/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAPOPS_H #define _LINUX_SWAPOPS_H #include #include #include #ifdef CONFIG_MMU #ifdef CONFIG_SWAP #include #endif /* CONFIG_SWAP */ /* * swapcache pages are stored in the swapper_space radix tree. We want to * get good packing density in that tree, so the index should be dense in * the low-order bits. * * We arrange the `type' and `offset' fields so that `type' is at the six * high-order bits of the swp_entry_t and `offset' is right-aligned in the * remaining bits. Although `type' itself needs only five bits, we allow for * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry(). * * swp_entry_t's are *never* stored anywhere in their arch-dependent format. */ #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) /* * Definitions only for PFN swap entries (see is_pfn_swap_entry()). To * store PFN, we only need SWP_PFN_BITS bits. Each of the pfn swap entries * can use the extra bits to store other information besides PFN. */ #ifdef MAX_PHYSMEM_BITS #define SWP_PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) #else /* MAX_PHYSMEM_BITS */ #define SWP_PFN_BITS min_t(int, \ sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \ SWP_TYPE_SHIFT) #endif /* MAX_PHYSMEM_BITS */ #define SWP_PFN_MASK (BIT(SWP_PFN_BITS) - 1) /** * Migration swap entry specific bitfield definitions. Layout: * * |----------+--------------------| * | swp_type | swp_offset | * |----------+--------+-+-+-------| * | | resv |D|A| PFN | * |----------+--------+-+-+-------| * * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A) * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D) * * Note: A/D bits will be stored in migration entries iff there're enough * free bits in arch specific swp offset. By default we'll ignore A/D bits * when migrating a page. Please refer to migration_entry_supports_ad() * for more information. If there're more bits besides PFN and A/D bits, * they should be reserved and always be zeros. */ #define SWP_MIG_YOUNG_BIT (SWP_PFN_BITS) #define SWP_MIG_DIRTY_BIT (SWP_PFN_BITS + 1) #define SWP_MIG_TOTAL_BITS (SWP_PFN_BITS + 2) #define SWP_MIG_YOUNG BIT(SWP_MIG_YOUNG_BIT) #define SWP_MIG_DIRTY BIT(SWP_MIG_DIRTY_BIT) static inline bool is_pfn_swap_entry(swp_entry_t entry); /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { if (pte_swp_exclusive(pte)) pte = pte_swp_clear_exclusive(pte); if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) pte = pte_swp_clear_uffd_wp(pte); return pte; } /* * Store a type+offset into a swp_entry_t in an arch-independent format */ static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) { swp_entry_t ret; ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); return ret; } /* * Extract the `type' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline unsigned swp_type(swp_entry_t entry) { return (entry.val >> SWP_TYPE_SHIFT); } /* * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline pgoff_t swp_offset(swp_entry_t entry) { return entry.val & SWP_OFFSET_MASK; } /* * This should only be called upon a pfn swap entry to get the PFN stored * in the swap entry. Please refers to is_pfn_swap_entry() for definition * of pfn swap entry. */ static inline unsigned long swp_offset_pfn(swp_entry_t entry) { VM_BUG_ON(!is_pfn_swap_entry(entry)); return swp_offset(entry) & SWP_PFN_MASK; } /* check whether a pte points to a swap entry */ static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte); } /* * Convert the arch-dependent pte representation of a swp_entry_t into an * arch-independent swp_entry_t. */ static inline swp_entry_t pte_to_swp_entry(pte_t pte) { swp_entry_t arch_entry; pte = pte_swp_clear_flags(pte); arch_entry = __pte_to_swp_entry(pte); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } /* * Convert the arch-independent representation of a swp_entry_t into the * arch-dependent pte representation. */ static inline pte_t swp_entry_to_pte(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pte(arch_entry); } static inline swp_entry_t radix_to_swp_entry(void *arg) { swp_entry_t entry; entry.val = xa_to_value(arg); return entry; } static inline void *swp_to_radix_entry(swp_entry_t entry) { return xa_mk_value(entry.val); } #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) { return swp_entry(SWP_DEVICE_READ, offset); } static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) { return swp_entry(SWP_DEVICE_WRITE, offset); } static inline bool is_device_private_entry(swp_entry_t entry) { int type = swp_type(entry); return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; } static inline bool is_writable_device_private_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); } static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) { return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset); } static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) { return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset); } static inline bool is_device_exclusive_entry(swp_entry_t entry) { return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ || swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE; } static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE); } #else /* CONFIG_DEVICE_PRIVATE */ static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline bool is_device_private_entry(swp_entry_t entry) { return false; } static inline bool is_writable_device_private_entry(swp_entry_t entry) { return false; } static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline bool is_device_exclusive_entry(swp_entry_t entry) { return false; } static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) { return false; } #endif /* CONFIG_DEVICE_PRIVATE */ #ifdef CONFIG_MIGRATION static inline int is_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ || swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE || swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_writable_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_readable_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ); } static inline int is_readable_exclusive_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE); } static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) { return swp_entry(SWP_MIGRATION_READ, offset); } static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) { return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset); } static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) { return swp_entry(SWP_MIGRATION_WRITE, offset); } /* * Returns whether the host has large enough swap offset field to support * carrying over pgtable A/D bits for page migrations. The result is * pretty much arch specific. */ static inline bool migration_entry_supports_ad(void) { #ifdef CONFIG_SWAP return swap_migration_ad_supported; #else /* CONFIG_SWAP */ return false; #endif /* CONFIG_SWAP */ } static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) { if (migration_entry_supports_ad()) return swp_entry(swp_type(entry), swp_offset(entry) | SWP_MIG_YOUNG); return entry; } static inline bool is_migration_entry_young(swp_entry_t entry) { if (migration_entry_supports_ad()) return swp_offset(entry) & SWP_MIG_YOUNG; /* Keep the old behavior of aging page after migration */ return false; } static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) { if (migration_entry_supports_ad()) return swp_entry(swp_type(entry), swp_offset(entry) | SWP_MIG_DIRTY); return entry; } static inline bool is_migration_entry_dirty(swp_entry_t entry) { if (migration_entry_supports_ad()) return swp_offset(entry) & SWP_MIG_DIRTY; /* Keep the old behavior of clean page after migration */ return false; } extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address); extern void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *pte); #else /* CONFIG_MIGRATION */ static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) { return swp_entry(0, 0); } static inline int is_migration_entry(swp_entry_t swp) { return 0; } static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { } static inline void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *pte) { } static inline int is_writable_migration_entry(swp_entry_t entry) { return 0; } static inline int is_readable_migration_entry(swp_entry_t entry) { return 0; } static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) { return entry; } static inline bool is_migration_entry_young(swp_entry_t entry) { return false; } static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) { return entry; } static inline bool is_migration_entry_dirty(swp_entry_t entry) { return false; } #endif /* CONFIG_MIGRATION */ #ifdef CONFIG_MEMORY_FAILURE /* * Support for hardware poisoned pages */ static inline swp_entry_t make_hwpoison_entry(struct page *page) { BUG_ON(!PageLocked(page)); return swp_entry(SWP_HWPOISON, page_to_pfn(page)); } static inline int is_hwpoison_entry(swp_entry_t entry) { return swp_type(entry) == SWP_HWPOISON; } #else static inline swp_entry_t make_hwpoison_entry(struct page *page) { return swp_entry(0, 0); } static inline int is_hwpoison_entry(swp_entry_t swp) { return 0; } #endif typedef unsigned long pte_marker; #define PTE_MARKER_UFFD_WP BIT(0) /* * "Poisoned" here is meant in the very general sense of "future accesses are * invalid", instead of referring very specifically to hardware memory errors. * This marker is meant to represent any of various different causes of this. * * Note that, when encountered by the faulting logic, PTEs with this marker will * result in VM_FAULT_HWPOISON and thus regardless trigger hardware memory error * logic. */ #define PTE_MARKER_POISONED BIT(1) /* * Indicates that, on fault, this PTE will case a SIGSEGV signal to be * sent. This means guard markers behave in effect as if the region were mapped * PROT_NONE, rather than if they were a memory hole or equivalent. */ #define PTE_MARKER_GUARD BIT(2) #define PTE_MARKER_MASK (BIT(3) - 1) static inline swp_entry_t make_pte_marker_entry(pte_marker marker) { return swp_entry(SWP_PTE_MARKER, marker); } static inline bool is_pte_marker_entry(swp_entry_t entry) { return swp_type(entry) == SWP_PTE_MARKER; } static inline pte_marker pte_marker_get(swp_entry_t entry) { return swp_offset(entry) & PTE_MARKER_MASK; } static inline bool is_pte_marker(pte_t pte) { return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte)); } static inline pte_t make_pte_marker(pte_marker marker) { return swp_entry_to_pte(make_pte_marker_entry(marker)); } static inline swp_entry_t make_poisoned_swp_entry(void) { return make_pte_marker_entry(PTE_MARKER_POISONED); } static inline int is_poisoned_swp_entry(swp_entry_t entry) { return is_pte_marker_entry(entry) && (pte_marker_get(entry) & PTE_MARKER_POISONED); } static inline swp_entry_t make_guard_swp_entry(void) { return make_pte_marker_entry(PTE_MARKER_GUARD); } static inline int is_guard_swp_entry(swp_entry_t entry) { return is_pte_marker_entry(entry) && (pte_marker_get(entry) & PTE_MARKER_GUARD); } /* * This is a special version to check pte_none() just to cover the case when * the pte is a pte marker. It existed because in many cases the pte marker * should be seen as a none pte; it's just that we have stored some information * onto the none pte so it becomes not-none any more. * * It should be used when the pte is file-backed, ram-based and backing * userspace pages, like shmem. It is not needed upon pgtables that do not * support pte markers at all. For example, it's not needed on anonymous * memory, kernel-only memory (including when the system is during-boot), * non-ram based generic file-system. It's fine to be used even there, but the * extra pte marker check will be pure overhead. */ static inline int pte_none_mostly(pte_t pte) { return pte_none(pte) || is_pte_marker(pte); } static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry) { struct page *p = pfn_to_page(swp_offset_pfn(entry)); /* * Any use of migration entries may only occur while the * corresponding page is locked */ BUG_ON(is_migration_entry(entry) && !PageLocked(p)); return p; } static inline struct folio *pfn_swap_entry_folio(swp_entry_t entry) { struct folio *folio = pfn_folio(swp_offset_pfn(entry)); /* * Any use of migration entries may only occur while the * corresponding folio is locked */ BUG_ON(is_migration_entry(entry) && !folio_test_locked(folio)); return folio; } /* * A pfn swap entry is a special type of swap entry that always has a pfn stored * in the swap offset. They can either be used to represent unaddressable device * memory, to restrict access to a page undergoing migration or to represent a * pfn which has been hwpoisoned and unmapped. */ static inline bool is_pfn_swap_entry(swp_entry_t entry) { /* Make sure the swp offset can always store the needed fields */ BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS); return is_migration_entry(entry) || is_device_private_entry(entry) || is_device_exclusive_entry(entry) || is_hwpoison_entry(entry); } struct page_vma_mapped_walk; #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page); extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new); extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { swp_entry_t arch_entry; if (pmd_swp_soft_dirty(pmd)) pmd = pmd_swp_clear_soft_dirty(pmd); if (pmd_swp_uffd_wp(pmd)) pmd = pmd_swp_clear_uffd_wp(pmd); arch_entry = __pmd_to_swp_entry(pmd); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pmd(arch_entry); } static inline int is_pmd_migration_entry(pmd_t pmd) { return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); } #else /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page) { BUILD_BUG(); } static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) { BUILD_BUG(); } static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { return swp_entry(0, 0); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { return __pmd(0); } static inline int is_pmd_migration_entry(pmd_t pmd) { return 0; } #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ static inline int non_swap_entry(swp_entry_t entry) { return swp_type(entry) >= MAX_SWAPFILES; } #endif /* CONFIG_MMU */ #endif /* _LINUX_SWAPOPS_H */