/* CPU control. * (C) 2001, 2002, 2003, 2004 Rusty Russell * * This code is licenced under the GPL. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "smpboot.h" /** * struct cpuhp_cpu_state - Per cpu hotplug state storage * @state: The current cpu state * @target: The target state * @fail: Current CPU hotplug callback state * @thread: Pointer to the hotplug thread * @should_run: Thread should execute * @rollback: Perform a rollback * @single: Single callback invocation * @bringup: Single callback bringup or teardown selector * @node: Remote CPU node; for multi-instance, do a * single entry callback for install/remove * @last: For multi-instance rollback, remember how far we got * @cb_state: The state for a single callback (install/uninstall) * @result: Result of the operation * @ap_sync_state: State for AP synchronization * @done_up: Signal completion to the issuer of the task for cpu-up * @done_down: Signal completion to the issuer of the task for cpu-down */ struct cpuhp_cpu_state { enum cpuhp_state state; enum cpuhp_state target; enum cpuhp_state fail; #ifdef CONFIG_SMP struct task_struct *thread; bool should_run; bool rollback; bool single; bool bringup; struct hlist_node *node; struct hlist_node *last; enum cpuhp_state cb_state; int result; atomic_t ap_sync_state; struct completion done_up; struct completion done_down; #endif }; static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { .fail = CPUHP_INVALID, }; #ifdef CONFIG_SMP cpumask_t cpus_booted_once_mask; #endif #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) static struct lockdep_map cpuhp_state_up_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); static struct lockdep_map cpuhp_state_down_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); static inline void cpuhp_lock_acquire(bool bringup) { lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); } static inline void cpuhp_lock_release(bool bringup) { lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); } #else static inline void cpuhp_lock_acquire(bool bringup) { } static inline void cpuhp_lock_release(bool bringup) { } #endif /** * struct cpuhp_step - Hotplug state machine step * @name: Name of the step * @startup: Startup function of the step * @teardown: Teardown function of the step * @cant_stop: Bringup/teardown can't be stopped at this step * @multi_instance: State has multiple instances which get added afterwards */ struct cpuhp_step { const char *name; union { int (*single)(unsigned int cpu); int (*multi)(unsigned int cpu, struct hlist_node *node); } startup; union { int (*single)(unsigned int cpu); int (*multi)(unsigned int cpu, struct hlist_node *node); } teardown; /* private: */ struct hlist_head list; /* public: */ bool cant_stop; bool multi_instance; }; static DEFINE_MUTEX(cpuhp_state_mutex); static struct cpuhp_step cpuhp_hp_states[]; static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) { return cpuhp_hp_states + state; } static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) { return bringup ? !step->startup.single : !step->teardown.single; } /** * cpuhp_invoke_callback - Invoke the callbacks for a given state * @cpu: The cpu for which the callback should be invoked * @state: The state to do callbacks for * @bringup: True if the bringup callback should be invoked * @node: For multi-instance, do a single entry callback for install/remove * @lastp: For multi-instance rollback, remember how far we got * * Called from cpu hotplug and from the state register machinery. * * Return: %0 on success or a negative errno code */ static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node, struct hlist_node **lastp) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); struct cpuhp_step *step = cpuhp_get_step(state); int (*cbm)(unsigned int cpu, struct hlist_node *node); int (*cb)(unsigned int cpu); int ret, cnt; if (st->fail == state) { st->fail = CPUHP_INVALID; return -EAGAIN; } if (cpuhp_step_empty(bringup, step)) { WARN_ON_ONCE(1); return 0; } if (!step->multi_instance) { WARN_ON_ONCE(lastp && *lastp); cb = bringup ? step->startup.single : step->teardown.single; trace_cpuhp_enter(cpu, st->target, state, cb); ret = cb(cpu); trace_cpuhp_exit(cpu, st->state, state, ret); return ret; } cbm = bringup ? step->startup.multi : step->teardown.multi; /* Single invocation for instance add/remove */ if (node) { WARN_ON_ONCE(lastp && *lastp); trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); return ret; } /* State transition. Invoke on all instances */ cnt = 0; hlist_for_each(node, &step->list) { if (lastp && node == *lastp) break; trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); if (ret) { if (!lastp) goto err; *lastp = node; return ret; } cnt++; } if (lastp) *lastp = NULL; return 0; err: /* Rollback the instances if one failed */ cbm = !bringup ? step->startup.multi : step->teardown.multi; if (!cbm) return ret; hlist_for_each(node, &step->list) { if (!cnt--) break; trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); /* * Rollback must not fail, */ WARN_ON_ONCE(ret); } return ret; } #ifdef CONFIG_SMP static bool cpuhp_is_ap_state(enum cpuhp_state state) { /* * The extra check for CPUHP_TEARDOWN_CPU is only for documentation * purposes as that state is handled explicitly in cpu_down. */ return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; } static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) { struct completion *done = bringup ? &st->done_up : &st->done_down; wait_for_completion(done); } static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) { struct completion *done = bringup ? &st->done_up : &st->done_down; complete(done); } /* * The former STARTING/DYING states, ran with IRQs disabled and must not fail. */ static bool cpuhp_is_atomic_state(enum cpuhp_state state) { return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; } /* Synchronization state management */ enum cpuhp_sync_state { SYNC_STATE_DEAD, SYNC_STATE_KICKED, SYNC_STATE_SHOULD_DIE, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE, SYNC_STATE_ONLINE, }; #ifdef CONFIG_HOTPLUG_CORE_SYNC /** * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown * @state: The synchronization state to set * * No synchronization point. Just update of the synchronization state, but implies * a full barrier so that the AP changes are visible before the control CPU proceeds. */ static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); (void)atomic_xchg(st, state); } void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, enum cpuhp_sync_state next_state) { atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); ktime_t now, end, start = ktime_get(); int sync; end = start + 10ULL * NSEC_PER_SEC; sync = atomic_read(st); while (1) { if (sync == state) { if (!atomic_try_cmpxchg(st, &sync, next_state)) continue; return true; } now = ktime_get(); if (now > end) { /* Timeout. Leave the state unchanged */ return false; } else if (now - start < NSEC_PER_MSEC) { /* Poll for one millisecond */ arch_cpuhp_sync_state_poll(); } else { usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); } sync = atomic_read(st); } return true; } #else /* CONFIG_HOTPLUG_CORE_SYNC */ static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD /** * cpuhp_ap_report_dead - Update synchronization state to DEAD * * No synchronization point. Just update of the synchronization state. */ void cpuhp_ap_report_dead(void) { cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); } void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } /* * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down * because the AP cannot issue complete() at this stage. */ static void cpuhp_bp_sync_dead(unsigned int cpu) { atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); int sync = atomic_read(st); do { /* CPU can have reported dead already. Don't overwrite that! */ if (sync == SYNC_STATE_DEAD) break; } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { /* CPU reached dead state. Invoke the cleanup function */ arch_cpuhp_cleanup_dead_cpu(cpu); return; } /* No further action possible. Emit message and give up. */ pr_err("CPU%u failed to report dead state\n", cpu); } #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL /** * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive * * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits * for the BP to release it. */ void cpuhp_ap_sync_alive(void) { atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); /* Wait for the control CPU to release it. */ while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) cpu_relax(); } static bool cpuhp_can_boot_ap(unsigned int cpu) { atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); int sync = atomic_read(st); again: switch (sync) { case SYNC_STATE_DEAD: /* CPU is properly dead */ break; case SYNC_STATE_KICKED: /* CPU did not come up in previous attempt */ break; case SYNC_STATE_ALIVE: /* CPU is stuck cpuhp_ap_sync_alive(). */ break; default: /* CPU failed to report online or dead and is in limbo state. */ return false; } /* Prepare for booting */ if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) goto again; return true; } void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } /* * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up * because the AP cannot issue complete() so early in the bringup. */ static int cpuhp_bp_sync_alive(unsigned int cpu) { int ret = 0; if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) return 0; if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { pr_err("CPU%u failed to report alive state\n", cpu); ret = -EIO; } /* Let the architecture cleanup the kick alive mechanics. */ arch_cpuhp_cleanup_kick_cpu(cpu); return ret; } #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ /* Serializes the updates to cpu_online_mask, cpu_present_mask */ static DEFINE_MUTEX(cpu_add_remove_lock); bool cpuhp_tasks_frozen; EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); /* * The following two APIs (cpu_maps_update_begin/done) must be used when * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. */ void cpu_maps_update_begin(void) { mutex_lock(&cpu_add_remove_lock); } void cpu_maps_update_done(void) { mutex_unlock(&cpu_add_remove_lock); } /* * If set, cpu_up and cpu_down will return -EBUSY and do nothing. * Should always be manipulated under cpu_add_remove_lock */ static int cpu_hotplug_disabled; #ifdef CONFIG_HOTPLUG_CPU DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); static bool cpu_hotplug_offline_disabled __ro_after_init; void cpus_read_lock(void) { percpu_down_read(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_lock); int cpus_read_trylock(void) { return percpu_down_read_trylock(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_trylock); void cpus_read_unlock(void) { percpu_up_read(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_unlock); void cpus_write_lock(void) { percpu_down_write(&cpu_hotplug_lock); } void cpus_write_unlock(void) { percpu_up_write(&cpu_hotplug_lock); } void lockdep_assert_cpus_held(void) { /* * We can't have hotplug operations before userspace starts running, * and some init codepaths will knowingly not take the hotplug lock. * This is all valid, so mute lockdep until it makes sense to report * unheld locks. */ if (system_state < SYSTEM_RUNNING) return; percpu_rwsem_assert_held(&cpu_hotplug_lock); } #ifdef CONFIG_LOCKDEP int lockdep_is_cpus_held(void) { return percpu_rwsem_is_held(&cpu_hotplug_lock); } #endif static void lockdep_acquire_cpus_lock(void) { rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); } static void lockdep_release_cpus_lock(void) { rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); } /* Declare CPU offlining not supported */ void cpu_hotplug_disable_offlining(void) { cpu_maps_update_begin(); cpu_hotplug_offline_disabled = true; cpu_maps_update_done(); } /* * Wait for currently running CPU hotplug operations to complete (if any) and * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the * hotplug path before performing hotplug operations. So acquiring that lock * guarantees mutual exclusion from any currently running hotplug operations. */ void cpu_hotplug_disable(void) { cpu_maps_update_begin(); cpu_hotplug_disabled++; cpu_maps_update_done(); } EXPORT_SYMBOL_GPL(cpu_hotplug_disable); static void __cpu_hotplug_enable(void) { if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) return; cpu_hotplug_disabled--; } void cpu_hotplug_enable(void) { cpu_maps_update_begin(); __cpu_hotplug_enable(); cpu_maps_update_done(); } EXPORT_SYMBOL_GPL(cpu_hotplug_enable); #else static void lockdep_acquire_cpus_lock(void) { } static void lockdep_release_cpus_lock(void) { } #endif /* CONFIG_HOTPLUG_CPU */ /* * Architectures that need SMT-specific errata handling during SMT hotplug * should override this. */ void __weak arch_smt_update(void) { } #ifdef CONFIG_HOTPLUG_SMT enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; static unsigned int cpu_smt_max_threads __ro_after_init; unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; void __init cpu_smt_disable(bool force) { if (!cpu_smt_possible()) return; if (force) { pr_info("SMT: Force disabled\n"); cpu_smt_control = CPU_SMT_FORCE_DISABLED; } else { pr_info("SMT: disabled\n"); cpu_smt_control = CPU_SMT_DISABLED; } cpu_smt_num_threads = 1; } /* * The decision whether SMT is supported can only be done after the full * CPU identification. Called from architecture code. */ void __init cpu_smt_set_num_threads(unsigned int num_threads, unsigned int max_threads) { WARN_ON(!num_threads || (num_threads > max_threads)); if (max_threads == 1) cpu_smt_control = CPU_SMT_NOT_SUPPORTED; cpu_smt_max_threads = max_threads; /* * If SMT has been disabled via the kernel command line or SMT is * not supported, set cpu_smt_num_threads to 1 for consistency. * If enabled, take the architecture requested number of threads * to bring up into account. */ if (cpu_smt_control != CPU_SMT_ENABLED) cpu_smt_num_threads = 1; else if (num_threads < cpu_smt_num_threads) cpu_smt_num_threads = num_threads; } static int __init smt_cmdline_disable(char *str) { cpu_smt_disable(str && !strcmp(str, "force")); return 0; } early_param("nosmt", smt_cmdline_disable); /* * For Archicture supporting partial SMT states check if the thread is allowed. * Otherwise this has already been checked through cpu_smt_max_threads when * setting the SMT level. */ static inline bool cpu_smt_thread_allowed(unsigned int cpu) { #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC return topology_smt_thread_allowed(cpu); #else return true; #endif } static inline bool cpu_bootable(unsigned int cpu) { if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) return true; /* All CPUs are bootable if controls are not configured */ if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) return true; /* All CPUs are bootable if CPU is not SMT capable */ if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) return true; if (topology_is_primary_thread(cpu)) return true; /* * On x86 it's required to boot all logical CPUs at least once so * that the init code can get a chance to set CR4.MCE on each * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any * core will shutdown the machine. */ return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); } /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ bool cpu_smt_possible(void) { return cpu_smt_control != CPU_SMT_FORCE_DISABLED && cpu_smt_control != CPU_SMT_NOT_SUPPORTED; } EXPORT_SYMBOL_GPL(cpu_smt_possible); #else static inline bool cpu_bootable(unsigned int cpu) { return true; } #endif static inline enum cpuhp_state cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; bool bringup = st->state < target; st->rollback = false; st->last = NULL; st->target = target; st->single = false; st->bringup = bringup; if (cpu_dying(cpu) != !bringup) set_cpu_dying(cpu, !bringup); return prev_state; } static inline void cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) { bool bringup = !st->bringup; st->target = prev_state; /* * Already rolling back. No need invert the bringup value or to change * the current state. */ if (st->rollback) return; st->rollback = true; /* * If we have st->last we need to undo partial multi_instance of this * state first. Otherwise start undo at the previous state. */ if (!st->last) { if (st->bringup) st->state--; else st->state++; } st->bringup = bringup; if (cpu_dying(cpu) != !bringup) set_cpu_dying(cpu, !bringup); } /* Regular hotplug invocation of the AP hotplug thread */ static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) { if (!st->single && st->state == st->target) return; st->result = 0; /* * Make sure the above stores are visible before should_run becomes * true. Paired with the mb() above in cpuhp_thread_fun() */ smp_mb(); st->should_run = true; wake_up_process(st->thread); wait_for_ap_thread(st, st->bringup); } static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state; int ret; prev_state = cpuhp_set_state(cpu, st, target); __cpuhp_kick_ap(st); if ((ret = st->result)) { cpuhp_reset_state(cpu, st, prev_state); __cpuhp_kick_ap(st); } return ret; } static int bringup_wait_for_ap_online(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ wait_for_ap_thread(st, true); if (WARN_ON_ONCE((!cpu_online(cpu)))) return -ECANCELED; /* Unpark the hotplug thread of the target cpu */ kthread_unpark(st->thread); /* * SMT soft disabling on X86 requires to bring the CPU out of the * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The * CPU marked itself as booted_once in notify_cpu_starting() so the * cpu_bootable() check will now return false if this is not the * primary sibling. */ if (!cpu_bootable(cpu)) return -ECANCELED; return 0; } #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP static int cpuhp_kick_ap_alive(unsigned int cpu) { if (!cpuhp_can_boot_ap(cpu)) return -EAGAIN; return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); } static int cpuhp_bringup_ap(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int ret; /* * Some architectures have to walk the irq descriptors to * setup the vector space for the cpu which comes online. * Prevent irq alloc/free across the bringup. */ irq_lock_sparse(); ret = cpuhp_bp_sync_alive(cpu); if (ret) goto out_unlock; ret = bringup_wait_for_ap_online(cpu); if (ret) goto out_unlock; irq_unlock_sparse(); if (st->target <= CPUHP_AP_ONLINE_IDLE) return 0; return cpuhp_kick_ap(cpu, st, st->target); out_unlock: irq_unlock_sparse(); return ret; } #else static int bringup_cpu(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); struct task_struct *idle = idle_thread_get(cpu); int ret; if (!cpuhp_can_boot_ap(cpu)) return -EAGAIN; /* * Some architectures have to walk the irq descriptors to * setup the vector space for the cpu which comes online. * * Prevent irq alloc/free across the bringup by acquiring the * sparse irq lock. Hold it until the upcoming CPU completes the * startup in cpuhp_online_idle() which allows to avoid * intermediate synchronization points in the architecture code. */ irq_lock_sparse(); ret = __cpu_up(cpu, idle); if (ret) goto out_unlock; ret = cpuhp_bp_sync_alive(cpu); if (ret) goto out_unlock; ret = bringup_wait_for_ap_online(cpu); if (ret) goto out_unlock; irq_unlock_sparse(); if (st->target <= CPUHP_AP_ONLINE_IDLE) return 0; return cpuhp_kick_ap(cpu, st, st->target); out_unlock: irq_unlock_sparse(); return ret; } #endif static int finish_cpu(unsigned int cpu) { struct task_struct *idle = idle_thread_get(cpu); struct mm_struct *mm = idle->active_mm; /* * idle_task_exit() will have switched to &init_mm, now * clean up any remaining active_mm state. */ if (mm != &init_mm) idle->active_mm = &init_mm; mmdrop_lazy_tlb(mm); return 0; } /* * Hotplug state machine related functions */ /* * Get the next state to run. Empty ones will be skipped. Returns true if a * state must be run. * * st->state will be modified ahead of time, to match state_to_run, as if it * has already ran. */ static bool cpuhp_next_state(bool bringup, enum cpuhp_state *state_to_run, struct cpuhp_cpu_state *st, enum cpuhp_state target) { do { if (bringup) { if (st->state >= target) return false; *state_to_run = ++st->state; } else { if (st->state <= target) return false; *state_to_run = st->state--; } if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) break; } while (true); return true; } static int __cpuhp_invoke_callback_range(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target, bool nofail) { enum cpuhp_state state; int ret = 0; while (cpuhp_next_state(bringup, &state, st, target)) { int err; err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); if (!err) continue; if (nofail) { pr_warn("CPU %u %s state %s (%d) failed (%d)\n", cpu, bringup ? "UP" : "DOWN", cpuhp_get_step(st->state)->name, st->state, err); ret = -1; } else { ret = err; break; } } return ret; } static inline int cpuhp_invoke_callback_range(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); } static inline void cpuhp_invoke_callback_range_nofail(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); } static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) { if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) return true; /* * When CPU hotplug is disabled, then taking the CPU down is not * possible because takedown_cpu() and the architecture and * subsystem specific mechanisms are not available. So the CPU * which would be completely unplugged again needs to stay around * in the current state. */ return st->state <= CPUHP_BRINGUP_CPU; } static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; int ret = 0; ret = cpuhp_invoke_callback_range(true, cpu, st, target); if (ret) { pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", ret, cpu, cpuhp_get_step(st->state)->name, st->state); cpuhp_reset_state(cpu, st, prev_state); if (can_rollback_cpu(st)) WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, prev_state)); } return ret; } /* * The cpu hotplug threads manage the bringup and teardown of the cpus */ static int cpuhp_should_run(unsigned int cpu) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); return st->should_run; } /* * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke * callbacks when a state gets [un]installed at runtime. * * Each invocation of this function by the smpboot thread does a single AP * state callback. * * It has 3 modes of operation: * - single: runs st->cb_state * - up: runs ++st->state, while st->state < st->target * - down: runs st->state--, while st->state > st->target * * When complete or on error, should_run is cleared and the completion is fired. */ static void cpuhp_thread_fun(unsigned int cpu) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); bool bringup = st->bringup; enum cpuhp_state state; if (WARN_ON_ONCE(!st->should_run)) return; /* * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures * that if we see ->should_run we also see the rest of the state. */ smp_mb(); /* * The BP holds the hotplug lock, but we're now running on the AP, * ensure that anybody asserting the lock is held, will actually find * it so. */ lockdep_acquire_cpus_lock(); cpuhp_lock_acquire(bringup); if (st->single) { state = st->cb_state; st->should_run = false; } else { st->should_run = cpuhp_next_state(bringup, &state, st, st->target); if (!st->should_run) goto end; } WARN_ON_ONCE(!cpuhp_is_ap_state(state)); if (cpuhp_is_atomic_state(state)) { local_irq_disable(); st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); local_irq_enable(); /* * STARTING/DYING must not fail! */ WARN_ON_ONCE(st->result); } else { st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); } if (st->result) { /* * If we fail on a rollback, we're up a creek without no * paddle, no way forward, no way back. We loose, thanks for * playing. */ WARN_ON_ONCE(st->rollback); st->should_run = false; } end: cpuhp_lock_release(bringup); lockdep_release_cpus_lock(); if (!st->should_run) complete_ap_thread(st, bringup); } /* Invoke a single callback on a remote cpu */ static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int ret; if (!cpu_online(cpu)) return 0; cpuhp_lock_acquire(false); cpuhp_lock_release(false); cpuhp_lock_acquire(true); cpuhp_lock_release(true); /* * If we are up and running, use the hotplug thread. For early calls * we invoke the thread function directly. */ if (!st->thread) return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); st->rollback = false; st->last = NULL; st->node = node; st->bringup = bringup; st->cb_state = state; st->single = true; __cpuhp_kick_ap(st); /* * If we failed and did a partial, do a rollback. */ if ((ret = st->result) && st->last) { st->rollback = true; st->bringup = !bringup; __cpuhp_kick_ap(st); } /* * Clean up the leftovers so the next hotplug operation wont use stale * data. */ st->node = st->last = NULL; return ret; } static int cpuhp_kick_ap_work(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); enum cpuhp_state prev_state = st->state; int ret; cpuhp_lock_acquire(false); cpuhp_lock_release(false); cpuhp_lock_acquire(true); cpuhp_lock_release(true); trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); ret = cpuhp_kick_ap(cpu, st, st->target); trace_cpuhp_exit(cpu, st->state, prev_state, ret); return ret; } static struct smp_hotplug_thread cpuhp_threads = { .store = &cpuhp_state.thread, .thread_should_run = cpuhp_should_run, .thread_fn = cpuhp_thread_fun, .thread_comm = "cpuhp/%u", .selfparking = true, }; static __init void cpuhp_init_state(void) { struct cpuhp_cpu_state *st; int cpu; for_each_possible_cpu(cpu) { st = per_cpu_ptr(&cpuhp_state, cpu); init_completion(&st->done_up); init_completion(&st->done_down); } } void __init cpuhp_threads_init(void) { cpuhp_init_state(); BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); kthread_unpark(this_cpu_read(cpuhp_state.thread)); } #ifdef CONFIG_HOTPLUG_CPU #ifndef arch_clear_mm_cpumask_cpu #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) #endif /** * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU * @cpu: a CPU id * * This function walks all processes, finds a valid mm struct for each one and * then clears a corresponding bit in mm's cpumask. While this all sounds * trivial, there are various non-obvious corner cases, which this function * tries to solve in a safe manner. * * Also note that the function uses a somewhat relaxed locking scheme, so it may * be called only for an already offlined CPU. */ void clear_tasks_mm_cpumask(int cpu) { struct task_struct *p; /* * This function is called after the cpu is taken down and marked * offline, so its not like new tasks will ever get this cpu set in * their mm mask. -- Peter Zijlstra * Thus, we may use rcu_read_lock() here, instead of grabbing * full-fledged tasklist_lock. */ WARN_ON(cpu_online(cpu)); rcu_read_lock(); for_each_process(p) { struct task_struct *t; /* * Main thread might exit, but other threads may still have * a valid mm. Find one. */ t = find_lock_task_mm(p); if (!t) continue; arch_clear_mm_cpumask_cpu(cpu, t->mm); task_unlock(t); } rcu_read_unlock(); } /* Take this CPU down. */ static int take_cpu_down(void *_param) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); int err, cpu = smp_processor_id(); /* Ensure this CPU doesn't handle any more interrupts. */ err = __cpu_disable(); if (err < 0) return err; /* * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going * down, that the current state is CPUHP_TEARDOWN_CPU - 1. */ WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); /* * Invoke the former CPU_DYING callbacks. DYING must not fail! */ cpuhp_invoke_callback_range_nofail(false, cpu, st, target); /* Park the stopper thread */ stop_machine_park(cpu); return 0; } static int takedown_cpu(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int err; /* Park the smpboot threads */ kthread_park(st->thread); /* * Prevent irq alloc/free while the dying cpu reorganizes the * interrupt affinities. */ irq_lock_sparse(); /* * So now all preempt/rcu users must observe !cpu_active(). */ err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); if (err) { /* CPU refused to die */ irq_unlock_sparse(); /* Unpark the hotplug thread so we can rollback there */ kthread_unpark(st->thread); return err; } BUG_ON(cpu_online(cpu)); /* * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed * all runnable tasks from the CPU, there's only the idle task left now * that the migration thread is done doing the stop_machine thing. * * Wait for the stop thread to go away. */ wait_for_ap_thread(st, false); BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); /* Interrupts are moved away from the dying cpu, reenable alloc/free */ irq_unlock_sparse(); hotplug_cpu__broadcast_tick_pull(cpu); /* This actually kills the CPU. */ __cpu_die(cpu); cpuhp_bp_sync_dead(cpu); lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); /* * Callbacks must be re-integrated right away to the RCU state machine. * Otherwise an RCU callback could block a further teardown function * waiting for its completion. */ rcutree_migrate_callbacks(cpu); return 0; } static void cpuhp_complete_idle_dead(void *arg) { struct cpuhp_cpu_state *st = arg; complete_ap_thread(st, false); } void cpuhp_report_idle_dead(void) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); BUG_ON(st->state != CPUHP_AP_OFFLINE); tick_assert_timekeeping_handover(); rcutree_report_cpu_dead(); st->state = CPUHP_AP_IDLE_DEAD; /* * We cannot call complete after rcutree_report_cpu_dead() so we delegate it * to an online cpu. */ smp_call_function_single(cpumask_first(cpu_online_mask), cpuhp_complete_idle_dead, st, 0); } static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; int ret = 0; ret = cpuhp_invoke_callback_range(false, cpu, st, target); if (ret) { pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", ret, cpu, cpuhp_get_step(st->state)->name, st->state); cpuhp_reset_state(cpu, st, prev_state); if (st->state < prev_state) WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, prev_state)); } return ret; } /* Requires cpu_add_remove_lock to be held */ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int prev_state, ret = 0; if (num_online_cpus() == 1) return -EBUSY; if (!cpu_present(cpu)) return -EINVAL; cpus_write_lock(); cpuhp_tasks_frozen = tasks_frozen; prev_state = cpuhp_set_state(cpu, st, target); /* * If the current CPU state is in the range of the AP hotplug thread, * then we need to kick the thread. */ if (st->state > CPUHP_TEARDOWN_CPU) { st->target = max((int)target, CPUHP_TEARDOWN_CPU); ret = cpuhp_kick_ap_work(cpu); /* * The AP side has done the error rollback already. Just * return the error code.. */ if (ret) goto out; /* * We might have stopped still in the range of the AP hotplug * thread. Nothing to do anymore. */ if (st->state > CPUHP_TEARDOWN_CPU) goto out; st->target = target; } /* * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need * to do the further cleanups. */ ret = cpuhp_down_callbacks(cpu, st, target); if (ret && st->state < prev_state) { if (st->state == CPUHP_TEARDOWN_CPU) { cpuhp_reset_state(cpu, st, prev_state); __cpuhp_kick_ap(st); } else { WARN(1, "DEAD callback error for CPU%d", cpu); } } out: cpus_write_unlock(); /* * Do post unplug cleanup. This is still protected against * concurrent CPU hotplug via cpu_add_remove_lock. */ lockup_detector_cleanup(); arch_smt_update(); return ret; } struct cpu_down_work { unsigned int cpu; enum cpuhp_state target; }; static long __cpu_down_maps_locked(void *arg) { struct cpu_down_work *work = arg; return _cpu_down(work->cpu, 0, work->target); } static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) { struct cpu_down_work work = { .cpu = cpu, .target = target, }; /* * If the platform does not support hotplug, report it explicitly to * differentiate it from a transient offlining failure. */ if (cpu_hotplug_offline_disabled) return -EOPNOTSUPP; if (cpu_hotplug_disabled) return -EBUSY; /* * Ensure that the control task does not run on the to be offlined * CPU to prevent a deadlock against cfs_b->period_timer. * Also keep at least one housekeeping cpu onlined to avoid generating * an empty sched_domain span. */ for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { if (cpu != work.cpu) return work_on_cpu(cpu, __cpu_down_maps_locked, &work); } return -EBUSY; } static int cpu_down(unsigned int cpu, enum cpuhp_state target) { int err; cpu_maps_update_begin(); err = cpu_down_maps_locked(cpu, target); cpu_maps_update_done(); return err; } /** * cpu_device_down - Bring down a cpu device * @dev: Pointer to the cpu device to offline * * This function is meant to be used by device core cpu subsystem only. * * Other subsystems should use remove_cpu() instead. * * Return: %0 on success or a negative errno code */ int cpu_device_down(struct device *dev) { return cpu_down(dev->id, CPUHP_OFFLINE); } int remove_cpu(unsigned int cpu) { int ret; lock_device_hotplug(); ret = device_offline(get_cpu_device(cpu)); unlock_device_hotplug(); return ret; } EXPORT_SYMBOL_GPL(remove_cpu); void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { unsigned int cpu; int error; cpu_maps_update_begin(); /* * Make certain the cpu I'm about to reboot on is online. * * This is inline to what migrate_to_reboot_cpu() already do. */ if (!cpu_online(primary_cpu)) primary_cpu = cpumask_first(cpu_online_mask); for_each_online_cpu(cpu) { if (cpu == primary_cpu) continue; error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); if (error) { pr_err("Failed to offline CPU%d - error=%d", cpu, error); break; } } /* * Ensure all but the reboot CPU are offline. */ BUG_ON(num_online_cpus() > 1); /* * Make sure the CPUs won't be enabled by someone else after this * point. Kexec will reboot to a new kernel shortly resetting * everything along the way. */ cpu_hotplug_disabled++; cpu_maps_update_done(); } #else #define takedown_cpu NULL #endif /*CONFIG_HOTPLUG_CPU*/ /** * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU * @cpu: cpu that just started * * It must be called by the arch code on the new cpu, before the new cpu * enables interrupts and before the "boot" cpu returns from __cpu_up(). */ void notify_cpu_starting(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ cpumask_set_cpu(cpu, &cpus_booted_once_mask); /* * STARTING must not fail! */ cpuhp_invoke_callback_range_nofail(true, cpu, st, target); } /* * Called from the idle task. Wake up the controlling task which brings the * hotplug thread of the upcoming CPU up and then delegates the rest of the * online bringup to the hotplug thread. */ void cpuhp_online_idle(enum cpuhp_state state) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); /* Happens for the boot cpu */ if (state != CPUHP_AP_ONLINE_IDLE) return; cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); /* * Unpark the stopper thread before we start the idle loop (and start * scheduling); this ensures the stopper task is always available. */ stop_machine_unpark(smp_processor_id()); st->state = CPUHP_AP_ONLINE_IDLE; complete_ap_thread(st, true); } /* Requires cpu_add_remove_lock to be held */ static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); struct task_struct *idle; int ret = 0; cpus_write_lock(); if (!cpu_present(cpu)) { ret = -EINVAL; goto out; } /* * The caller of cpu_up() might have raced with another * caller. Nothing to do. */ if (st->state >= target) goto out; if (st->state == CPUHP_OFFLINE) { /* Let it fail before we try to bring the cpu up */ idle = idle_thread_get(cpu); if (IS_ERR(idle)) { ret = PTR_ERR(idle); goto out; } /* * Reset stale stack state from the last time this CPU was online. */ scs_task_reset(idle); kasan_unpoison_task_stack(idle); } cpuhp_tasks_frozen = tasks_frozen; cpuhp_set_state(cpu, st, target); /* * If the current CPU state is in the range of the AP hotplug thread, * then we need to kick the thread once more. */ if (st->state > CPUHP_BRINGUP_CPU) { ret = cpuhp_kick_ap_work(cpu); /* * The AP side has done the error rollback already. Just * return the error code.. */ if (ret) goto out; } /* * Try to reach the target state. We max out on the BP at * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is * responsible for bringing it up to the target state. */ target = min((int)target, CPUHP_BRINGUP_CPU); ret = cpuhp_up_callbacks(cpu, st, target); out: cpus_write_unlock(); arch_smt_update(); return ret; } static int cpu_up(unsigned int cpu, enum cpuhp_state target) { int err = 0; if (!cpu_possible(cpu)) { pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", cpu); return -EINVAL; } err = try_online_node(cpu_to_node(cpu)); if (err) return err; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } if (!cpu_bootable(cpu)) { err = -EPERM; goto out; } err = _cpu_up(cpu, 0, target); out: cpu_maps_update_done(); return err; } /** * cpu_device_up - Bring up a cpu device * @dev: Pointer to the cpu device to online * * This function is meant to be used by device core cpu subsystem only. * * Other subsystems should use add_cpu() instead. * * Return: %0 on success or a negative errno code */ int cpu_device_up(struct device *dev) { return cpu_up(dev->id, CPUHP_ONLINE); } int add_cpu(unsigned int cpu) { int ret; lock_device_hotplug(); ret = device_online(get_cpu_device(cpu)); unlock_device_hotplug(); return ret; } EXPORT_SYMBOL_GPL(add_cpu); /** * bringup_hibernate_cpu - Bring up the CPU that we hibernated on * @sleep_cpu: The cpu we hibernated on and should be brought up. * * On some architectures like arm64, we can hibernate on any CPU, but on * wake up the CPU we hibernated on might be offline as a side effect of * using maxcpus= for example. * * Return: %0 on success or a negative errno code */ int bringup_hibernate_cpu(unsigned int sleep_cpu) { int ret; if (!cpu_online(sleep_cpu)) { pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); ret = cpu_up(sleep_cpu, CPUHP_ONLINE); if (ret) { pr_err("Failed to bring hibernate-CPU up!\n"); return ret; } } return 0; } static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, enum cpuhp_state target) { unsigned int cpu; for_each_cpu(cpu, mask) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); if (cpu_up(cpu, target) && can_rollback_cpu(st)) { /* * If this failed then cpu_up() might have only * rolled back to CPUHP_BP_KICK_AP for the final * online. Clean it up. NOOP if already rolled back. */ WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); } if (!--ncpus) break; } } #ifdef CONFIG_HOTPLUG_PARALLEL static bool __cpuhp_parallel_bringup __ro_after_init = true; static int __init parallel_bringup_parse_param(char *arg) { return kstrtobool(arg, &__cpuhp_parallel_bringup); } early_param("cpuhp.parallel", parallel_bringup_parse_param); #ifdef CONFIG_HOTPLUG_SMT static inline bool cpuhp_smt_aware(void) { return cpu_smt_max_threads > 1; } static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) { return cpu_primary_thread_mask; } #else static inline bool cpuhp_smt_aware(void) { return false; } static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) { return cpu_none_mask; } #endif bool __weak arch_cpuhp_init_parallel_bringup(void) { return true; } /* * On architectures which have enabled parallel bringup this invokes all BP * prepare states for each of the to be onlined APs first. The last state * sends the startup IPI to the APs. The APs proceed through the low level * bringup code in parallel and then wait for the control CPU to release * them one by one for the final onlining procedure. * * This avoids waiting for each AP to respond to the startup IPI in * CPUHP_BRINGUP_CPU. */ static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) { const struct cpumask *mask = cpu_present_mask; if (__cpuhp_parallel_bringup) __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); if (!__cpuhp_parallel_bringup) return false; if (cpuhp_smt_aware()) { const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); static struct cpumask tmp_mask __initdata; /* * X86 requires to prevent that SMT siblings stopped while * the primary thread does a microcode update for various * reasons. Bring the primary threads up first. */ cpumask_and(&tmp_mask, mask, pmask); cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); /* Account for the online CPUs */ ncpus -= num_online_cpus(); if (!ncpus) return true; /* Create the mask for secondary CPUs */ cpumask_andnot(&tmp_mask, mask, pmask); mask = &tmp_mask; } /* Bring the not-yet started CPUs up */ cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); return true; } #else static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } #endif /* CONFIG_HOTPLUG_PARALLEL */ void __init bringup_nonboot_cpus(unsigned int max_cpus) { if (!max_cpus) return; /* Try parallel bringup optimization if enabled */ if (cpuhp_bringup_cpus_parallel(max_cpus)) return; /* Full per CPU serialized bringup */ cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); } #ifdef CONFIG_PM_SLEEP_SMP static cpumask_var_t frozen_cpus; int freeze_secondary_cpus(int primary) { int cpu, error = 0; cpu_maps_update_begin(); if (primary == -1) { primary = cpumask_first(cpu_online_mask); if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) primary = housekeeping_any_cpu(HK_TYPE_TIMER); } else { if (!cpu_online(primary)) primary = cpumask_first(cpu_online_mask); } /* * We take down all of the non-boot CPUs in one shot to avoid races * with the userspace trying to use the CPU hotplug at the same time */ cpumask_clear(frozen_cpus); pr_info("Disabling non-boot CPUs ...\n"); for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { if (!cpu_online(cpu) || cpu == primary) continue; if (pm_wakeup_pending()) { pr_info("Wakeup pending. Abort CPU freeze\n"); error = -EBUSY; break; } trace_suspend_resume(TPS("CPU_OFF"), cpu, true); error = _cpu_down(cpu, 1, CPUHP_OFFLINE); trace_suspend_resume(TPS("CPU_OFF"), cpu, false); if (!error) cpumask_set_cpu(cpu, frozen_cpus); else { pr_err("Error taking CPU%d down: %d\n", cpu, error); break; } } if (!error) BUG_ON(num_online_cpus() > 1); else pr_err("Non-boot CPUs are not disabled\n"); /* * Make sure the CPUs won't be enabled by someone else. We need to do * this even in case of failure as all freeze_secondary_cpus() users are * supposed to do thaw_secondary_cpus() on the failure path. */ cpu_hotplug_disabled++; cpu_maps_update_done(); return error; } void __weak arch_thaw_secondary_cpus_begin(void) { } void __weak arch_thaw_secondary_cpus_end(void) { } void thaw_secondary_cpus(void) { int cpu, error; /* Allow everyone to use the CPU hotplug again */ cpu_maps_update_begin(); __cpu_hotplug_enable(); if (cpumask_empty(frozen_cpus)) goto out; pr_info("Enabling non-boot CPUs ...\n"); arch_thaw_secondary_cpus_begin(); for_each_cpu(cpu, frozen_cpus) { trace_suspend_resume(TPS("CPU_ON"), cpu, true); error = _cpu_up(cpu, 1, CPUHP_ONLINE); trace_suspend_resume(TPS("CPU_ON"), cpu, false); if (!error) { pr_info("CPU%d is up\n", cpu); continue; } pr_warn("Error taking CPU%d up: %d\n", cpu, error); } arch_thaw_secondary_cpus_end(); cpumask_clear(frozen_cpus); out: cpu_maps_update_done(); } static int __init alloc_frozen_cpus(void) { if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) return -ENOMEM; return 0; } core_initcall(alloc_frozen_cpus); /* * When callbacks for CPU hotplug notifications are being executed, we must * ensure that the state of the system with respect to the tasks being frozen * or not, as reported by the notification, remains unchanged *throughout the * duration* of the execution of the callbacks. * Hence we need to prevent the freezer from racing with regular CPU hotplug. * * This synchronization is implemented by mutually excluding regular CPU * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ * Hibernate notifications. */ static int cpu_hotplug_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr) { switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: cpu_hotplug_disable(); break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: cpu_hotplug_enable(); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int __init cpu_hotplug_pm_sync_init(void) { /* * cpu_hotplug_pm_callback has higher priority than x86 * bsp_pm_callback which depends on cpu_hotplug_pm_callback * to disable cpu hotplug to avoid cpu hotplug race. */ pm_notifier(cpu_hotplug_pm_callback, 0); return 0; } core_initcall(cpu_hotplug_pm_sync_init); #endif /* CONFIG_PM_SLEEP_SMP */ int __boot_cpu_id; #endif /* CONFIG_SMP */ /* Boot processor state steps */ static struct cpuhp_step cpuhp_hp_states[] = { [CPUHP_OFFLINE] = { .name = "offline", .startup.single = NULL, .teardown.single = NULL, }, #ifdef CONFIG_SMP [CPUHP_CREATE_THREADS]= { .name = "threads:prepare", .startup.single = smpboot_create_threads, .teardown.single = NULL, .cant_stop = true, }, [CPUHP_PERF_PREPARE] = { .name = "perf:prepare", .startup.single = perf_event_init_cpu, .teardown.single = perf_event_exit_cpu, }, [CPUHP_RANDOM_PREPARE] = { .name = "random:prepare", .startup.single = random_prepare_cpu, .teardown.single = NULL, }, [CPUHP_WORKQUEUE_PREP] = { .name = "workqueue:prepare", .startup.single = workqueue_prepare_cpu, .teardown.single = NULL, }, [CPUHP_HRTIMERS_PREPARE] = { .name = "hrtimers:prepare", .startup.single = hrtimers_prepare_cpu, .teardown.single = NULL, }, [CPUHP_SMPCFD_PREPARE] = { .name = "smpcfd:prepare", .startup.single = smpcfd_prepare_cpu, .teardown.single = smpcfd_dead_cpu, }, [CPUHP_RELAY_PREPARE] = { .name = "relay:prepare", .startup.single = relay_prepare_cpu, .teardown.single = NULL, }, [CPUHP_RCUTREE_PREP] = { .name = "RCU/tree:prepare", .startup.single = rcutree_prepare_cpu, .teardown.single = rcutree_dead_cpu, }, /* * On the tear-down path, timers_dead_cpu() must be invoked * before blk_mq_queue_reinit_notify() from notify_dead(), * otherwise a RCU stall occurs. */ [CPUHP_TIMERS_PREPARE] = { .name = "timers:prepare", .startup.single = timers_prepare_cpu, .teardown.single = timers_dead_cpu, }, #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP /* * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until * the next step will release it. */ [CPUHP_BP_KICK_AP] = { .name = "cpu:kick_ap", .startup.single = cpuhp_kick_ap_alive, }, /* * Waits for the AP to reach cpuhp_ap_sync_alive() and then * releases it for the complete bringup. */ [CPUHP_BRINGUP_CPU] = { .name = "cpu:bringup", .startup.single = cpuhp_bringup_ap, .teardown.single = finish_cpu, .cant_stop = true, }, #else /* * All-in-one CPU bringup state which includes the kick alive. */ [CPUHP_BRINGUP_CPU] = { .name = "cpu:bringup", .startup.single = bringup_cpu, .teardown.single = finish_cpu, .cant_stop = true, }, #endif /* Final state before CPU kills itself */ [CPUHP_AP_IDLE_DEAD] = { .name = "idle:dead", }, /* * Last state before CPU enters the idle loop to die. Transient state * for synchronization. */ [CPUHP_AP_OFFLINE] = { .name = "ap:offline", .cant_stop = true, }, /* First state is scheduler control. Interrupts are disabled */ [CPUHP_AP_SCHED_STARTING] = { .name = "sched:starting", .startup.single = sched_cpu_starting, .teardown.single = sched_cpu_dying, }, [CPUHP_AP_RCUTREE_DYING] = { .name = "RCU/tree:dying", .startup.single = NULL, .teardown.single = rcutree_dying_cpu, }, [CPUHP_AP_SMPCFD_DYING] = { .name = "smpcfd:dying", .startup.single = NULL, .teardown.single = smpcfd_dying_cpu, }, [CPUHP_AP_HRTIMERS_DYING] = { .name = "hrtimers:dying", .startup.single = NULL, .teardown.single = hrtimers_cpu_dying, }, [CPUHP_AP_TICK_DYING] = { .name = "tick:dying", .startup.single = NULL, .teardown.single = tick_cpu_dying, }, /* Entry state on starting. Interrupts enabled from here on. Transient * state for synchronsization */ [CPUHP_AP_ONLINE] = { .name = "ap:online", }, /* * Handled on control processor until the plugged processor manages * this itself. */ [CPUHP_TEARDOWN_CPU] = { .name = "cpu:teardown", .startup.single = NULL, .teardown.single = takedown_cpu, .cant_stop = true, }, [CPUHP_AP_SCHED_WAIT_EMPTY] = { .name = "sched:waitempty", .startup.single = NULL, .teardown.single = sched_cpu_wait_empty, }, /* Handle smpboot threads park/unpark */ [CPUHP_AP_SMPBOOT_THREADS] = { .name = "smpboot/threads:online", .startup.single = smpboot_unpark_threads, .teardown.single = smpboot_park_threads, }, [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { .name = "irq/affinity:online", .startup.single = irq_affinity_online_cpu, .teardown.single = NULL, }, [CPUHP_AP_PERF_ONLINE] = { .name = "perf:online", .startup.single = perf_event_init_cpu, .teardown.single = perf_event_exit_cpu, }, [CPUHP_AP_WATCHDOG_ONLINE] = { .name = "lockup_detector:online", .startup.single = lockup_detector_online_cpu, .teardown.single = lockup_detector_offline_cpu, }, [CPUHP_AP_WORKQUEUE_ONLINE] = { .name = "workqueue:online", .startup.single = workqueue_online_cpu, .teardown.single = workqueue_offline_cpu, }, [CPUHP_AP_RANDOM_ONLINE] = { .name = "random:online", .startup.single = random_online_cpu, .teardown.single = NULL, }, [CPUHP_AP_RCUTREE_ONLINE] = { .name = "RCU/tree:online", .startup.single = rcutree_online_cpu, .teardown.single = rcutree_offline_cpu, }, #endif /* * The dynamically registered state space is here */ #ifdef CONFIG_SMP /* Last state is scheduler control setting the cpu active */ [CPUHP_AP_ACTIVE] = { .name = "sched:active", .startup.single = sched_cpu_activate, .teardown.single = sched_cpu_deactivate, }, #endif /* CPU is fully up and running. */ [CPUHP_ONLINE] = { .name = "online", .startup.single = NULL, .teardown.single = NULL, }, }; /* Sanity check for callbacks */ static int cpuhp_cb_check(enum cpuhp_state state) { if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) return -EINVAL; return 0; } /* * Returns a free for dynamic slot assignment of the Online state. The states * are protected by the cpuhp_slot_states mutex and an empty slot is identified * by having no name assigned. */ static int cpuhp_reserve_state(enum cpuhp_state state) { enum cpuhp_state i, end; struct cpuhp_step *step; switch (state) { case CPUHP_AP_ONLINE_DYN: step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; end = CPUHP_AP_ONLINE_DYN_END; break; case CPUHP_BP_PREPARE_DYN: step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; end = CPUHP_BP_PREPARE_DYN_END; break; default: return -EINVAL; } for (i = state; i <= end; i++, step++) { if (!step->name) return i; } WARN(1, "No more dynamic states available for CPU hotplug\n"); return -ENOSPC; } static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { /* (Un)Install the callbacks for further cpu hotplug operations */ struct cpuhp_step *sp; int ret = 0; /* * If name is NULL, then the state gets removed. * * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on * the first allocation from these dynamic ranges, so the removal * would trigger a new allocation and clear the wrong (already * empty) state, leaving the callbacks of the to be cleared state * dangling, which causes wreckage on the next hotplug operation. */ if (name && (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN)) { ret = cpuhp_reserve_state(state); if (ret < 0) return ret; state = ret; } sp = cpuhp_get_step(state); if (name && sp->name) return -EBUSY; sp->startup.single = startup; sp->teardown.single = teardown; sp->name = name; sp->multi_instance = multi_instance; INIT_HLIST_HEAD(&sp->list); return ret; } static void *cpuhp_get_teardown_cb(enum cpuhp_state state) { return cpuhp_get_step(state)->teardown.single; } /* * Call the startup/teardown function for a step either on the AP or * on the current CPU. */ static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node) { struct cpuhp_step *sp = cpuhp_get_step(state); int ret; /* * If there's nothing to do, we done. * Relies on the union for multi_instance. */ if (cpuhp_step_empty(bringup, sp)) return 0; /* * The non AP bound callbacks can fail on bringup. On teardown * e.g. module removal we crash for now. */ #ifdef CONFIG_SMP if (cpuhp_is_ap_state(state)) ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); else ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); #else ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); #endif BUG_ON(ret && !bringup); return ret; } /* * Called from __cpuhp_setup_state on a recoverable failure. * * Note: The teardown callbacks for rollback are not allowed to fail! */ static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, struct hlist_node *node) { int cpu; /* Roll back the already executed steps on the other cpus */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpu >= failedcpu) break; /* Did we invoke the startup call on that cpu ? */ if (cpustate >= state) cpuhp_issue_call(cpu, state, false, node); } } int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, struct hlist_node *node, bool invoke) { struct cpuhp_step *sp; int cpu; int ret; lockdep_assert_cpus_held(); sp = cpuhp_get_step(state); if (sp->multi_instance == false) return -EINVAL; mutex_lock(&cpuhp_state_mutex); if (!invoke || !sp->startup.multi) goto add_node; /* * Try to call the startup callback for each present cpu * depending on the hotplug state of the cpu. */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate < state) continue; ret = cpuhp_issue_call(cpu, state, true, node); if (ret) { if (sp->teardown.multi) cpuhp_rollback_install(cpu, state, node); goto unlock; } } add_node: ret = 0; hlist_add_head(node, &sp->list); unlock: mutex_unlock(&cpuhp_state_mutex); return ret; } int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke) { int ret; cpus_read_lock(); ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); cpus_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); /** * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state * @state: The state to setup * @name: Name of the step * @invoke: If true, the startup function is invoked for cpus where * cpu state >= @state * @startup: startup callback function * @teardown: teardown callback function * @multi_instance: State is set up for multiple instances which get * added afterwards. * * The caller needs to hold cpus read locked while calling this function. * Return: * On success: * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; * 0 for all other states * On failure: proper (negative) error code */ int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { int cpu, ret = 0; bool dynstate; lockdep_assert_cpus_held(); if (cpuhp_cb_check(state) || !name) return -EINVAL; mutex_lock(&cpuhp_state_mutex); ret = cpuhp_store_callbacks(state, name, startup, teardown, multi_instance); dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; if (ret > 0 && dynstate) { state = ret; ret = 0; } if (ret || !invoke || !startup) goto out; /* * Try to call the startup callback for each present cpu * depending on the hotplug state of the cpu. */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate < state) continue; ret = cpuhp_issue_call(cpu, state, true, NULL); if (ret) { if (teardown) cpuhp_rollback_install(cpu, state, NULL); cpuhp_store_callbacks(state, NULL, NULL, NULL, false); goto out; } } out: mutex_unlock(&cpuhp_state_mutex); /* * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, * return the dynamically allocated state in case of success. */ if (!ret && dynstate) return state; return ret; } EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); int __cpuhp_setup_state(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { int ret; cpus_read_lock(); ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, teardown, multi_instance); cpus_read_unlock(); return ret; } EXPORT_SYMBOL(__cpuhp_setup_state); int __cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke) { struct cpuhp_step *sp = cpuhp_get_step(state); int cpu; BUG_ON(cpuhp_cb_check(state)); if (!sp->multi_instance) return -EINVAL; cpus_read_lock(); mutex_lock(&cpuhp_state_mutex); if (!invoke || !cpuhp_get_teardown_cb(state)) goto remove; /* * Call the teardown callback for each present cpu depending * on the hotplug state of the cpu. This function is not * allowed to fail currently! */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate >= state) cpuhp_issue_call(cpu, state, false, node); } remove: hlist_del(node); mutex_unlock(&cpuhp_state_mutex); cpus_read_unlock(); return 0; } EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); /** * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state * @state: The state to remove * @invoke: If true, the teardown function is invoked for cpus where * cpu state >= @state * * The caller needs to hold cpus read locked while calling this function. * The teardown callback is currently not allowed to fail. Think * about module removal! */ void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) { struct cpuhp_step *sp = cpuhp_get_step(state); int cpu; BUG_ON(cpuhp_cb_check(state)); lockdep_assert_cpus_held(); mutex_lock(&cpuhp_state_mutex); if (sp->multi_instance) { WARN(!hlist_empty(&sp->list), "Error: Removing state %d which has instances left.\n", state); goto remove; } if (!invoke || !cpuhp_get_teardown_cb(state)) goto remove; /* * Call the teardown callback for each present cpu depending * on the hotplug state of the cpu. This function is not * allowed to fail currently! */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate >= state) cpuhp_issue_call(cpu, state, false, NULL); } remove: cpuhp_store_callbacks(state, NULL, NULL, NULL, false); mutex_unlock(&cpuhp_state_mutex); } EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) { cpus_read_lock(); __cpuhp_remove_state_cpuslocked(state, invoke); cpus_read_unlock(); } EXPORT_SYMBOL(__cpuhp_remove_state); #ifdef CONFIG_HOTPLUG_SMT static void cpuhp_offline_cpu_device(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); dev->offline = true; /* Tell user space about the state change */ kobject_uevent(&dev->kobj, KOBJ_OFFLINE); } static void cpuhp_online_cpu_device(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); dev->offline = false; /* Tell user space about the state change */ kobject_uevent(&dev->kobj, KOBJ_ONLINE); } int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { int cpu, ret = 0; cpu_maps_update_begin(); for_each_online_cpu(cpu) { if (topology_is_primary_thread(cpu)) continue; /* * Disable can be called with CPU_SMT_ENABLED when changing * from a higher to lower number of SMT threads per core. */ if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) continue; ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); if (ret) break; /* * As this needs to hold the cpu maps lock it's impossible * to call device_offline() because that ends up calling * cpu_down() which takes cpu maps lock. cpu maps lock * needs to be held as this might race against in kernel * abusers of the hotplug machinery (thermal management). * * So nothing would update device:offline state. That would * leave the sysfs entry stale and prevent onlining after * smt control has been changed to 'off' again. This is * called under the sysfs hotplug lock, so it is properly * serialized against the regular offline usage. */ cpuhp_offline_cpu_device(cpu); } if (!ret) cpu_smt_control = ctrlval; cpu_maps_update_done(); return ret; } /* Check if the core a CPU belongs to is online */ #if !defined(topology_is_core_online) static inline bool topology_is_core_online(unsigned int cpu) { return true; } #endif int cpuhp_smt_enable(void) { int cpu, ret = 0; cpu_maps_update_begin(); cpu_smt_control = CPU_SMT_ENABLED; for_each_present_cpu(cpu) { /* Skip online CPUs and CPUs on offline nodes */ if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) continue; if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) continue; ret = _cpu_up(cpu, 0, CPUHP_ONLINE); if (ret) break; /* See comment in cpuhp_smt_disable() */ cpuhp_online_cpu_device(cpu); } cpu_maps_update_done(); return ret; } #endif #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->state); } static DEVICE_ATTR_RO(state); static ssize_t target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); struct cpuhp_step *sp; int target, ret; ret = kstrtoint(buf, 10, &target); if (ret) return ret; #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) return -EINVAL; #else if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) return -EINVAL; #endif ret = lock_device_hotplug_sysfs(); if (ret) return ret; mutex_lock(&cpuhp_state_mutex); sp = cpuhp_get_step(target); ret = !sp->name || sp->cant_stop ? -EINVAL : 0; mutex_unlock(&cpuhp_state_mutex); if (ret) goto out; if (st->state < target) ret = cpu_up(dev->id, target); else if (st->state > target) ret = cpu_down(dev->id, target); else if (WARN_ON(st->target != target)) st->target = target; out: unlock_device_hotplug(); return ret ? ret : count; } static ssize_t target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->target); } static DEVICE_ATTR_RW(target); static ssize_t fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); struct cpuhp_step *sp; int fail, ret; ret = kstrtoint(buf, 10, &fail); if (ret) return ret; if (fail == CPUHP_INVALID) { st->fail = fail; return count; } if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) return -EINVAL; /* * Cannot fail STARTING/DYING callbacks. */ if (cpuhp_is_atomic_state(fail)) return -EINVAL; /* * DEAD callbacks cannot fail... * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter * triggering STARTING callbacks, a failure in this state would * hinder rollback. */ if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) return -EINVAL; /* * Cannot fail anything that doesn't have callbacks. */ mutex_lock(&cpuhp_state_mutex); sp = cpuhp_get_step(fail); if (!sp->startup.single && !sp->teardown.single) ret = -EINVAL; mutex_unlock(&cpuhp_state_mutex); if (ret) return ret; st->fail = fail; return count; } static ssize_t fail_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->fail); } static DEVICE_ATTR_RW(fail); static struct attribute *cpuhp_cpu_attrs[] = { &dev_attr_state.attr, &dev_attr_target.attr, &dev_attr_fail.attr, NULL }; static const struct attribute_group cpuhp_cpu_attr_group = { .attrs = cpuhp_cpu_attrs, .name = "hotplug", }; static ssize_t states_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t cur, res = 0; int i; mutex_lock(&cpuhp_state_mutex); for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { struct cpuhp_step *sp = cpuhp_get_step(i); if (sp->name) { cur = sprintf(buf, "%3d: %s\n", i, sp->name); buf += cur; res += cur; } } mutex_unlock(&cpuhp_state_mutex); return res; } static DEVICE_ATTR_RO(states); static struct attribute *cpuhp_cpu_root_attrs[] = { &dev_attr_states.attr, NULL }; static const struct attribute_group cpuhp_cpu_root_attr_group = { .attrs = cpuhp_cpu_root_attrs, .name = "hotplug", }; #ifdef CONFIG_HOTPLUG_SMT static bool cpu_smt_num_threads_valid(unsigned int threads) { if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) return threads >= 1 && threads <= cpu_smt_max_threads; return threads == 1 || threads == cpu_smt_max_threads; } static ssize_t __store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ctrlval, ret, num_threads, orig_threads; bool force_off; if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) return -EPERM; if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) return -ENODEV; if (sysfs_streq(buf, "on")) { ctrlval = CPU_SMT_ENABLED; num_threads = cpu_smt_max_threads; } else if (sysfs_streq(buf, "off")) { ctrlval = CPU_SMT_DISABLED; num_threads = 1; } else if (sysfs_streq(buf, "forceoff")) { ctrlval = CPU_SMT_FORCE_DISABLED; num_threads = 1; } else if (kstrtoint(buf, 10, &num_threads) == 0) { if (num_threads == 1) ctrlval = CPU_SMT_DISABLED; else if (cpu_smt_num_threads_valid(num_threads)) ctrlval = CPU_SMT_ENABLED; else return -EINVAL; } else { return -EINVAL; } ret = lock_device_hotplug_sysfs(); if (ret) return ret; orig_threads = cpu_smt_num_threads; cpu_smt_num_threads = num_threads; force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; if (num_threads > orig_threads) ret = cpuhp_smt_enable(); else if (num_threads < orig_threads || force_off) ret = cpuhp_smt_disable(ctrlval); unlock_device_hotplug(); return ret ? ret : count; } #else /* !CONFIG_HOTPLUG_SMT */ static ssize_t __store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return -ENODEV; } #endif /* CONFIG_HOTPLUG_SMT */ static const char *smt_states[] = { [CPU_SMT_ENABLED] = "on", [CPU_SMT_DISABLED] = "off", [CPU_SMT_FORCE_DISABLED] = "forceoff", [CPU_SMT_NOT_SUPPORTED] = "notsupported", [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", }; static ssize_t control_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *state = smt_states[cpu_smt_control]; #ifdef CONFIG_HOTPLUG_SMT /* * If SMT is enabled but not all threads are enabled then show the * number of threads. If all threads are enabled show "on". Otherwise * show the state name. */ if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_num_threads != cpu_smt_max_threads) return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); #endif return sysfs_emit(buf, "%s\n", state); } static ssize_t control_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return __store_smt_control(dev, attr, buf, count); } static DEVICE_ATTR_RW(control); static ssize_t active_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", sched_smt_active()); } static DEVICE_ATTR_RO(active); static struct attribute *cpuhp_smt_attrs[] = { &dev_attr_control.attr, &dev_attr_active.attr, NULL }; static const struct attribute_group cpuhp_smt_attr_group = { .attrs = cpuhp_smt_attrs, .name = "smt", }; static int __init cpu_smt_sysfs_init(void) { struct device *dev_root; int ret = -ENODEV; dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); put_device(dev_root); } return ret; } static int __init cpuhp_sysfs_init(void) { struct device *dev_root; int cpu, ret; ret = cpu_smt_sysfs_init(); if (ret) return ret; dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); put_device(dev_root); if (ret) return ret; } for_each_possible_cpu(cpu) { struct device *dev = get_cpu_device(cpu); if (!dev) continue; ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); if (ret) return ret; } return 0; } device_initcall(cpuhp_sysfs_init); #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ /* * cpu_bit_bitmap[] is a special, "compressed" data structure that * represents all NR_CPUS bits binary values of 1< 32 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56), #endif }; EXPORT_SYMBOL_GPL(cpu_bit_bitmap); const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; EXPORT_SYMBOL(cpu_all_bits); #ifdef CONFIG_INIT_ALL_POSSIBLE struct cpumask __cpu_possible_mask __ro_after_init = {CPU_BITS_ALL}; #else struct cpumask __cpu_possible_mask __ro_after_init; #endif EXPORT_SYMBOL(__cpu_possible_mask); struct cpumask __cpu_online_mask __read_mostly; EXPORT_SYMBOL(__cpu_online_mask); struct cpumask __cpu_enabled_mask __read_mostly; EXPORT_SYMBOL(__cpu_enabled_mask); struct cpumask __cpu_present_mask __read_mostly; EXPORT_SYMBOL(__cpu_present_mask); struct cpumask __cpu_active_mask __read_mostly; EXPORT_SYMBOL(__cpu_active_mask); struct cpumask __cpu_dying_mask __read_mostly; EXPORT_SYMBOL(__cpu_dying_mask); atomic_t __num_online_cpus __read_mostly; EXPORT_SYMBOL(__num_online_cpus); void init_cpu_present(const struct cpumask *src) { cpumask_copy(&__cpu_present_mask, src); } void init_cpu_possible(const struct cpumask *src) { cpumask_copy(&__cpu_possible_mask, src); } void init_cpu_online(const struct cpumask *src) { cpumask_copy(&__cpu_online_mask, src); } void set_cpu_online(unsigned int cpu, bool online) { /* * atomic_inc/dec() is required to handle the horrid abuse of this * function by the reboot and kexec code which invoke it from * IPI/NMI broadcasts when shutting down CPUs. Invocation from * regular CPU hotplug is properly serialized. * * Note, that the fact that __num_online_cpus is of type atomic_t * does not protect readers which are not serialized against * concurrent hotplug operations. */ if (online) { if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) atomic_inc(&__num_online_cpus); } else { if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) atomic_dec(&__num_online_cpus); } } /* * Activate the first processor. */ void __init boot_cpu_init(void) { int cpu = smp_processor_id(); /* Mark the boot cpu "present", "online" etc for SMP and UP case */ set_cpu_online(cpu, true); set_cpu_active(cpu, true); set_cpu_present(cpu, true); set_cpu_possible(cpu, true); #ifdef CONFIG_SMP __boot_cpu_id = cpu; #endif } /* * Must be called _AFTER_ setting up the per_cpu areas */ void __init boot_cpu_hotplug_init(void) { #ifdef CONFIG_SMP cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); #endif this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); } #ifdef CONFIG_CPU_MITIGATIONS /* * These are used for a global "mitigations=" cmdline option for toggling * optional CPU mitigations. */ enum cpu_mitigations { CPU_MITIGATIONS_OFF, CPU_MITIGATIONS_AUTO, CPU_MITIGATIONS_AUTO_NOSMT, }; static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; static int __init mitigations_parse_cmdline(char *arg) { if (!strcmp(arg, "off")) cpu_mitigations = CPU_MITIGATIONS_OFF; else if (!strcmp(arg, "auto")) cpu_mitigations = CPU_MITIGATIONS_AUTO; else if (!strcmp(arg, "auto,nosmt")) cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; else pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg); return 0; } /* mitigations=off */ bool cpu_mitigations_off(void) { return cpu_mitigations == CPU_MITIGATIONS_OFF; } EXPORT_SYMBOL_GPL(cpu_mitigations_off); /* mitigations=auto,nosmt */ bool cpu_mitigations_auto_nosmt(void) { return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; } EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); #else static int __init mitigations_parse_cmdline(char *arg) { pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); return 0; } #endif early_param("mitigations", mitigations_parse_cmdline);