/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TYPES_H #define _LINUX_TYPES_H #define __EXPORTED_HEADERS__ #include #ifndef __ASSEMBLY__ #define DECLARE_BITMAP(name,bits) \ unsigned long name[BITS_TO_LONGS(bits)] #ifdef __SIZEOF_INT128__ typedef __s128 s128; typedef __u128 u128; #endif typedef u32 __kernel_dev_t; typedef __kernel_fd_set fd_set; typedef __kernel_dev_t dev_t; typedef __kernel_ulong_t ino_t; typedef __kernel_mode_t mode_t; typedef unsigned short umode_t; typedef u32 nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_daddr_t daddr_t; typedef __kernel_key_t key_t; typedef __kernel_suseconds_t suseconds_t; typedef __kernel_timer_t timer_t; typedef __kernel_clockid_t clockid_t; typedef __kernel_mqd_t mqd_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_uid16_t uid16_t; typedef __kernel_gid16_t gid16_t; typedef unsigned long uintptr_t; typedef long intptr_t; #ifdef CONFIG_HAVE_UID16 /* This is defined by include/asm-{arch}/posix_types.h */ typedef __kernel_old_uid_t old_uid_t; typedef __kernel_old_gid_t old_gid_t; #endif /* CONFIG_UID16 */ #if defined(__GNUC__) typedef __kernel_loff_t loff_t; #endif /* * The following typedefs are also protected by individual ifdefs for * historical reasons: */ #ifndef _SIZE_T #define _SIZE_T typedef __kernel_size_t size_t; #endif #ifndef _SSIZE_T #define _SSIZE_T typedef __kernel_ssize_t ssize_t; #endif #ifndef _PTRDIFF_T #define _PTRDIFF_T typedef __kernel_ptrdiff_t ptrdiff_t; #endif #ifndef _CLOCK_T #define _CLOCK_T typedef __kernel_clock_t clock_t; #endif #ifndef _CADDR_T #define _CADDR_T typedef __kernel_caddr_t caddr_t; #endif /* bsd */ typedef unsigned char u_char; typedef unsigned short u_short; typedef unsigned int u_int; typedef unsigned long u_long; /* sysv */ typedef unsigned char unchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; #ifndef __BIT_TYPES_DEFINED__ #define __BIT_TYPES_DEFINED__ typedef u8 u_int8_t; typedef s8 int8_t; typedef u16 u_int16_t; typedef s16 int16_t; typedef u32 u_int32_t; typedef s32 int32_t; #endif /* !(__BIT_TYPES_DEFINED__) */ typedef u8 uint8_t; typedef u16 uint16_t; typedef u32 uint32_t; #if defined(__GNUC__) typedef u64 uint64_t; typedef u64 u_int64_t; typedef s64 int64_t; #endif /* These are the special 64-bit data types that are 8-byte aligned */ #define aligned_u64 __aligned_u64 #define aligned_s64 __aligned_s64 #define aligned_be64 __aligned_be64 #define aligned_le64 __aligned_le64 /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * The type used for indexing onto a disc or disc partition. * * Linux always considers sectors to be 512 bytes long independently * of the devices real block size. * * blkcnt_t is the type of the inode's block count. */ typedef u64 sector_t; typedef u64 blkcnt_t; /* * The type of an index into the pagecache. */ #define pgoff_t unsigned long /* * A dma_addr_t can hold any valid DMA address, i.e., any address returned * by the DMA API. * * If the DMA API only uses 32-bit addresses, dma_addr_t need only be 32 * bits wide. Bus addresses, e.g., PCI BARs, may be wider than 32 bits, * but drivers do memory-mapped I/O to ioremapped kernel virtual addresses, * so they don't care about the size of the actual bus addresses. */ #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT typedef u64 dma_addr_t; #else typedef u32 dma_addr_t; #endif typedef unsigned int __bitwise gfp_t; typedef unsigned int __bitwise slab_flags_t; typedef unsigned int __bitwise fmode_t; #ifdef CONFIG_PHYS_ADDR_T_64BIT typedef u64 phys_addr_t; #else typedef u32 phys_addr_t; #endif typedef phys_addr_t resource_size_t; /* * This type is the placeholder for a hardware interrupt number. It has to be * big enough to enclose whatever representation is used by a given platform. */ typedef unsigned long irq_hw_number_t; typedef struct { int counter; } atomic_t; #define ATOMIC_INIT(i) { (i) } #ifdef CONFIG_64BIT typedef struct { s64 counter; } atomic64_t; #endif typedef struct { atomic_t refcnt; } rcuref_t; #define RCUREF_INIT(i) { .refcnt = ATOMIC_INIT(i - 1) } struct list_head { struct list_head *next, *prev; }; struct hlist_head { struct hlist_node *first; }; struct hlist_node { struct hlist_node *next, **pprev; }; struct ustat { __kernel_daddr_t f_tfree; #ifdef CONFIG_ARCH_32BIT_USTAT_F_TINODE unsigned int f_tinode; #else unsigned long f_tinode; #endif char f_fname[6]; char f_fpack[6]; }; /** * struct callback_head - callback structure for use with RCU and task_work * @next: next update requests in a list * @func: actual update function to call after the grace period. * * The struct is aligned to size of pointer. On most architectures it happens * naturally due ABI requirements, but some architectures (like CRIS) have * weird ABI and we need to ask it explicitly. * * The alignment is required to guarantee that bit 0 of @next will be * clear under normal conditions -- as long as we use call_rcu() or * call_srcu() to queue the callback. * * This guarantee is important for few reasons: * - future call_rcu_lazy() will make use of lower bits in the pointer; * - the structure shares storage space in struct page with @compound_head, * which encode PageTail() in bit 0. The guarantee is needed to avoid * false-positive PageTail(). */ struct callback_head { struct callback_head *next; void (*func)(struct callback_head *head); } __attribute__((aligned(sizeof(void *)))); #define rcu_head callback_head typedef void (*rcu_callback_t)(struct rcu_head *head); typedef void (*call_rcu_func_t)(struct rcu_head *head, rcu_callback_t func); typedef void (*swap_r_func_t)(void *a, void *b, int size, const void *priv); typedef void (*swap_func_t)(void *a, void *b, int size); typedef int (*cmp_r_func_t)(const void *a, const void *b, const void *priv); typedef int (*cmp_func_t)(const void *a, const void *b); #endif /* __ASSEMBLY__ */ #endif /* _LINUX_TYPES_H */