// SPDX-License-Identifier: GPL-2.0-only /* * mm/mmap.c * * Written by obz. * * Address space accounting code */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "internal.h" #ifndef arch_mmap_check #define arch_mmap_check(addr, len, flags) (0) #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; #endif static bool ignore_rlimit_data; core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); /* Update vma->vm_page_prot to reflect vma->vm_flags. */ void vma_set_page_prot(struct vm_area_struct *vma) { unsigned long vm_flags = vma->vm_flags; pgprot_t vm_page_prot; vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); if (vma_wants_writenotify(vma, vm_page_prot)) { vm_flags &= ~VM_SHARED; vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); } /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ WRITE_ONCE(vma->vm_page_prot, vm_page_prot); } /* * check_brk_limits() - Use platform specific check of range & verify mlock * limits. * @addr: The address to check * @len: The size of increase. * * Return: 0 on success. */ static int check_brk_limits(unsigned long addr, unsigned long len) { unsigned long mapped_addr; mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); if (IS_ERR_VALUE(mapped_addr)) return mapped_addr; return mlock_future_ok(current->mm, current->mm->def_flags, len) ? 0 : -EAGAIN; } static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, unsigned long addr, unsigned long request, unsigned long flags); SYSCALL_DEFINE1(brk, unsigned long, brk) { unsigned long newbrk, oldbrk, origbrk; struct mm_struct *mm = current->mm; struct vm_area_struct *brkvma, *next = NULL; unsigned long min_brk; bool populate = false; LIST_HEAD(uf); struct vma_iterator vmi; if (mmap_write_lock_killable(mm)) return -EINTR; origbrk = mm->brk; #ifdef CONFIG_COMPAT_BRK /* * CONFIG_COMPAT_BRK can still be overridden by setting * randomize_va_space to 2, which will still cause mm->start_brk * to be arbitrarily shifted */ if (current->brk_randomized) min_brk = mm->start_brk; else min_brk = mm->end_data; #else min_brk = mm->start_brk; #endif if (brk < min_brk) goto out; /* * Check against rlimit here. If this check is done later after the test * of oldbrk with newbrk then it can escape the test and let the data * segment grow beyond its set limit the in case where the limit is * not page aligned -Ram Gupta */ if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, mm->end_data, mm->start_data)) goto out; newbrk = PAGE_ALIGN(brk); oldbrk = PAGE_ALIGN(mm->brk); if (oldbrk == newbrk) { mm->brk = brk; goto success; } /* Always allow shrinking brk. */ if (brk <= mm->brk) { /* Search one past newbrk */ vma_iter_init(&vmi, mm, newbrk); brkvma = vma_find(&vmi, oldbrk); if (!brkvma || brkvma->vm_start >= oldbrk) goto out; /* mapping intersects with an existing non-brk vma. */ /* * mm->brk must be protected by write mmap_lock. * do_vmi_align_munmap() will drop the lock on success, so * update it before calling do_vma_munmap(). */ mm->brk = brk; if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf, /* unlock = */ true)) goto out; goto success_unlocked; } if (check_brk_limits(oldbrk, newbrk - oldbrk)) goto out; /* * Only check if the next VMA is within the stack_guard_gap of the * expansion area */ vma_iter_init(&vmi, mm, oldbrk); next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) goto out; brkvma = vma_prev_limit(&vmi, mm->start_brk); /* Ok, looks good - let it rip. */ if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) goto out; mm->brk = brk; if (mm->def_flags & VM_LOCKED) populate = true; success: mmap_write_unlock(mm); success_unlocked: userfaultfd_unmap_complete(mm, &uf); if (populate) mm_populate(oldbrk, newbrk - oldbrk); return brk; out: mm->brk = origbrk; mmap_write_unlock(mm); return origbrk; } /* * If a hint addr is less than mmap_min_addr change hint to be as * low as possible but still greater than mmap_min_addr */ static inline unsigned long round_hint_to_min(unsigned long hint) { hint &= PAGE_MASK; if (((void *)hint != NULL) && (hint < mmap_min_addr)) return PAGE_ALIGN(mmap_min_addr); return hint; } bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, unsigned long bytes) { unsigned long locked_pages, limit_pages; if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) return true; locked_pages = bytes >> PAGE_SHIFT; locked_pages += mm->locked_vm; limit_pages = rlimit(RLIMIT_MEMLOCK); limit_pages >>= PAGE_SHIFT; return locked_pages <= limit_pages; } static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) { if (S_ISREG(inode->i_mode)) return MAX_LFS_FILESIZE; if (S_ISBLK(inode->i_mode)) return MAX_LFS_FILESIZE; if (S_ISSOCK(inode->i_mode)) return MAX_LFS_FILESIZE; /* Special "we do even unsigned file positions" case */ if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET) return 0; /* Yes, random drivers might want more. But I'm tired of buggy drivers */ return ULONG_MAX; } static inline bool file_mmap_ok(struct file *file, struct inode *inode, unsigned long pgoff, unsigned long len) { u64 maxsize = file_mmap_size_max(file, inode); if (maxsize && len > maxsize) return false; maxsize -= len; if (pgoff > maxsize >> PAGE_SHIFT) return false; return true; } /* * The caller must write-lock current->mm->mmap_lock. */ unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf) { struct mm_struct *mm = current->mm; int pkey = 0; *populate = 0; if (!len) return -EINVAL; /* * Does the application expect PROT_READ to imply PROT_EXEC? * * (the exception is when the underlying filesystem is noexec * mounted, in which case we don't add PROT_EXEC.) */ if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) if (!(file && path_noexec(&file->f_path))) prot |= PROT_EXEC; /* force arch specific MAP_FIXED handling in get_unmapped_area */ if (flags & MAP_FIXED_NOREPLACE) flags |= MAP_FIXED; if (!(flags & MAP_FIXED)) addr = round_hint_to_min(addr); /* Careful about overflows.. */ len = PAGE_ALIGN(len); if (!len) return -ENOMEM; /* offset overflow? */ if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) return -EOVERFLOW; /* Too many mappings? */ if (mm->map_count > sysctl_max_map_count) return -ENOMEM; /* * addr is returned from get_unmapped_area, * There are two cases: * 1> MAP_FIXED == false * unallocated memory, no need to check sealing. * 1> MAP_FIXED == true * sealing is checked inside mmap_region when * do_vmi_munmap is called. */ if (prot == PROT_EXEC) { pkey = execute_only_pkey(mm); if (pkey < 0) pkey = 0; } /* Do simple checking here so the lower-level routines won't have * to. we assume access permissions have been handled by the open * of the memory object, so we don't do any here. */ vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; /* Obtain the address to map to. we verify (or select) it and ensure * that it represents a valid section of the address space. */ addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); if (IS_ERR_VALUE(addr)) return addr; if (flags & MAP_FIXED_NOREPLACE) { if (find_vma_intersection(mm, addr, addr + len)) return -EEXIST; } if (flags & MAP_LOCKED) if (!can_do_mlock()) return -EPERM; if (!mlock_future_ok(mm, vm_flags, len)) return -EAGAIN; if (file) { struct inode *inode = file_inode(file); unsigned int seals = memfd_file_seals(file); unsigned long flags_mask; if (!file_mmap_ok(file, inode, pgoff, len)) return -EOVERFLOW; flags_mask = LEGACY_MAP_MASK; if (file->f_op->fop_flags & FOP_MMAP_SYNC) flags_mask |= MAP_SYNC; switch (flags & MAP_TYPE) { case MAP_SHARED: /* * Force use of MAP_SHARED_VALIDATE with non-legacy * flags. E.g. MAP_SYNC is dangerous to use with * MAP_SHARED as you don't know which consistency model * you will get. We silently ignore unsupported flags * with MAP_SHARED to preserve backward compatibility. */ flags &= LEGACY_MAP_MASK; fallthrough; case MAP_SHARED_VALIDATE: if (flags & ~flags_mask) return -EOPNOTSUPP; if (prot & PROT_WRITE) { if (!(file->f_mode & FMODE_WRITE)) return -EACCES; if (IS_SWAPFILE(file->f_mapping->host)) return -ETXTBSY; } /* * Make sure we don't allow writing to an append-only * file.. */ if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) return -EACCES; vm_flags |= VM_SHARED | VM_MAYSHARE; if (!(file->f_mode & FMODE_WRITE)) vm_flags &= ~(VM_MAYWRITE | VM_SHARED); else if (is_readonly_sealed(seals, vm_flags)) vm_flags &= ~VM_MAYWRITE; fallthrough; case MAP_PRIVATE: if (!(file->f_mode & FMODE_READ)) return -EACCES; if (path_noexec(&file->f_path)) { if (vm_flags & VM_EXEC) return -EPERM; vm_flags &= ~VM_MAYEXEC; } if (!file->f_op->mmap) return -ENODEV; if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) return -EINVAL; break; default: return -EINVAL; } } else { switch (flags & MAP_TYPE) { case MAP_SHARED: if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) return -EINVAL; /* * Ignore pgoff. */ pgoff = 0; vm_flags |= VM_SHARED | VM_MAYSHARE; break; case MAP_DROPPABLE: if (VM_DROPPABLE == VM_NONE) return -ENOTSUPP; /* * A locked or stack area makes no sense to be droppable. * * Also, since droppable pages can just go away at any time * it makes no sense to copy them on fork or dump them. * * And don't attempt to combine with hugetlb for now. */ if (flags & (MAP_LOCKED | MAP_HUGETLB)) return -EINVAL; if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) return -EINVAL; vm_flags |= VM_DROPPABLE; /* * If the pages can be dropped, then it doesn't make * sense to reserve them. */ vm_flags |= VM_NORESERVE; /* * Likewise, they're volatile enough that they * shouldn't survive forks or coredumps. */ vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; fallthrough; case MAP_PRIVATE: /* * Set pgoff according to addr for anon_vma. */ pgoff = addr >> PAGE_SHIFT; break; default: return -EINVAL; } } /* * Set 'VM_NORESERVE' if we should not account for the * memory use of this mapping. */ if (flags & MAP_NORESERVE) { /* We honor MAP_NORESERVE if allowed to overcommit */ if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) vm_flags |= VM_NORESERVE; /* hugetlb applies strict overcommit unless MAP_NORESERVE */ if (file && is_file_hugepages(file)) vm_flags |= VM_NORESERVE; } addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); if (!IS_ERR_VALUE(addr) && ((vm_flags & VM_LOCKED) || (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) *populate = len; return addr; } unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff) { struct file *file = NULL; unsigned long retval; if (!(flags & MAP_ANONYMOUS)) { audit_mmap_fd(fd, flags); file = fget(fd); if (!file) return -EBADF; if (is_file_hugepages(file)) { len = ALIGN(len, huge_page_size(hstate_file(file))); } else if (unlikely(flags & MAP_HUGETLB)) { retval = -EINVAL; goto out_fput; } } else if (flags & MAP_HUGETLB) { struct hstate *hs; hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); if (!hs) return -EINVAL; len = ALIGN(len, huge_page_size(hs)); /* * VM_NORESERVE is used because the reservations will be * taken when vm_ops->mmap() is called */ file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, HUGETLB_ANONHUGE_INODE, (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); if (IS_ERR(file)) return PTR_ERR(file); } retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); out_fput: if (file) fput(file); return retval; } SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, pgoff) { return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); } #ifdef __ARCH_WANT_SYS_OLD_MMAP struct mmap_arg_struct { unsigned long addr; unsigned long len; unsigned long prot; unsigned long flags; unsigned long fd; unsigned long offset; }; SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) { struct mmap_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (offset_in_page(a.offset)) return -EINVAL; return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT); } #endif /* __ARCH_WANT_SYS_OLD_MMAP */ /** * unmapped_area() - Find an area between the low_limit and the high_limit with * the correct alignment and offset, all from @info. Note: current->mm is used * for the search. * * @info: The unmapped area information including the range [low_limit - * high_limit), the alignment offset and mask. * * Return: A memory address or -ENOMEM. */ static unsigned long unmapped_area(struct vm_unmapped_area_info *info) { unsigned long length, gap; unsigned long low_limit, high_limit; struct vm_area_struct *tmp; VMA_ITERATOR(vmi, current->mm, 0); /* Adjust search length to account for worst case alignment overhead */ length = info->length + info->align_mask + info->start_gap; if (length < info->length) return -ENOMEM; low_limit = info->low_limit; if (low_limit < mmap_min_addr) low_limit = mmap_min_addr; high_limit = info->high_limit; retry: if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) return -ENOMEM; /* * Adjust for the gap first so it doesn't interfere with the * later alignment. The first step is the minimum needed to * fulill the start gap, the next steps is the minimum to align * that. It is the minimum needed to fulill both. */ gap = vma_iter_addr(&vmi) + info->start_gap; gap += (info->align_offset - gap) & info->align_mask; tmp = vma_next(&vmi); if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ if (vm_start_gap(tmp) < gap + length - 1) { low_limit = tmp->vm_end; vma_iter_reset(&vmi); goto retry; } } else { tmp = vma_prev(&vmi); if (tmp && vm_end_gap(tmp) > gap) { low_limit = vm_end_gap(tmp); vma_iter_reset(&vmi); goto retry; } } return gap; } /** * unmapped_area_topdown() - Find an area between the low_limit and the * high_limit with the correct alignment and offset at the highest available * address, all from @info. Note: current->mm is used for the search. * * @info: The unmapped area information including the range [low_limit - * high_limit), the alignment offset and mask. * * Return: A memory address or -ENOMEM. */ static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) { unsigned long length, gap, gap_end; unsigned long low_limit, high_limit; struct vm_area_struct *tmp; VMA_ITERATOR(vmi, current->mm, 0); /* Adjust search length to account for worst case alignment overhead */ length = info->length + info->align_mask + info->start_gap; if (length < info->length) return -ENOMEM; low_limit = info->low_limit; if (low_limit < mmap_min_addr) low_limit = mmap_min_addr; high_limit = info->high_limit; retry: if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) return -ENOMEM; gap = vma_iter_end(&vmi) - info->length; gap -= (gap - info->align_offset) & info->align_mask; gap_end = vma_iter_end(&vmi); tmp = vma_next(&vmi); if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ if (vm_start_gap(tmp) < gap_end) { high_limit = vm_start_gap(tmp); vma_iter_reset(&vmi); goto retry; } } else { tmp = vma_prev(&vmi); if (tmp && vm_end_gap(tmp) > gap) { high_limit = tmp->vm_start; vma_iter_reset(&vmi); goto retry; } } return gap; } /* * Determine if the allocation needs to ensure that there is no * existing mapping within it's guard gaps, for use as start_gap. */ static inline unsigned long stack_guard_placement(vm_flags_t vm_flags) { if (vm_flags & VM_SHADOW_STACK) return PAGE_SIZE; return 0; } /* * Search for an unmapped address range. * * We are looking for a range that: * - does not intersect with any VMA; * - is contained within the [low_limit, high_limit) interval; * - is at least the desired size. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) */ unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) { unsigned long addr; if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) addr = unmapped_area_topdown(info); else addr = unmapped_area(info); trace_vm_unmapped_area(addr, info); return addr; } /* Get an address range which is currently unmapped. * For shmat() with addr=0. * * Ugly calling convention alert: * Return value with the low bits set means error value, * ie * if (ret & ~PAGE_MASK) * error = ret; * * This function "knows" that -ENOMEM has the bits set. */ unsigned long generic_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma, *prev; struct vm_unmapped_area_info info = {}; const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); if (len > mmap_end - mmap_min_addr) return -ENOMEM; if (flags & MAP_FIXED) return addr; if (addr) { addr = PAGE_ALIGN(addr); vma = find_vma_prev(mm, addr, &prev); if (mmap_end - len >= addr && addr >= mmap_min_addr && (!vma || addr + len <= vm_start_gap(vma)) && (!prev || addr >= vm_end_gap(prev))) return addr; } info.length = len; info.low_limit = mm->mmap_base; info.high_limit = mmap_end; info.start_gap = stack_guard_placement(vm_flags); if (filp && is_file_hugepages(filp)) info.align_mask = huge_page_mask_align(filp); return vm_unmapped_area(&info); } #ifndef HAVE_ARCH_UNMAPPED_AREA unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { return generic_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); } #endif /* * This mmap-allocator allocates new areas top-down from below the * stack's low limit (the base): */ unsigned long generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { struct vm_area_struct *vma, *prev; struct mm_struct *mm = current->mm; struct vm_unmapped_area_info info = {}; const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); /* requested length too big for entire address space */ if (len > mmap_end - mmap_min_addr) return -ENOMEM; if (flags & MAP_FIXED) return addr; /* requesting a specific address */ if (addr) { addr = PAGE_ALIGN(addr); vma = find_vma_prev(mm, addr, &prev); if (mmap_end - len >= addr && addr >= mmap_min_addr && (!vma || addr + len <= vm_start_gap(vma)) && (!prev || addr >= vm_end_gap(prev))) return addr; } info.flags = VM_UNMAPPED_AREA_TOPDOWN; info.length = len; info.low_limit = PAGE_SIZE; info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); info.start_gap = stack_guard_placement(vm_flags); if (filp && is_file_hugepages(filp)) info.align_mask = huge_page_mask_align(filp); addr = vm_unmapped_area(&info); /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ if (offset_in_page(addr)) { VM_BUG_ON(addr != -ENOMEM); info.flags = 0; info.low_limit = TASK_UNMAPPED_BASE; info.high_limit = mmap_end; addr = vm_unmapped_area(&info); } return addr; } #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, vm_flags); } #endif unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { if (test_bit(MMF_TOPDOWN, &mm->flags)) return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, vm_flags); return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); } unsigned long __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long) = NULL; unsigned long error = arch_mmap_check(addr, len, flags); if (error) return error; /* Careful about overflows.. */ if (len > TASK_SIZE) return -ENOMEM; if (file) { if (file->f_op->get_unmapped_area) get_area = file->f_op->get_unmapped_area; } else if (flags & MAP_SHARED) { /* * mmap_region() will call shmem_zero_setup() to create a file, * so use shmem's get_unmapped_area in case it can be huge. */ get_area = shmem_get_unmapped_area; } /* Always treat pgoff as zero for anonymous memory. */ if (!file) pgoff = 0; if (get_area) { addr = get_area(file, addr, len, pgoff, flags); } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file && !addr /* no hint */ && IS_ALIGNED(len, PMD_SIZE)) { /* Ensures that larger anonymous mappings are THP aligned. */ addr = thp_get_unmapped_area_vmflags(file, addr, len, pgoff, flags, vm_flags); } else { addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, pgoff, flags, vm_flags); } if (IS_ERR_VALUE(addr)) return addr; if (addr > TASK_SIZE - len) return -ENOMEM; if (offset_in_page(addr)) return -EINVAL; error = security_mmap_addr(addr); return error ? error : addr; } unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { if (test_bit(MMF_TOPDOWN, &mm->flags)) return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0); return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0); } EXPORT_SYMBOL(mm_get_unmapped_area); /** * find_vma_intersection() - Look up the first VMA which intersects the interval * @mm: The process address space. * @start_addr: The inclusive start user address. * @end_addr: The exclusive end user address. * * Returns: The first VMA within the provided range, %NULL otherwise. Assumes * start_addr < end_addr. */ struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, unsigned long start_addr, unsigned long end_addr) { unsigned long index = start_addr; mmap_assert_locked(mm); return mt_find(&mm->mm_mt, &index, end_addr - 1); } EXPORT_SYMBOL(find_vma_intersection); /** * find_vma() - Find the VMA for a given address, or the next VMA. * @mm: The mm_struct to check * @addr: The address * * Returns: The VMA associated with addr, or the next VMA. * May return %NULL in the case of no VMA at addr or above. */ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) { unsigned long index = addr; mmap_assert_locked(mm); return mt_find(&mm->mm_mt, &index, ULONG_MAX); } EXPORT_SYMBOL(find_vma); /** * find_vma_prev() - Find the VMA for a given address, or the next vma and * set %pprev to the previous VMA, if any. * @mm: The mm_struct to check * @addr: The address * @pprev: The pointer to set to the previous VMA * * Note that RCU lock is missing here since the external mmap_lock() is used * instead. * * Returns: The VMA associated with @addr, or the next vma. * May return %NULL in the case of no vma at addr or above. */ struct vm_area_struct * find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, addr); vma = vma_iter_load(&vmi); *pprev = vma_prev(&vmi); if (!vma) vma = vma_next(&vmi); return vma; } /* * Verify that the stack growth is acceptable and * update accounting. This is shared with both the * grow-up and grow-down cases. */ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) { struct mm_struct *mm = vma->vm_mm; unsigned long new_start; /* address space limit tests */ if (!may_expand_vm(mm, vma->vm_flags, grow)) return -ENOMEM; /* Stack limit test */ if (size > rlimit(RLIMIT_STACK)) return -ENOMEM; /* mlock limit tests */ if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) return -ENOMEM; /* Check to ensure the stack will not grow into a hugetlb-only region */ new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : vma->vm_end - size; if (is_hugepage_only_range(vma->vm_mm, new_start, size)) return -EFAULT; /* * Overcommit.. This must be the final test, as it will * update security statistics. */ if (security_vm_enough_memory_mm(mm, grow)) return -ENOMEM; return 0; } #if defined(CONFIG_STACK_GROWSUP) /* * PA-RISC uses this for its stack. * vma is the last one with address > vma->vm_end. Have to extend vma. */ static int expand_upwards(struct vm_area_struct *vma, unsigned long address) { struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *next; unsigned long gap_addr; int error = 0; VMA_ITERATOR(vmi, mm, vma->vm_start); if (!(vma->vm_flags & VM_GROWSUP)) return -EFAULT; mmap_assert_write_locked(mm); /* Guard against exceeding limits of the address space. */ address &= PAGE_MASK; if (address >= (TASK_SIZE & PAGE_MASK)) return -ENOMEM; address += PAGE_SIZE; /* Enforce stack_guard_gap */ gap_addr = address + stack_guard_gap; /* Guard against overflow */ if (gap_addr < address || gap_addr > TASK_SIZE) gap_addr = TASK_SIZE; next = find_vma_intersection(mm, vma->vm_end, gap_addr); if (next && vma_is_accessible(next)) { if (!(next->vm_flags & VM_GROWSUP)) return -ENOMEM; /* Check that both stack segments have the same anon_vma? */ } if (next) vma_iter_prev_range_limit(&vmi, address); vma_iter_config(&vmi, vma->vm_start, address); if (vma_iter_prealloc(&vmi, vma)) return -ENOMEM; /* We must make sure the anon_vma is allocated. */ if (unlikely(anon_vma_prepare(vma))) { vma_iter_free(&vmi); return -ENOMEM; } /* Lock the VMA before expanding to prevent concurrent page faults */ vma_start_write(vma); /* We update the anon VMA tree. */ anon_vma_lock_write(vma->anon_vma); /* Somebody else might have raced and expanded it already */ if (address > vma->vm_end) { unsigned long size, grow; size = address - vma->vm_start; grow = (address - vma->vm_end) >> PAGE_SHIFT; error = -ENOMEM; if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { error = acct_stack_growth(vma, size, grow); if (!error) { if (vma->vm_flags & VM_LOCKED) mm->locked_vm += grow; vm_stat_account(mm, vma->vm_flags, grow); anon_vma_interval_tree_pre_update_vma(vma); vma->vm_end = address; /* Overwrite old entry in mtree. */ vma_iter_store(&vmi, vma); anon_vma_interval_tree_post_update_vma(vma); perf_event_mmap(vma); } } } anon_vma_unlock_write(vma->anon_vma); vma_iter_free(&vmi); validate_mm(mm); return error; } #endif /* CONFIG_STACK_GROWSUP */ /* * vma is the first one with address < vma->vm_start. Have to extend vma. * mmap_lock held for writing. */ int expand_downwards(struct vm_area_struct *vma, unsigned long address) { struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *prev; int error = 0; VMA_ITERATOR(vmi, mm, vma->vm_start); if (!(vma->vm_flags & VM_GROWSDOWN)) return -EFAULT; mmap_assert_write_locked(mm); address &= PAGE_MASK; if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) return -EPERM; /* Enforce stack_guard_gap */ prev = vma_prev(&vmi); /* Check that both stack segments have the same anon_vma? */ if (prev) { if (!(prev->vm_flags & VM_GROWSDOWN) && vma_is_accessible(prev) && (address - prev->vm_end < stack_guard_gap)) return -ENOMEM; } if (prev) vma_iter_next_range_limit(&vmi, vma->vm_start); vma_iter_config(&vmi, address, vma->vm_end); if (vma_iter_prealloc(&vmi, vma)) return -ENOMEM; /* We must make sure the anon_vma is allocated. */ if (unlikely(anon_vma_prepare(vma))) { vma_iter_free(&vmi); return -ENOMEM; } /* Lock the VMA before expanding to prevent concurrent page faults */ vma_start_write(vma); /* We update the anon VMA tree. */ anon_vma_lock_write(vma->anon_vma); /* Somebody else might have raced and expanded it already */ if (address < vma->vm_start) { unsigned long size, grow; size = vma->vm_end - address; grow = (vma->vm_start - address) >> PAGE_SHIFT; error = -ENOMEM; if (grow <= vma->vm_pgoff) { error = acct_stack_growth(vma, size, grow); if (!error) { if (vma->vm_flags & VM_LOCKED) mm->locked_vm += grow; vm_stat_account(mm, vma->vm_flags, grow); anon_vma_interval_tree_pre_update_vma(vma); vma->vm_start = address; vma->vm_pgoff -= grow; /* Overwrite old entry in mtree. */ vma_iter_store(&vmi, vma); anon_vma_interval_tree_post_update_vma(vma); perf_event_mmap(vma); } } } anon_vma_unlock_write(vma->anon_vma); vma_iter_free(&vmi); validate_mm(mm); return error; } /* enforced gap between the expanding stack and other mappings. */ unsigned long stack_guard_gap = 256UL<comm, current->pid); if (prot) return ret; start = start & PAGE_MASK; size = size & PAGE_MASK; if (start + size <= start) return ret; /* Does pgoff wrap? */ if (pgoff + (size >> PAGE_SHIFT) < pgoff) return ret; if (mmap_read_lock_killable(mm)) return -EINTR; /* * Look up VMA under read lock first so we can perform the security * without holding locks (which can be problematic). We reacquire a * write lock later and check nothing changed underneath us. */ vma = vma_lookup(mm, start); if (!vma || !(vma->vm_flags & VM_SHARED)) { mmap_read_unlock(mm); return -EINVAL; } prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; flags &= MAP_NONBLOCK; flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; if (vma->vm_flags & VM_LOCKED) flags |= MAP_LOCKED; /* Save vm_flags used to calculate prot and flags, and recheck later. */ vm_flags = vma->vm_flags; file = get_file(vma->vm_file); mmap_read_unlock(mm); /* Call outside mmap_lock to be consistent with other callers. */ ret = security_mmap_file(file, prot, flags); if (ret) { fput(file); return ret; } ret = -EINVAL; /* OK security check passed, take write lock + let it rip. */ if (mmap_write_lock_killable(mm)) { fput(file); return -EINTR; } vma = vma_lookup(mm, start); if (!vma) goto out; /* Make sure things didn't change under us. */ if (vma->vm_flags != vm_flags) goto out; if (vma->vm_file != file) goto out; if (start + size > vma->vm_end) { VMA_ITERATOR(vmi, mm, vma->vm_end); struct vm_area_struct *next, *prev = vma; for_each_vma_range(vmi, next, start + size) { /* hole between vmas ? */ if (next->vm_start != prev->vm_end) goto out; if (next->vm_file != vma->vm_file) goto out; if (next->vm_flags != vma->vm_flags) goto out; if (start + size <= next->vm_end) break; prev = next; } if (!next) goto out; } ret = do_mmap(vma->vm_file, start, size, prot, flags, 0, pgoff, &populate, NULL); out: mmap_write_unlock(mm); fput(file); if (populate) mm_populate(ret, populate); if (!IS_ERR_VALUE(ret)) ret = 0; return ret; } /* * do_brk_flags() - Increase the brk vma if the flags match. * @vmi: The vma iterator * @addr: The start address * @len: The length of the increase * @vma: The vma, * @flags: The VMA Flags * * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags * do not match then create a new anonymous VMA. Eventually we may be able to * do some brk-specific accounting here. */ static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, unsigned long len, unsigned long flags) { struct mm_struct *mm = current->mm; /* * Check against address space limits by the changed size * Note: This happens *after* clearing old mappings in some code paths. */ flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) return -ENOMEM; if (mm->map_count > sysctl_max_map_count) return -ENOMEM; if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) return -ENOMEM; /* * Expand the existing vma if possible; Note that singular lists do not * occur after forking, so the expand will only happen on new VMAs. */ if (vma && vma->vm_end == addr) { VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); vmg.prev = vma; /* vmi is positioned at prev, which this mode expects. */ vmg.merge_flags = VMG_FLAG_JUST_EXPAND; if (vma_merge_new_range(&vmg)) goto out; else if (vmg_nomem(&vmg)) goto unacct_fail; } if (vma) vma_iter_next_range(vmi); /* create a vma struct for an anonymous mapping */ vma = vm_area_alloc(mm); if (!vma) goto unacct_fail; vma_set_anonymous(vma); vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); vm_flags_init(vma, flags); vma->vm_page_prot = vm_get_page_prot(flags); vma_start_write(vma); if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) goto mas_store_fail; mm->map_count++; validate_mm(mm); ksm_add_vma(vma); out: perf_event_mmap(vma); mm->total_vm += len >> PAGE_SHIFT; mm->data_vm += len >> PAGE_SHIFT; if (flags & VM_LOCKED) mm->locked_vm += (len >> PAGE_SHIFT); vm_flags_set(vma, VM_SOFTDIRTY); return 0; mas_store_fail: vm_area_free(vma); unacct_fail: vm_unacct_memory(len >> PAGE_SHIFT); return -ENOMEM; } int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; unsigned long len; int ret; bool populate; LIST_HEAD(uf); VMA_ITERATOR(vmi, mm, addr); len = PAGE_ALIGN(request); if (len < request) return -ENOMEM; if (!len) return 0; /* Until we need other flags, refuse anything except VM_EXEC. */ if ((flags & (~VM_EXEC)) != 0) return -EINVAL; if (mmap_write_lock_killable(mm)) return -EINTR; ret = check_brk_limits(addr, len); if (ret) goto limits_failed; ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); if (ret) goto munmap_failed; vma = vma_prev(&vmi); ret = do_brk_flags(&vmi, vma, addr, len, flags); populate = ((mm->def_flags & VM_LOCKED) != 0); mmap_write_unlock(mm); userfaultfd_unmap_complete(mm, &uf); if (populate && !ret) mm_populate(addr, len); return ret; munmap_failed: limits_failed: mmap_write_unlock(mm); return ret; } EXPORT_SYMBOL(vm_brk_flags); /* Release all mmaps. */ void exit_mmap(struct mm_struct *mm) { struct mmu_gather tlb; struct vm_area_struct *vma; unsigned long nr_accounted = 0; VMA_ITERATOR(vmi, mm, 0); int count = 0; /* mm's last user has gone, and its about to be pulled down */ mmu_notifier_release(mm); mmap_read_lock(mm); arch_exit_mmap(mm); vma = vma_next(&vmi); if (!vma || unlikely(xa_is_zero(vma))) { /* Can happen if dup_mmap() received an OOM */ mmap_read_unlock(mm); mmap_write_lock(mm); goto destroy; } lru_add_drain(); flush_cache_mm(mm); tlb_gather_mmu_fullmm(&tlb, mm); /* update_hiwater_rss(mm) here? but nobody should be looking */ /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); mmap_read_unlock(mm); /* * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper * because the memory has been already freed. */ set_bit(MMF_OOM_SKIP, &mm->flags); mmap_write_lock(mm); mt_clear_in_rcu(&mm->mm_mt); vma_iter_set(&vmi, vma->vm_end); free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING, true); tlb_finish_mmu(&tlb); /* * Walk the list again, actually closing and freeing it, with preemption * enabled, without holding any MM locks besides the unreachable * mmap_write_lock. */ vma_iter_set(&vmi, vma->vm_end); do { if (vma->vm_flags & VM_ACCOUNT) nr_accounted += vma_pages(vma); remove_vma(vma, /* unreachable = */ true); count++; cond_resched(); vma = vma_next(&vmi); } while (vma && likely(!xa_is_zero(vma))); BUG_ON(count != mm->map_count); trace_exit_mmap(mm); destroy: __mt_destroy(&mm->mm_mt); mmap_write_unlock(mm); vm_unacct_memory(nr_accounted); } /* Insert vm structure into process list sorted by address * and into the inode's i_mmap tree. If vm_file is non-NULL * then i_mmap_rwsem is taken here. */ int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) { unsigned long charged = vma_pages(vma); if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) return -ENOMEM; if ((vma->vm_flags & VM_ACCOUNT) && security_vm_enough_memory_mm(mm, charged)) return -ENOMEM; /* * The vm_pgoff of a purely anonymous vma should be irrelevant * until its first write fault, when page's anon_vma and index * are set. But now set the vm_pgoff it will almost certainly * end up with (unless mremap moves it elsewhere before that * first wfault), so /proc/pid/maps tells a consistent story. * * By setting it to reflect the virtual start address of the * vma, merges and splits can happen in a seamless way, just * using the existing file pgoff checks and manipulations. * Similarly in do_mmap and in do_brk_flags. */ if (vma_is_anonymous(vma)) { BUG_ON(vma->anon_vma); vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; } if (vma_link(mm, vma)) { if (vma->vm_flags & VM_ACCOUNT) vm_unacct_memory(charged); return -ENOMEM; } return 0; } /* * Return true if the calling process may expand its vm space by the passed * number of pages */ bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) { if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) return false; if (is_data_mapping(flags) && mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { /* Workaround for Valgrind */ if (rlimit(RLIMIT_DATA) == 0 && mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) return true; pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", current->comm, current->pid, (mm->data_vm + npages) << PAGE_SHIFT, rlimit(RLIMIT_DATA), ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); if (!ignore_rlimit_data) return false; } return true; } void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) { WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); if (is_exec_mapping(flags)) mm->exec_vm += npages; else if (is_stack_mapping(flags)) mm->stack_vm += npages; else if (is_data_mapping(flags)) mm->data_vm += npages; } static vm_fault_t special_mapping_fault(struct vm_fault *vmf); /* * Close hook, called for unmap() and on the old vma for mremap(). * * Having a close hook prevents vma merging regardless of flags. */ static void special_mapping_close(struct vm_area_struct *vma) { const struct vm_special_mapping *sm = vma->vm_private_data; if (sm->close) sm->close(sm, vma); } static const char *special_mapping_name(struct vm_area_struct *vma) { return ((struct vm_special_mapping *)vma->vm_private_data)->name; } static int special_mapping_mremap(struct vm_area_struct *new_vma) { struct vm_special_mapping *sm = new_vma->vm_private_data; if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) return -EFAULT; if (sm->mremap) return sm->mremap(sm, new_vma); return 0; } static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) { /* * Forbid splitting special mappings - kernel has expectations over * the number of pages in mapping. Together with VM_DONTEXPAND * the size of vma should stay the same over the special mapping's * lifetime. */ return -EINVAL; } static const struct vm_operations_struct special_mapping_vmops = { .close = special_mapping_close, .fault = special_mapping_fault, .mremap = special_mapping_mremap, .name = special_mapping_name, /* vDSO code relies that VVAR can't be accessed remotely */ .access = NULL, .may_split = special_mapping_split, }; static vm_fault_t special_mapping_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgoff_t pgoff; struct page **pages; struct vm_special_mapping *sm = vma->vm_private_data; if (sm->fault) return sm->fault(sm, vmf->vma, vmf); pages = sm->pages; for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) pgoff--; if (*pages) { struct page *page = *pages; get_page(page); vmf->page = page; return 0; } return VM_FAULT_SIGBUS; } static struct vm_area_struct *__install_special_mapping( struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, void *priv, const struct vm_operations_struct *ops) { int ret; struct vm_area_struct *vma; vma = vm_area_alloc(mm); if (unlikely(vma == NULL)) return ERR_PTR(-ENOMEM); vma_set_range(vma, addr, addr + len, 0); vm_flags_init(vma, (vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); vma->vm_ops = ops; vma->vm_private_data = priv; ret = insert_vm_struct(mm, vma); if (ret) goto out; vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); perf_event_mmap(vma); return vma; out: vm_area_free(vma); return ERR_PTR(ret); } bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm) { return vma->vm_private_data == sm && vma->vm_ops == &special_mapping_vmops; } /* * Called with mm->mmap_lock held for writing. * Insert a new vma covering the given region, with the given flags. * Its pages are supplied by the given array of struct page *. * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. * The region past the last page supplied will always produce SIGBUS. * The array pointer and the pages it points to are assumed to stay alive * for as long as this mapping might exist. */ struct vm_area_struct *_install_special_mapping( struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, const struct vm_special_mapping *spec) { return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, &special_mapping_vmops); } /* * initialise the percpu counter for VM */ void __init mmap_init(void) { int ret; ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); VM_BUG_ON(ret); } /* * Initialise sysctl_user_reserve_kbytes. * * This is intended to prevent a user from starting a single memory hogging * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER * mode. * * The default value is min(3% of free memory, 128MB) * 128MB is enough to recover with sshd/login, bash, and top/kill. */ static int init_user_reserve(void) { unsigned long free_kbytes; free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); return 0; } subsys_initcall(init_user_reserve); /* * Initialise sysctl_admin_reserve_kbytes. * * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin * to log in and kill a memory hogging process. * * Systems with more than 256MB will reserve 8MB, enough to recover * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will * only reserve 3% of free pages by default. */ static int init_admin_reserve(void) { unsigned long free_kbytes; free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); return 0; } subsys_initcall(init_admin_reserve); /* * Reinititalise user and admin reserves if memory is added or removed. * * The default user reserve max is 128MB, and the default max for the * admin reserve is 8MB. These are usually, but not always, enough to * enable recovery from a memory hogging process using login/sshd, a shell, * and tools like top. It may make sense to increase or even disable the * reserve depending on the existence of swap or variations in the recovery * tools. So, the admin may have changed them. * * If memory is added and the reserves have been eliminated or increased above * the default max, then we'll trust the admin. * * If memory is removed and there isn't enough free memory, then we * need to reset the reserves. * * Otherwise keep the reserve set by the admin. */ static int reserve_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { unsigned long tmp, free_kbytes; switch (action) { case MEM_ONLINE: /* Default max is 128MB. Leave alone if modified by operator. */ tmp = sysctl_user_reserve_kbytes; if (tmp > 0 && tmp < SZ_128K) init_user_reserve(); /* Default max is 8MB. Leave alone if modified by operator. */ tmp = sysctl_admin_reserve_kbytes; if (tmp > 0 && tmp < SZ_8K) init_admin_reserve(); break; case MEM_OFFLINE: free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); if (sysctl_user_reserve_kbytes > free_kbytes) { init_user_reserve(); pr_info("vm.user_reserve_kbytes reset to %lu\n", sysctl_user_reserve_kbytes); } if (sysctl_admin_reserve_kbytes > free_kbytes) { init_admin_reserve(); pr_info("vm.admin_reserve_kbytes reset to %lu\n", sysctl_admin_reserve_kbytes); } break; default: break; } return NOTIFY_OK; } static int __meminit init_reserve_notifier(void) { if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) pr_err("Failed registering memory add/remove notifier for admin reserve\n"); return 0; } subsys_initcall(init_reserve_notifier); /* * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between * this VMA and its relocated range, which will now reside at [vma->vm_start - * shift, vma->vm_end - shift). * * This function is almost certainly NOT what you want for anything other than * early executable temporary stack relocation. */ int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift) { /* * The process proceeds as follows: * * 1) Use shift to calculate the new vma endpoints. * 2) Extend vma to cover both the old and new ranges. This ensures the * arguments passed to subsequent functions are consistent. * 3) Move vma's page tables to the new range. * 4) Free up any cleared pgd range. * 5) Shrink the vma to cover only the new range. */ struct mm_struct *mm = vma->vm_mm; unsigned long old_start = vma->vm_start; unsigned long old_end = vma->vm_end; unsigned long length = old_end - old_start; unsigned long new_start = old_start - shift; unsigned long new_end = old_end - shift; VMA_ITERATOR(vmi, mm, new_start); VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff); struct vm_area_struct *next; struct mmu_gather tlb; BUG_ON(new_start > new_end); /* * ensure there are no vmas between where we want to go * and where we are */ if (vma != vma_next(&vmi)) return -EFAULT; vma_iter_prev_range(&vmi); /* * cover the whole range: [new_start, old_end) */ vmg.vma = vma; if (vma_expand(&vmg)) return -ENOMEM; /* * move the page tables downwards, on failure we rely on * process cleanup to remove whatever mess we made. */ if (length != move_page_tables(vma, old_start, vma, new_start, length, false, true)) return -ENOMEM; lru_add_drain(); tlb_gather_mmu(&tlb, mm); next = vma_next(&vmi); if (new_end > old_start) { /* * when the old and new regions overlap clear from new_end. */ free_pgd_range(&tlb, new_end, old_end, new_end, next ? next->vm_start : USER_PGTABLES_CEILING); } else { /* * otherwise, clean from old_start; this is done to not touch * the address space in [new_end, old_start) some architectures * have constraints on va-space that make this illegal (IA64) - * for the others its just a little faster. */ free_pgd_range(&tlb, old_start, old_end, new_end, next ? next->vm_start : USER_PGTABLES_CEILING); } tlb_finish_mmu(&tlb); vma_prev(&vmi); /* Shrink the vma to just the new range */ return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); }