conversion, but for buffered writes we're done. */ if (!convert_now || cmap->br_state == XFS_EXT_NORM) return 0; trace_xfs_reflink_convert_cow(ip, cmap); error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); if (!error) cmap->br_state = XFS_EXT_NORM; return error; } static int xfs_reflink_fill_cow_hole( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, struct xfs_bmbt_irec *cmap, bool *shared, uint *lockmode, bool convert_now) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; xfs_filblks_t resaligned; xfs_extlen_t resblks; int nimaps; int error; bool found; resaligned = xfs_aligned_fsb_count(imap->br_startoff, imap->br_blockcount, xfs_get_cowextsz_hint(ip)); resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); xfs_iunlock(ip, *lockmode); *lockmode = 0; error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, false, &tp); if (error) return error; *lockmode = XFS_ILOCK_EXCL; error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); if (error || !*shared) goto out_trans_cancel; if (found) { xfs_trans_cancel(tp); goto convert; } /* Allocate the entire reservation as unwritten blocks. */ nimaps = 1; error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, &nimaps); if (error) goto out_trans_cancel; xfs_inode_set_cowblocks_tag(ip); error = xfs_trans_commit(tp); if (error) return error; convert: return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); out_trans_cancel: xfs_trans_cancel(tp); return error; } static int xfs_reflink_fill_delalloc( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, struct xfs_bmbt_irec *cmap, bool *shared, uint *lockmode, bool convert_now) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int nimaps; int error; bool found; do { xfs_iunlock(ip, *lockmode); *lockmode = 0; error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, false, &tp); if (error) return error; *lockmode = XFS_ILOCK_EXCL; error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); if (error || !*shared) goto out_trans_cancel; if (found) { xfs_trans_cancel(tp); break; } ASSERT(isnullstartblock(cmap->br_startblock) || cmap->br_startblock == DELAYSTARTBLOCK); /* * Replace delalloc reservation with an unwritten extent. */ nimaps = 1; error = xfs_bmapi_write(tp, ip, cmap->br_startoff, cmap->br_blockcount, XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, &nimaps); if (error) goto out_trans_cancel; xfs_inode_set_cowblocks_tag(ip); error = xfs_trans_commit(tp); if (error) return error; } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); out_trans_cancel: xfs_trans_cancel(tp); return error; } /* Allocate all CoW reservations covering a range of blocks in a file. */ int xfs_reflink_allocate_cow( struct xfs_inode *ip, struct xfs_bmbt_irec *imap, struct xfs_bmbt_irec *cmap, bool *shared, uint *lockmode, bool convert_now) { int error; bool found; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); if (!ip->i_cowfp) { ASSERT(!xfs_is_reflink_inode(ip)); xfs_ifork_init_cow(ip); } error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); if (error || !*shared) return error; /* CoW fork has a real extent */ if (found) return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); /* * CoW fork does not have an extent and data extent is shared. * Allocate a real extent in the CoW fork. */ if (cmap->br_startoff > imap->br_startoff) return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, lockmode, convert_now); /* * CoW fork has a delalloc reservation. Replace it with a real extent. * There may or may not be a data fork mapping. */ if (isnullstartblock(cmap->br_startblock) || cmap->br_startblock == DELAYSTARTBLOCK) return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, lockmode, convert_now); /* Shouldn't get here. */ ASSERT(0); return -EFSCORRUPTED; } /* * Cancel CoW reservations for some block range of an inode. * * If cancel_real is true this function cancels all COW fork extents for the * inode; if cancel_real is false, real extents are not cleared. * * Caller must have already joined the inode to the current transaction. The * inode will be joined to the transaction returned to the caller. */ int xfs_reflink_cancel_cow_blocks( struct xfs_inode *ip, struct xfs_trans **tpp, xfs_fileoff_t offset_fsb, xfs_fileoff_t end_fsb, bool cancel_real) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); struct xfs_bmbt_irec got, del; struct xfs_iext_cursor icur; int error = 0; if (!xfs_inode_has_cow_data(ip)) return 0; if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) return 0; /* Walk backwards until we're out of the I/O range... */ while (got.br_startoff + got.br_blockcount > offset_fsb) { del = got; xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); /* Extent delete may have bumped ext forward */ if (!del.br_blockcount) { xfs_iext_prev(ifp, &icur); goto next_extent; } trace_xfs_reflink_cancel_cow(ip, &del); if (isnullstartblock(del.br_startblock)) { xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &got, &del); } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); /* Free the CoW orphan record. */ xfs_refcount_free_cow_extent(*tpp, del.br_startblock, del.br_blockcount); error = xfs_free_extent_later(*tpp, del.br_startblock, del.br_blockcount, NULL, XFS_AG_RESV_NONE, 0); if (error) break; /* Roll the transaction */ error = xfs_defer_finish(tpp); if (error) break; /* Remove the mapping from the CoW fork. */ xfs_bmap_del_extent_cow(ip, &icur, &got, &del); /* Remove the quota reservation */ xfs_quota_unreserve_blkres(ip, del.br_blockcount); } else { /* Didn't do anything, push cursor back. */ xfs_iext_prev(ifp, &icur); } next_extent: if (!xfs_iext_get_extent(ifp, &icur, &got)) break; } /* clear tag if cow fork is emptied */ if (!ifp->if_bytes) xfs_inode_clear_cowblocks_tag(ip); return error; } /* * Cancel CoW reservations for some byte range of an inode. * * If cancel_real is true this function cancels all COW fork extents for the * inode; if cancel_real is false, real extents are not cleared. */ int xfs_reflink_cancel_cow_range( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t count, bool cancel_real) { struct xfs_trans *tp; xfs_fileoff_t offset_fsb; xfs_fileoff_t end_fsb; int error; trace_xfs_reflink_cancel_cow_range(ip, offset, count); ASSERT(ip->i_cowfp); offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); if (count == NULLFILEOFF) end_fsb = NULLFILEOFF; else end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); /* Start a rolling transaction to remove the mappings */ error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 0, 0, 0, &tp); if (error) goto out; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* Scrape out the old CoW reservations */ error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, cancel_real); if (error) goto out_cancel; error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; out_cancel: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); out: trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); return error; } /* * Remap part of the CoW fork into the data fork. * * We aim to remap the range starting at @offset_fsb and ending at @end_fsb * into the data fork; this function will remap what it can (at the end of the * range) and update @end_fsb appropriately. Each remap gets its own * transaction because we can end up merging and splitting bmbt blocks for * every remap operation and we'd like to keep the block reservation * requirements as low as possible. */ STATIC int xfs_reflink_end_cow_extent( struct xfs_inode *ip, xfs_fileoff_t *offset_fsb, xfs_fileoff_t end_fsb) { struct xfs_iext_cursor icur; struct xfs_bmbt_irec got, del, data; struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); unsigned int resblks; int nmaps; int error; resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; /* * Lock the inode. We have to ijoin without automatic unlock because * the lead transaction is the refcountbt record deletion; the data * fork update follows as a deferred log item. */ xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * In case of racing, overlapping AIO writes no COW extents might be * left by the time I/O completes for the loser of the race. In that * case we are done. */ if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || got.br_startoff >= end_fsb) { *offset_fsb = end_fsb; goto out_cancel; } /* * Only remap real extents that contain data. With AIO, speculative * preallocations can leak into the range we are called upon, and we * need to skip them. Preserve @got for the eventual CoW fork * deletion; from now on @del represents the mapping that we're * actually remapping. */ while (!xfs_bmap_is_written_extent(&got)) { if (!xfs_iext_next_extent(ifp, &icur, &got) || got.br_startoff >= end_fsb) { *offset_fsb = end_fsb; goto out_cancel; } } del = got; xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, XFS_IEXT_REFLINK_END_COW_CNT); if (error) goto out_cancel; /* Grab the corresponding mapping in the data fork. */ nmaps = 1; error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, &nmaps, 0); if (error) goto out_cancel; /* We can only remap the smaller of the two extent sizes. */ data.br_blockcount = min(data.br_blockcount, del.br_blockcount); del.br_blockcount = data.br_blockcount; trace_xfs_reflink_cow_remap_from(ip, &del); trace_xfs_reflink_cow_remap_to(ip, &data); if (xfs_bmap_is_real_extent(&data)) { /* * If the extent we're remapping is backed by storage (written * or not), unmap the extent and drop its refcount. */ xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); xfs_refcount_decrease_extent(tp, &data); xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -data.br_blockcount); } else if (data.br_startblock == DELAYSTARTBLOCK) { int done; /* * If the extent we're remapping is a delalloc reservation, * we can use the regular bunmapi function to release the * incore state. Dropping the delalloc reservation takes care * of the quota reservation for us. */ error = xfs_bunmapi(NULL, ip, data.br_startoff, data.br_blockcount, 0, 1, &done); if (error) goto out_cancel; ASSERT(done); } /* Free the CoW orphan record. */ xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); /* Map the new blocks into the data fork. */ xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del); /* Charge this new data fork mapping to the on-disk quota. */ xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, (long)del.br_blockcount); /* Remove the mapping from the CoW fork. */ xfs_bmap_del_extent_cow(ip, &icur, &got, &del); error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); if (error) return error; /* Update the caller about how much progress we made. */ *offset_fsb = del.br_startoff + del.br_blockcount; return 0; out_cancel: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * Remap parts of a file's data fork after a successful CoW. */ int xfs_reflink_end_cow( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t count) { xfs_fileoff_t offset_fsb; xfs_fileoff_t end_fsb; int error = 0; trace_xfs_reflink_end_cow(ip, offset, count); offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); /* * Walk forwards until we've remapped the I/O range. The loop function * repeatedly cycles the ILOCK to allocate one transaction per remapped * extent. * * If we're being called by writeback then the pages will still * have PageWriteback set, which prevents races with reflink remapping * and truncate. Reflink remapping prevents races with writeback by * taking the iolock and mmaplock before flushing the pages and * remapping, which means there won't be any further writeback or page * cache dirtying until the reflink completes. * * We should never have two threads issuing writeback for the same file * region. There are also have post-eof checks in the writeback * preparation code so that we don't bother writing out pages that are * about to be truncated. * * If we're being called as part of directio write completion, the dio * count is still elevated, which reflink and truncate will wait for. * Reflink remapping takes the iolock and mmaplock and waits for * pending dio to finish, which should prevent any directio until the * remap completes. Multiple concurrent directio writes to the same * region are handled by end_cow processing only occurring for the * threads which succeed; the outcome of multiple overlapping direct * writes is not well defined anyway. * * It's possible that a buffered write and a direct write could collide * here (the buffered write stumbles in after the dio flushes and * invalidates the page cache and immediately queues writeback), but we * have never supported this 100%. If either disk write succeeds the * blocks will be remapped. */ while (end_fsb > offset_fsb && !error) error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); if (error) trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); return error; } /* * Free all CoW staging blocks that are still referenced by the ondisk refcount * metadata. The ondisk metadata does not track which inode created the * staging extent, so callers must ensure that there are no cached inodes with * live CoW staging extents. */ int xfs_reflink_recover_cow( struct xfs_mount *mp) { struct xfs_perag *pag = NULL; int error = 0; if (!xfs_has_reflink(mp)) return 0; while ((pag = xfs_perag_next(mp, pag))) { error = xfs_refcount_recover_cow_leftovers(mp, pag); if (error) { xfs_perag_rele(pag); break; } } return error; } /* * Reflinking (Block) Ranges of Two Files Together * * First, ensure that the reflink flag is set on both inodes. The flag is an * optimization to avoid unnecessary refcount btree lookups in the write path. * * Now we can iteratively remap the range of extents (and holes) in src to the * corresponding ranges in dest. Let drange and srange denote the ranges of * logical blocks in dest and src touched by the reflink operation. * * While the length of drange is greater than zero, * - Read src's bmbt at the start of srange ("imap") * - If imap doesn't exist, make imap appear to start at the end of srange * with zero length. * - If imap starts before srange, advance imap to start at srange. * - If imap goes beyond srange, truncate imap to end at the end of srange. * - Punch (imap start - srange start + imap len) blocks from dest at * offset (drange start). * - If imap points to a real range of pblks, * > Increase the refcount of the imap's pblks * > Map imap's pblks into dest at the offset * (drange start + imap start - srange start) * - Advance drange and srange by (imap start - srange start + imap len) * * Finally, if the reflink made dest longer, update both the in-core and * on-disk file sizes. * * ASCII Art Demonstration: * * Let's say we want to reflink this source file: * * ----SSSSSSS-SSSSS----SSSSSS (src file) * <--------------------> * * into this destination file: * * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) * <--------------------> * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. * Observe that the range has different logical offsets in either file. * * Consider that the first extent in the source file doesn't line up with our * reflink range. Unmapping and remapping are separate operations, so we can * unmap more blocks from the destination file than we remap. * * ----SSSSSSS-SSSSS----SSSSSS * <-------> * --DDDDD---------DDDDD--DDD * <-------> * * Now remap the source extent into the destination file: * * ----SSSSSSS-SSSSS----SSSSSS * <-------> * --DDDDD--SSSSSSSDDDDD--DDD * <-------> * * Do likewise with the second hole and extent in our range. Holes in the * unmap range don't affect our operation. * * ----SSSSSSS-SSSSS----SSSSSS * <----> * --DDDDD--SSSSSSS-SSSSS-DDD * <----> * * Finally, unmap and remap part of the third extent. This will increase the * size of the destination file. * * ----SSSSSSS-SSSSS----SSSSSS * <-----> * --DDDDD--SSSSSSS-SSSSS----SSS * <-----> * * Once we update the destination file's i_size, we're done. */ /* * Ensure the reflink bit is set in both inodes. */ STATIC int xfs_reflink_set_inode_flag( struct xfs_inode *src, struct xfs_inode *dest) { struct xfs_mount *mp = src->i_mount; int error; struct xfs_trans *tp; if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) return 0; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) goto out_error; /* Lock both files against IO */ if (src->i_ino == dest->i_ino) xfs_ilock(src, XFS_ILOCK_EXCL); else xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); if (!xfs_is_reflink_inode(src)) { trace_xfs_reflink_set_inode_flag(src); xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); src->i_diflags2 |= XFS_DIFLAG2_REFLINK; xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); xfs_ifork_init_cow(src); } else xfs_iunlock(src, XFS_ILOCK_EXCL); if (src->i_ino == dest->i_ino) goto commit_flags; if (!xfs_is_reflink_inode(dest)) { trace_xfs_reflink_set_inode_flag(dest); xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); xfs_ifork_init_cow(dest); } else xfs_iunlock(dest, XFS_ILOCK_EXCL); commit_flags: error = xfs_trans_commit(tp); if (error) goto out_error; return error; out_error: trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); return error; } /* * Update destination inode size & cowextsize hint, if necessary. */ int xfs_reflink_update_dest( struct xfs_inode *dest, xfs_off_t newlen, xfs_extlen_t cowextsize, unsigned int remap_flags) { struct xfs_mount *mp = dest->i_mount; struct xfs_trans *tp; int error; if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) return 0; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) goto out_error; xfs_ilock(dest, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); if (newlen > i_size_read(VFS_I(dest))) { trace_xfs_reflink_update_inode_size(dest, newlen); i_size_write(VFS_I(dest), newlen); dest->i_disk_size = newlen; } if (cowextsize) { dest->i_cowextsize = cowextsize; dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; } xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); error = xfs_trans_commit(tp); if (error) goto out_error; return error; out_error: trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); return error; } /* * Do we have enough reserve in this AG to handle a reflink? The refcount * btree already reserved all the space it needs, but the rmap btree can grow * infinitely, so we won't allow more reflinks when the AG is down to the * btree reserves. */ static int xfs_reflink_ag_has_free_space( struct xfs_mount *mp, xfs_agnumber_t agno) { struct xfs_perag *pag; int error = 0; if (!xfs_has_rmapbt(mp)) return 0; pag = xfs_perag_get(mp, agno); if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) error = -ENOSPC; xfs_perag_put(pag); return error; } /* * Remap the given extent into the file. The dmap blockcount will be set to * the number of blocks that were actually remapped. */ STATIC int xfs_reflink_remap_extent( struct xfs_inode *ip, struct xfs_bmbt_irec *dmap, xfs_off_t new_isize) { struct xfs_bmbt_irec smap; struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; xfs_off_t newlen; int64_t qdelta = 0; unsigned int resblks; bool quota_reserved = true; bool smap_real; bool dmap_written = xfs_bmap_is_written_extent(dmap); int iext_delta = 0; int nimaps; int error; /* * Start a rolling transaction to switch the mappings. * * Adding a written extent to the extent map can cause a bmbt split, * and removing a mapped extent from the extent can cause a bmbt split. * The two operations cannot both cause a split since they operate on * the same index in the bmap btree, so we only need a reservation for * one bmbt split if either thing is happening. However, we haven't * locked the inode yet, so we reserve assuming this is the case. * * The first allocation call tries to reserve enough space to handle * mapping dmap into a sparse part of the file plus the bmbt split. We * haven't locked the inode or read the existing mapping yet, so we do * not know for sure that we need the space. This should succeed most * of the time. * * If the first attempt fails, try again but reserving only enough * space to handle a bmbt split. This is the hard minimum requirement, * and we revisit quota reservations later when we know more about what * we're remapping. */ resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks + dmap->br_blockcount, 0, false, &tp); if (error == -EDQUOT || error == -ENOSPC) { quota_reserved = false; error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, false, &tp); } if (error) goto out; /* * Read what's currently mapped in the destination file into smap. * If smap isn't a hole, we will have to remove it before we can add * dmap to the destination file. */ nimaps = 1; error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, &smap, &nimaps, 0); if (error) goto out_cancel; ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); smap_real = xfs_bmap_is_real_extent(&smap); /* * We can only remap as many blocks as the smaller of the two extent * maps, because we can only remap one extent at a time. */ dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); ASSERT(dmap->br_blockcount == smap.br_blockcount); trace_xfs_reflink_remap_extent_dest(ip, &smap); /* * Two extents mapped to the same physical block must not have * different states; that's filesystem corruption. Move on to the next * extent if they're both holes or both the same physical extent. */ if (dmap->br_startblock == smap.br_startblock) { if (dmap->br_state != smap.br_state) { xfs_bmap_mark_sick(ip, XFS_DATA_FORK); error = -EFSCORRUPTED; } goto out_cancel; } /* If both extents are unwritten, leave them alone. */ if (dmap->br_state == XFS_EXT_UNWRITTEN && smap.br_state == XFS_EXT_UNWRITTEN) goto out_cancel; /* No reflinking if the AG of the dest mapping is low on space. */ if (dmap_written) { error = xfs_reflink_ag_has_free_space(mp, XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); if (error) goto out_cancel; } /* * Increase quota reservation if we think the quota block counter for * this file could increase. * * If we are mapping a written extent into the file, we need to have * enough quota block count reservation to handle the blocks in that * extent. We log only the delta to the quota block counts, so if the * extent we're unmapping also has blocks allocated to it, we don't * need a quota reservation for the extent itself. * * Note that if we're replacing a delalloc reservation with a written * extent, we have to take the full quota reservation because removing * the delalloc reservation gives the block count back to the quota * count. This is suboptimal, but the VFS flushed the dest range * before we started. That should have removed all the delalloc * reservations, but we code defensively. * * xfs_trans_alloc_inode above already tried to grab an even larger * quota reservation, and kicked off a blockgc scan if it couldn't. * If we can't get a potentially smaller quota reservation now, we're * done. */ if (!quota_reserved && !smap_real && dmap_written) { error = xfs_trans_reserve_quota_nblks(tp, ip, dmap->br_blockcount, 0, false); if (error) goto out_cancel; } if (smap_real) ++iext_delta; if (dmap_written) ++iext_delta; error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, iext_delta); if (error) goto out_cancel; if (smap_real) { /* * If the extent we're unmapping is backed by storage (written * or not), unmap the extent and drop its refcount. */ xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap); xfs_refcount_decrease_extent(tp, &smap); qdelta -= smap.br_blockcount; } else if (smap.br_startblock == DELAYSTARTBLOCK) { int done; /* * If the extent we're unmapping is a delalloc reservation, * we can use the regular bunmapi function to release the * incore state. Dropping the delalloc reservation takes care * of the quota reservation for us. */ error = xfs_bunmapi(NULL, ip, smap.br_startoff, smap.br_blockcount, 0, 1, &done); if (error) goto out_cancel; ASSERT(done); } /* * If the extent we're sharing is backed by written storage, increase * its refcount and map it into the file. */ if (dmap_written) { xfs_refcount_increase_extent(tp, dmap); xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap); qdelta += dmap->br_blockcount; } xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); /* Update dest isize if needed. */ newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); newlen = min_t(xfs_off_t, newlen, new_isize); if (newlen > i_size_read(VFS_I(ip))) { trace_xfs_reflink_update_inode_size(ip, newlen); i_size_write(VFS_I(ip), newlen); ip->i_disk_size = newlen; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } /* Commit everything and unlock. */ error = xfs_trans_commit(tp); goto out_unlock; out_cancel: xfs_trans_cancel(tp); out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); out: if (error) trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); return error; } /* Remap a range of one file to the other. */ int xfs_reflink_remap_blocks( struct xfs_inode *src, loff_t pos_in, struct xfs_inode *dest, loff_t pos_out, loff_t remap_len, loff_t *remapped) { struct xfs_bmbt_irec imap; struct xfs_mount *mp = src->i_mount; xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); xfs_filblks_t len; xfs_filblks_t remapped_len = 0; xfs_off_t new_isize = pos_out + remap_len; int nimaps; int error = 0; len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), XFS_MAX_FILEOFF); trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); while (len > 0) { unsigned int lock_mode; /* Read extent from the source file */ nimaps = 1; lock_mode = xfs_ilock_data_map_shared(src); error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); xfs_iunlock(src, lock_mode); if (error) break; /* * The caller supposedly flushed all dirty pages in the source * file range, which means that writeback should have allocated * or deleted all delalloc reservations in that range. If we * find one, that's a good sign that something is seriously * wrong here. */ ASSERT(nimaps == 1 && imap.br_startoff == srcoff); if (imap.br_startblock == DELAYSTARTBLOCK) { ASSERT(imap.br_startblock != DELAYSTARTBLOCK); xfs_bmap_mark_sick(src, XFS_DATA_FORK); error = -EFSCORRUPTED; break; } trace_xfs_reflink_remap_extent_src(src, &imap); /* Remap into the destination file at the given offset. */ imap.br_startoff = destoff; error = xfs_reflink_remap_extent(dest, &imap, new_isize); if (error) break; if (fatal_signal_pending(current)) { error = -EINTR; break; } /* Advance drange/srange */ srcoff += imap.br_blockcount; destoff += imap.br_blockcount; len -= imap.br_blockcount; remapped_len += imap.br_blockcount; cond_resched(); } if (error) trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); *remapped = min_t(loff_t, remap_len, XFS_FSB_TO_B(src->i_mount, remapped_len)); return error; } /* * If we're reflinking to a point past the destination file's EOF, we must * zero any speculative post-EOF preallocations that sit between the old EOF * and the destination file offset. */ static int xfs_reflink_zero_posteof( struct xfs_inode *ip, loff_t pos) { loff_t isize = i_size_read(VFS_I(ip)); if (pos <= isize) return 0; trace_xfs_zero_eof(ip, isize, pos - isize); return xfs_zero_range(ip, isize, pos - isize, NULL); } /* * Prepare two files for range cloning. Upon a successful return both inodes * will have the iolock and mmaplock held, the page cache of the out file will * be truncated, and any leases on the out file will have been broken. This * function borrows heavily from xfs_file_aio_write_checks. * * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't * checked that the bytes beyond EOF physically match. Hence we cannot use the * EOF block in the source dedupe range because it's not a complete block match, * hence can introduce a corruption into the file that has it's block replaced. * * In similar fashion, the VFS file cloning also allows partial EOF blocks to be * "block aligned" for the purposes of cloning entire files. However, if the * source file range includes the EOF block and it lands within the existing EOF * of the destination file, then we can expose stale data from beyond the source * file EOF in the destination file. * * XFS doesn't support partial block sharing, so in both cases we have check * these cases ourselves. For dedupe, we can simply round the length to dedupe * down to the previous whole block and ignore the partial EOF block. While this * means we can't dedupe the last block of a file, this is an acceptible * tradeoff for simplicity on implementation. * * For cloning, we want to share the partial EOF block if it is also the new EOF * block of the destination file. If the partial EOF block lies inside the * existing destination EOF, then we have to abort the clone to avoid exposing * stale data in the destination file. Hence we reject these clone attempts with * -EINVAL in this case. */ int xfs_reflink_remap_prep( struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *len, unsigned int remap_flags) { struct inode *inode_in = file_inode(file_in); struct xfs_inode *src = XFS_I(inode_in); struct inode *inode_out = file_inode(file_out); struct xfs_inode *dest = XFS_I(inode_out); int ret; /* Lock both files against IO */ ret = xfs_ilock2_io_mmap(src, dest); if (ret) return ret; /* Check file eligibility and prepare for block sharing. */ ret = -EINVAL; /* Don't reflink realtime inodes */ if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) goto out_unlock; /* Don't share DAX file data with non-DAX file. */ if (IS_DAX(inode_in) != IS_DAX(inode_out)) goto out_unlock; if (!IS_DAX(inode_in)) ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, len, remap_flags); else ret = dax_remap_file_range_prep(file_in, pos_in, file_out, pos_out, len, remap_flags, &xfs_read_iomap_ops); if (ret || *len == 0) goto out_unlock; /* Attach dquots to dest inode before changing block map */ ret = xfs_qm_dqattach(dest); if (ret) goto out_unlock; /* * Zero existing post-eof speculative preallocations in the destination * file. */ ret = xfs_reflink_zero_posteof(dest, pos_out); if (ret) goto out_unlock; /* Set flags and remap blocks. */ ret = xfs_reflink_set_inode_flag(src, dest); if (ret) goto out_unlock; /* * If pos_out > EOF, we may have dirtied blocks between EOF and * pos_out. In that case, we need to extend the flush and unmap to cover * from EOF to the end of the copy length. */ if (pos_out > XFS_ISIZE(dest)) { loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); } else { ret = xfs_flush_unmap_range(dest, pos_out, *len); } if (ret) goto out_unlock; xfs_iflags_set(src, XFS_IREMAPPING); if (inode_in != inode_out) xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); return 0; out_unlock: xfs_iunlock2_io_mmap(src, dest); return ret; } /* Does this inode need the reflink flag? */ int xfs_reflink_inode_has_shared_extents( struct xfs_trans *tp, struct xfs_inode *ip, bool *has_shared) { struct xfs_bmbt_irec got; struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *ifp; struct xfs_iext_cursor icur; bool found; int error; ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); if (error) return error; *has_shared = false; found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); while (found) { struct xfs_perag *pag; xfs_agblock_t agbno; xfs_extlen_t aglen; xfs_agblock_t rbno; xfs_extlen_t rlen; if (isnullstartblock(got.br_startblock) || got.br_state != XFS_EXT_NORM) goto next; pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); aglen = got.br_blockcount; error = xfs_reflink_find_shared(pag, tp, agbno, aglen, &rbno, &rlen, false); xfs_perag_put(pag); if (error) return error; /* Is there still a shared block here? */ if (rbno != NULLAGBLOCK) { *has_shared = true; return 0; } next: found = xfs_iext_next_extent(ifp, &icur, &got); } return 0; } /* * Clear the inode reflink flag if there are no shared extents. * * The caller is responsible for joining the inode to the transaction passed in. * The inode will be joined to the transaction that is returned to the caller. */ int xfs_reflink_clear_inode_flag( struct xfs_inode *ip, struct xfs_trans **tpp) { bool needs_flag; int error = 0; ASSERT(xfs_is_reflink_inode(ip)); if (!xfs_can_free_cowblocks(ip)) return 0; error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); if (error || needs_flag) return error; /* * We didn't find any shared blocks so turn off the reflink flag. * First, get rid of any leftover CoW mappings. */ error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, true); if (error) return error; /* Clear the inode flag. */ trace_xfs_reflink_unset_inode_flag(ip); ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; xfs_inode_clear_cowblocks_tag(ip); xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); return error; } /* * Clear the inode reflink flag if there are no shared extents and the size * hasn't changed. */ STATIC int xfs_reflink_try_clear_inode_flag( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error = 0; /* Start a rolling transaction to remove the mappings */ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); error = xfs_reflink_clear_inode_flag(ip, &tp); if (error) goto cancel; error = xfs_trans_commit(tp); if (error) goto out; xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; cancel: xfs_trans_cancel(tp); out: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * Pre-COW all shared blocks within a given byte range of a file and turn off * the reflink flag if we unshare all of the file's blocks. */ int xfs_reflink_unshare( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct inode *inode = VFS_I(ip); int error; if (!xfs_is_reflink_inode(ip)) return 0; trace_xfs_reflink_unshare(ip, offset, len); inode_dio_wait(inode); if (IS_DAX(inode)) error = dax_file_unshare(inode, offset, len, &xfs_dax_write_iomap_ops); else error = iomap_file_unshare(inode, offset, len, &xfs_buffered_write_iomap_ops); if (error) goto out; error = filemap_write_and_wait_range(inode->i_mapping, offset, offset + len - 1); if (error) goto out; /* Turn off the reflink flag if possible. */ error = xfs_reflink_try_clear_inode_flag(ip); if (error) goto out; return 0; out: trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); return error; }