// SPDX-License-Identifier: GPL-2.0 /* * Management Component Transport Protocol (MCTP) - routing * implementation. * * This is currently based on a simple routing table, with no dst cache. The * number of routes should stay fairly small, so the lookup cost is small. * * Copyright (c) 2021 Code Construct * Copyright (c) 2021 Google */ #include #include #include #include #include #include #include #include #include #include #include #include static const unsigned int mctp_message_maxlen = 64 * 1024; static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ; static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev); /* route output callbacks */ static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb) { kfree_skb(skb); return 0; } static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb) { struct mctp_skb_cb *cb = mctp_cb(skb); struct mctp_hdr *mh; struct sock *sk; u8 type; WARN_ON(!rcu_read_lock_held()); /* TODO: look up in skb->cb? */ mh = mctp_hdr(skb); if (!skb_headlen(skb)) return NULL; type = (*(u8 *)skb->data) & 0x7f; sk_for_each_rcu(sk, &net->mctp.binds) { struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net) continue; if (msk->bind_type != type) continue; if (!mctp_address_matches(msk->bind_addr, mh->dest)) continue; return msk; } return NULL; } /* A note on the key allocations. * * struct net->mctp.keys contains our set of currently-allocated keys for * MCTP tag management. The lookup tuple for these is the peer EID, * local EID and MCTP tag. * * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a * broadcast message is sent, we may receive responses from any peer EID. * Because the broadcast dest address is equivalent to ANY, we create * a key with (local = local-eid, peer = ANY). This allows a match on the * incoming broadcast responses from any peer. * * We perform lookups when packets are received, and when tags are allocated * in two scenarios: * * - when a packet is sent, with a locally-owned tag: we need to find an * unused tag value for the (local, peer) EID pair. * * - when a tag is manually allocated: we need to find an unused tag value * for the peer EID, but don't have a specific local EID at that stage. * * in the latter case, on successful allocation, we end up with a tag with * (local = ANY, peer = peer-eid). * * So, the key set allows both a local EID of ANY, as well as a peer EID of * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast. * The matching (in mctp_key_match()) during lookup allows the match value to * be ANY in either the dest or source addresses. * * When allocating (+ inserting) a tag, we need to check for conflicts amongst * the existing tag set. This requires macthing either exactly on the local * and peer addresses, or either being ANY. */ static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net, mctp_eid_t local, mctp_eid_t peer, u8 tag) { if (key->net != net) return false; if (!mctp_address_matches(key->local_addr, local)) return false; if (!mctp_address_matches(key->peer_addr, peer)) return false; if (key->tag != tag) return false; return true; } /* returns a key (with key->lock held, and refcounted), or NULL if no such * key exists. */ static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb, unsigned int netid, mctp_eid_t peer, unsigned long *irqflags) __acquires(&key->lock) { struct mctp_sk_key *key, *ret; unsigned long flags; struct mctp_hdr *mh; u8 tag; mh = mctp_hdr(skb); tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); ret = NULL; spin_lock_irqsave(&net->mctp.keys_lock, flags); hlist_for_each_entry(key, &net->mctp.keys, hlist) { if (!mctp_key_match(key, netid, mh->dest, peer, tag)) continue; spin_lock(&key->lock); if (key->valid) { refcount_inc(&key->refs); ret = key; break; } spin_unlock(&key->lock); } if (ret) { spin_unlock(&net->mctp.keys_lock); *irqflags = flags; } else { spin_unlock_irqrestore(&net->mctp.keys_lock, flags); } return ret; } static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk, unsigned int net, mctp_eid_t local, mctp_eid_t peer, u8 tag, gfp_t gfp) { struct mctp_sk_key *key; key = kzalloc(sizeof(*key), gfp); if (!key) return NULL; key->net = net; key->peer_addr = peer; key->local_addr = local; key->tag = tag; key->sk = &msk->sk; key->valid = true; spin_lock_init(&key->lock); refcount_set(&key->refs, 1); sock_hold(key->sk); return key; } void mctp_key_unref(struct mctp_sk_key *key) { unsigned long flags; if (!refcount_dec_and_test(&key->refs)) return; /* even though no refs exist here, the lock allows us to stay * consistent with the locking requirement of mctp_dev_release_key */ spin_lock_irqsave(&key->lock, flags); mctp_dev_release_key(key->dev, key); spin_unlock_irqrestore(&key->lock, flags); sock_put(key->sk); kfree(key); } static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk) { struct net *net = sock_net(&msk->sk); struct mctp_sk_key *tmp; unsigned long flags; int rc = 0; spin_lock_irqsave(&net->mctp.keys_lock, flags); if (sock_flag(&msk->sk, SOCK_DEAD)) { rc = -EINVAL; goto out_unlock; } hlist_for_each_entry(tmp, &net->mctp.keys, hlist) { if (mctp_key_match(tmp, key->net, key->local_addr, key->peer_addr, key->tag)) { spin_lock(&tmp->lock); if (tmp->valid) rc = -EEXIST; spin_unlock(&tmp->lock); if (rc) break; } } if (!rc) { refcount_inc(&key->refs); key->expiry = jiffies + mctp_key_lifetime; timer_reduce(&msk->key_expiry, key->expiry); hlist_add_head(&key->hlist, &net->mctp.keys); hlist_add_head(&key->sklist, &msk->keys); } out_unlock: spin_unlock_irqrestore(&net->mctp.keys_lock, flags); return rc; } /* Helper for mctp_route_input(). * We're done with the key; unlock and unref the key. * For the usual case of automatic expiry we remove the key from lists. * In the case that manual allocation is set on a key we release the lock * and local ref, reset reassembly, but don't remove from lists. */ static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net, unsigned long flags, unsigned long reason) __releases(&key->lock) { struct sk_buff *skb; trace_mctp_key_release(key, reason); skb = key->reasm_head; key->reasm_head = NULL; if (!key->manual_alloc) { key->reasm_dead = true; key->valid = false; mctp_dev_release_key(key->dev, key); } spin_unlock_irqrestore(&key->lock, flags); if (!key->manual_alloc) { spin_lock_irqsave(&net->mctp.keys_lock, flags); if (!hlist_unhashed(&key->hlist)) { hlist_del_init(&key->hlist); hlist_del_init(&key->sklist); mctp_key_unref(key); } spin_unlock_irqrestore(&net->mctp.keys_lock, flags); } /* and one for the local reference */ mctp_key_unref(key); kfree_skb(skb); } #ifdef CONFIG_MCTP_FLOWS static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) { struct mctp_flow *flow; flow = skb_ext_add(skb, SKB_EXT_MCTP); if (!flow) return; refcount_inc(&key->refs); flow->key = key; } static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) { struct mctp_sk_key *key; struct mctp_flow *flow; flow = skb_ext_find(skb, SKB_EXT_MCTP); if (!flow) return; key = flow->key; if (WARN_ON(key->dev && key->dev != dev)) return; mctp_dev_set_key(dev, key); } #else static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {} static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {} #endif static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb) { struct mctp_hdr *hdr = mctp_hdr(skb); u8 exp_seq, this_seq; this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) & MCTP_HDR_SEQ_MASK; if (!key->reasm_head) { key->reasm_head = skb; key->reasm_tailp = &(skb_shinfo(skb)->frag_list); key->last_seq = this_seq; return 0; } exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK; if (this_seq != exp_seq) return -EINVAL; if (key->reasm_head->len + skb->len > mctp_message_maxlen) return -EINVAL; skb->next = NULL; skb->sk = NULL; *key->reasm_tailp = skb; key->reasm_tailp = &skb->next; key->last_seq = this_seq; key->reasm_head->data_len += skb->len; key->reasm_head->len += skb->len; key->reasm_head->truesize += skb->truesize; return 0; } static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb) { struct mctp_sk_key *key, *any_key = NULL; struct net *net = dev_net(skb->dev); struct mctp_sock *msk; struct mctp_hdr *mh; unsigned int netid; unsigned long f; u8 tag, flags; int rc; msk = NULL; rc = -EINVAL; /* We may be receiving a locally-routed packet; drop source sk * accounting. * * From here, we will either queue the skb - either to a frag_queue, or * to a receiving socket. When that succeeds, we clear the skb pointer; * a non-NULL skb on exit will be otherwise unowned, and hence * kfree_skb()-ed. */ skb_orphan(skb); /* ensure we have enough data for a header and a type */ if (skb->len < sizeof(struct mctp_hdr) + 1) goto out; /* grab header, advance data ptr */ mh = mctp_hdr(skb); netid = mctp_cb(skb)->net; skb_pull(skb, sizeof(struct mctp_hdr)); if (mh->ver != 1) goto out; flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM); tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); rcu_read_lock(); /* lookup socket / reasm context, exactly matching (src,dest,tag). * we hold a ref on the key, and key->lock held. */ key = mctp_lookup_key(net, skb, netid, mh->src, &f); if (flags & MCTP_HDR_FLAG_SOM) { if (key) { msk = container_of(key->sk, struct mctp_sock, sk); } else { /* first response to a broadcast? do a more general * key lookup to find the socket, but don't use this * key for reassembly - we'll create a more specific * one for future packets if required (ie, !EOM). * * this lookup requires key->peer to be MCTP_ADDR_ANY, * it doesn't match just any key->peer. */ any_key = mctp_lookup_key(net, skb, netid, MCTP_ADDR_ANY, &f); if (any_key) { msk = container_of(any_key->sk, struct mctp_sock, sk); spin_unlock_irqrestore(&any_key->lock, f); } } if (!key && !msk && (tag & MCTP_HDR_FLAG_TO)) msk = mctp_lookup_bind(net, skb); if (!msk) { rc = -ENOENT; goto out_unlock; } /* single-packet message? deliver to socket, clean up any * pending key. */ if (flags & MCTP_HDR_FLAG_EOM) { rc = sock_queue_rcv_skb(&msk->sk, skb); if (!rc) skb = NULL; if (key) { /* we've hit a pending reassembly; not much we * can do but drop it */ __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); key = NULL; } goto out_unlock; } /* broadcast response or a bind() - create a key for further * packets for this message */ if (!key) { key = mctp_key_alloc(msk, netid, mh->dest, mh->src, tag, GFP_ATOMIC); if (!key) { rc = -ENOMEM; goto out_unlock; } /* we can queue without the key lock here, as the * key isn't observable yet */ mctp_frag_queue(key, skb); /* if the key_add fails, we've raced with another * SOM packet with the same src, dest and tag. There's * no way to distinguish future packets, so all we * can do is drop; we'll free the skb on exit from * this function. */ rc = mctp_key_add(key, msk); if (!rc) { trace_mctp_key_acquire(key); skb = NULL; } /* we don't need to release key->lock on exit, so * clean up here and suppress the unlock via * setting to NULL */ mctp_key_unref(key); key = NULL; } else { if (key->reasm_head || key->reasm_dead) { /* duplicate start? drop everything */ __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_INVALIDATED); rc = -EEXIST; key = NULL; } else { rc = mctp_frag_queue(key, skb); if (!rc) skb = NULL; } } } else if (key) { /* this packet continues a previous message; reassemble * using the message-specific key */ /* we need to be continuing an existing reassembly... */ if (!key->reasm_head) rc = -EINVAL; else rc = mctp_frag_queue(key, skb); if (rc) goto out_unlock; /* we've queued; the queue owns the skb now */ skb = NULL; /* end of message? deliver to socket, and we're done with * the reassembly/response key */ if (flags & MCTP_HDR_FLAG_EOM) { rc = sock_queue_rcv_skb(key->sk, key->reasm_head); if (!rc) key->reasm_head = NULL; __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); key = NULL; } } else { /* not a start, no matching key */ rc = -ENOENT; } out_unlock: rcu_read_unlock(); if (key) { spin_unlock_irqrestore(&key->lock, f); mctp_key_unref(key); } if (any_key) mctp_key_unref(any_key); out: kfree_skb(skb); return rc; } static unsigned int mctp_route_mtu(struct mctp_route *rt) { return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu); } static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb) { struct mctp_skb_cb *cb = mctp_cb(skb); struct mctp_hdr *hdr = mctp_hdr(skb); char daddr_buf[MAX_ADDR_LEN]; char *daddr = NULL; unsigned int mtu; int rc; skb->protocol = htons(ETH_P_MCTP); mtu = READ_ONCE(skb->dev->mtu); if (skb->len > mtu) { kfree_skb(skb); return -EMSGSIZE; } if (cb->ifindex) { /* direct route; use the hwaddr we stashed in sendmsg */ if (cb->halen != skb->dev->addr_len) { /* sanity check, sendmsg should have already caught this */ kfree_skb(skb); return -EMSGSIZE; } daddr = cb->haddr; } else { /* If lookup fails let the device handle daddr==NULL */ if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0) daddr = daddr_buf; } rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol), daddr, skb->dev->dev_addr, skb->len); if (rc < 0) { kfree_skb(skb); return -EHOSTUNREACH; } mctp_flow_prepare_output(skb, route->dev); rc = dev_queue_xmit(skb); if (rc) rc = net_xmit_errno(rc); return rc; } /* route alloc/release */ static void mctp_route_release(struct mctp_route *rt) { if (refcount_dec_and_test(&rt->refs)) { mctp_dev_put(rt->dev); kfree_rcu(rt, rcu); } } /* returns a route with the refcount at 1 */ static struct mctp_route *mctp_route_alloc(void) { struct mctp_route *rt; rt = kzalloc(sizeof(*rt), GFP_KERNEL); if (!rt) return NULL; INIT_LIST_HEAD(&rt->list); refcount_set(&rt->refs, 1); rt->output = mctp_route_discard; return rt; } unsigned int mctp_default_net(struct net *net) { return READ_ONCE(net->mctp.default_net); } int mctp_default_net_set(struct net *net, unsigned int index) { if (index == 0) return -EINVAL; WRITE_ONCE(net->mctp.default_net, index); return 0; } /* tag management */ static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key, struct mctp_sock *msk) { struct netns_mctp *mns = &net->mctp; lockdep_assert_held(&mns->keys_lock); key->expiry = jiffies + mctp_key_lifetime; timer_reduce(&msk->key_expiry, key->expiry); /* we hold the net->key_lock here, allowing updates to both * then net and sk */ hlist_add_head_rcu(&key->hlist, &mns->keys); hlist_add_head_rcu(&key->sklist, &msk->keys); refcount_inc(&key->refs); } /* Allocate a locally-owned tag value for (local, peer), and reserve * it for the socket msk */ struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk, unsigned int netid, mctp_eid_t local, mctp_eid_t peer, bool manual, u8 *tagp) { struct net *net = sock_net(&msk->sk); struct netns_mctp *mns = &net->mctp; struct mctp_sk_key *key, *tmp; unsigned long flags; u8 tagbits; /* for NULL destination EIDs, we may get a response from any peer */ if (peer == MCTP_ADDR_NULL) peer = MCTP_ADDR_ANY; /* be optimistic, alloc now */ key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL); if (!key) return ERR_PTR(-ENOMEM); /* 8 possible tag values */ tagbits = 0xff; spin_lock_irqsave(&mns->keys_lock, flags); /* Walk through the existing keys, looking for potential conflicting * tags. If we find a conflict, clear that bit from tagbits */ hlist_for_each_entry(tmp, &mns->keys, hlist) { /* We can check the lookup fields (*_addr, tag) without the * lock held, they don't change over the lifetime of the key. */ /* tags are net-specific */ if (tmp->net != netid) continue; /* if we don't own the tag, it can't conflict */ if (tmp->tag & MCTP_HDR_FLAG_TO) continue; /* Since we're avoiding conflicting entries, match peer and * local addresses, including with a wildcard on ANY. See * 'A note on key allocations' for background. */ if (peer != MCTP_ADDR_ANY && !mctp_address_matches(tmp->peer_addr, peer)) continue; if (local != MCTP_ADDR_ANY && !mctp_address_matches(tmp->local_addr, local)) continue; spin_lock(&tmp->lock); /* key must still be valid. If we find a match, clear the * potential tag value */ if (tmp->valid) tagbits &= ~(1 << tmp->tag); spin_unlock(&tmp->lock); if (!tagbits) break; } if (tagbits) { key->tag = __ffs(tagbits); mctp_reserve_tag(net, key, msk); trace_mctp_key_acquire(key); key->manual_alloc = manual; *tagp = key->tag; } spin_unlock_irqrestore(&mns->keys_lock, flags); if (!tagbits) { mctp_key_unref(key); return ERR_PTR(-EBUSY); } return key; } static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk, unsigned int netid, mctp_eid_t daddr, u8 req_tag, u8 *tagp) { struct net *net = sock_net(&msk->sk); struct netns_mctp *mns = &net->mctp; struct mctp_sk_key *key, *tmp; unsigned long flags; req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER); key = NULL; spin_lock_irqsave(&mns->keys_lock, flags); hlist_for_each_entry(tmp, &mns->keys, hlist) { if (tmp->net != netid) continue; if (tmp->tag != req_tag) continue; if (!mctp_address_matches(tmp->peer_addr, daddr)) continue; if (!tmp->manual_alloc) continue; spin_lock(&tmp->lock); if (tmp->valid) { key = tmp; refcount_inc(&key->refs); spin_unlock(&tmp->lock); break; } spin_unlock(&tmp->lock); } spin_unlock_irqrestore(&mns->keys_lock, flags); if (!key) return ERR_PTR(-ENOENT); if (tagp) *tagp = key->tag; return key; } /* routing lookups */ static bool mctp_rt_match_eid(struct mctp_route *rt, unsigned int net, mctp_eid_t eid) { return READ_ONCE(rt->dev->net) == net && rt->min <= eid && rt->max >= eid; } /* compares match, used for duplicate prevention */ static bool mctp_rt_compare_exact(struct mctp_route *rt1, struct mctp_route *rt2) { ASSERT_RTNL(); return rt1->dev->net == rt2->dev->net && rt1->min == rt2->min && rt1->max == rt2->max; } struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet, mctp_eid_t daddr) { struct mctp_route *tmp, *rt = NULL; rcu_read_lock(); list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { /* TODO: add metrics */ if (mctp_rt_match_eid(tmp, dnet, daddr)) { if (refcount_inc_not_zero(&tmp->refs)) { rt = tmp; break; } } } rcu_read_unlock(); return rt; } static struct mctp_route *mctp_route_lookup_null(struct net *net, struct net_device *dev) { struct mctp_route *tmp, *rt = NULL; rcu_read_lock(); list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL && refcount_inc_not_zero(&tmp->refs)) { rt = tmp; break; } } rcu_read_unlock(); return rt; } static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb, unsigned int mtu, u8 tag) { const unsigned int hlen = sizeof(struct mctp_hdr); struct mctp_hdr *hdr, *hdr2; unsigned int pos, size, headroom; struct sk_buff *skb2; int rc; u8 seq; hdr = mctp_hdr(skb); seq = 0; rc = 0; if (mtu < hlen + 1) { kfree_skb(skb); return -EMSGSIZE; } /* keep same headroom as the original skb */ headroom = skb_headroom(skb); /* we've got the header */ skb_pull(skb, hlen); for (pos = 0; pos < skb->len;) { /* size of message payload */ size = min(mtu - hlen, skb->len - pos); skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL); if (!skb2) { rc = -ENOMEM; break; } /* generic skb copy */ skb2->protocol = skb->protocol; skb2->priority = skb->priority; skb2->dev = skb->dev; memcpy(skb2->cb, skb->cb, sizeof(skb2->cb)); if (skb->sk) skb_set_owner_w(skb2, skb->sk); /* establish packet */ skb_reserve(skb2, headroom); skb_reset_network_header(skb2); skb_put(skb2, hlen + size); skb2->transport_header = skb2->network_header + hlen; /* copy header fields, calculate SOM/EOM flags & seq */ hdr2 = mctp_hdr(skb2); hdr2->ver = hdr->ver; hdr2->dest = hdr->dest; hdr2->src = hdr->src; hdr2->flags_seq_tag = tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); if (pos == 0) hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM; if (pos + size == skb->len) hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM; hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT; /* copy message payload */ skb_copy_bits(skb, pos, skb_transport_header(skb2), size); /* we need to copy the extensions, for MCTP flow data */ skb_ext_copy(skb2, skb); /* do route */ rc = rt->output(rt, skb2); if (rc) break; seq = (seq + 1) & MCTP_HDR_SEQ_MASK; pos += size; } consume_skb(skb); return rc; } int mctp_local_output(struct sock *sk, struct mctp_route *rt, struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag) { struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); struct mctp_skb_cb *cb = mctp_cb(skb); struct mctp_route tmp_rt = {0}; struct mctp_sk_key *key; struct mctp_hdr *hdr; unsigned long flags; unsigned int netid; unsigned int mtu; mctp_eid_t saddr; bool ext_rt; int rc; u8 tag; rc = -ENODEV; if (rt) { ext_rt = false; if (WARN_ON(!rt->dev)) goto out_release; } else if (cb->ifindex) { struct net_device *dev; ext_rt = true; rt = &tmp_rt; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex); if (!dev) { rcu_read_unlock(); goto out_free; } rt->dev = __mctp_dev_get(dev); rcu_read_unlock(); if (!rt->dev) goto out_release; /* establish temporary route - we set up enough to keep * mctp_route_output happy */ rt->output = mctp_route_output; rt->mtu = 0; } else { rc = -EINVAL; goto out_free; } spin_lock_irqsave(&rt->dev->addrs_lock, flags); if (rt->dev->num_addrs == 0) { rc = -EHOSTUNREACH; } else { /* use the outbound interface's first address as our source */ saddr = rt->dev->addrs[0]; rc = 0; } spin_unlock_irqrestore(&rt->dev->addrs_lock, flags); netid = READ_ONCE(rt->dev->net); if (rc) goto out_release; if (req_tag & MCTP_TAG_OWNER) { if (req_tag & MCTP_TAG_PREALLOC) key = mctp_lookup_prealloc_tag(msk, netid, daddr, req_tag, &tag); else key = mctp_alloc_local_tag(msk, netid, saddr, daddr, false, &tag); if (IS_ERR(key)) { rc = PTR_ERR(key); goto out_release; } mctp_skb_set_flow(skb, key); /* done with the key in this scope */ mctp_key_unref(key); tag |= MCTP_HDR_FLAG_TO; } else { key = NULL; tag = req_tag & MCTP_TAG_MASK; } skb->protocol = htons(ETH_P_MCTP); skb->priority = 0; skb_reset_transport_header(skb); skb_push(skb, sizeof(struct mctp_hdr)); skb_reset_network_header(skb); skb->dev = rt->dev->dev; /* cb->net will have been set on initial ingress */ cb->src = saddr; /* set up common header fields */ hdr = mctp_hdr(skb); hdr->ver = 1; hdr->dest = daddr; hdr->src = saddr; mtu = mctp_route_mtu(rt); if (skb->len + sizeof(struct mctp_hdr) <= mtu) { hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM | tag; rc = rt->output(rt, skb); } else { rc = mctp_do_fragment_route(rt, skb, mtu, tag); } /* route output functions consume the skb, even on error */ skb = NULL; out_release: if (!ext_rt) mctp_route_release(rt); mctp_dev_put(tmp_rt.dev); out_free: kfree_skb(skb); return rc; } /* route management */ static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start, unsigned int daddr_extent, unsigned int mtu, unsigned char type) { int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb); struct net *net = dev_net(mdev->dev); struct mctp_route *rt, *ert; if (!mctp_address_unicast(daddr_start)) return -EINVAL; if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) return -EINVAL; switch (type) { case RTN_LOCAL: rtfn = mctp_route_input; break; case RTN_UNICAST: rtfn = mctp_route_output; break; default: return -EINVAL; } rt = mctp_route_alloc(); if (!rt) return -ENOMEM; rt->min = daddr_start; rt->max = daddr_start + daddr_extent; rt->mtu = mtu; rt->dev = mdev; mctp_dev_hold(rt->dev); rt->type = type; rt->output = rtfn; ASSERT_RTNL(); /* Prevent duplicate identical routes. */ list_for_each_entry(ert, &net->mctp.routes, list) { if (mctp_rt_compare_exact(rt, ert)) { mctp_route_release(rt); return -EEXIST; } } list_add_rcu(&rt->list, &net->mctp.routes); return 0; } static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start, unsigned int daddr_extent, unsigned char type) { struct net *net = dev_net(mdev->dev); struct mctp_route *rt, *tmp; mctp_eid_t daddr_end; bool dropped; if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) return -EINVAL; daddr_end = daddr_start + daddr_extent; dropped = false; ASSERT_RTNL(); list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { if (rt->dev == mdev && rt->min == daddr_start && rt->max == daddr_end && rt->type == type) { list_del_rcu(&rt->list); /* TODO: immediate RTM_DELROUTE */ mctp_route_release(rt); dropped = true; } } return dropped ? 0 : -ENOENT; } int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr) { return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL); } int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr) { return mctp_route_remove(mdev, addr, 0, RTN_LOCAL); } /* removes all entries for a given device */ void mctp_route_remove_dev(struct mctp_dev *mdev) { struct net *net = dev_net(mdev->dev); struct mctp_route *rt, *tmp; ASSERT_RTNL(); list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { if (rt->dev == mdev) { list_del_rcu(&rt->list); /* TODO: immediate RTM_DELROUTE */ mctp_route_release(rt); } } } /* Incoming packet-handling */ static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct net *net = dev_net(dev); struct mctp_dev *mdev; struct mctp_skb_cb *cb; struct mctp_route *rt; struct mctp_hdr *mh; rcu_read_lock(); mdev = __mctp_dev_get(dev); rcu_read_unlock(); if (!mdev) { /* basic non-data sanity checks */ goto err_drop; } if (!pskb_may_pull(skb, sizeof(struct mctp_hdr))) goto err_drop; skb_reset_transport_header(skb); skb_reset_network_header(skb); /* We have enough for a header; decode and route */ mh = mctp_hdr(skb); if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX) goto err_drop; /* source must be valid unicast or null; drop reserved ranges and * broadcast */ if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src))) goto err_drop; /* dest address: as above, but allow broadcast */ if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) || mctp_address_broadcast(mh->dest))) goto err_drop; /* MCTP drivers must populate halen/haddr */ if (dev->type == ARPHRD_MCTP) { cb = mctp_cb(skb); } else { cb = __mctp_cb(skb); cb->halen = 0; } cb->net = READ_ONCE(mdev->net); cb->ifindex = dev->ifindex; rt = mctp_route_lookup(net, cb->net, mh->dest); /* NULL EID, but addressed to our physical address */ if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST) rt = mctp_route_lookup_null(net, dev); if (!rt) goto err_drop; rt->output(rt, skb); mctp_route_release(rt); mctp_dev_put(mdev); return NET_RX_SUCCESS; err_drop: kfree_skb(skb); mctp_dev_put(mdev); return NET_RX_DROP; } static struct packet_type mctp_packet_type = { .type = cpu_to_be16(ETH_P_MCTP), .func = mctp_pkttype_receive, }; /* netlink interface */ static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = { [RTA_DST] = { .type = NLA_U8 }, [RTA_METRICS] = { .type = NLA_NESTED }, [RTA_OIF] = { .type = NLA_U32 }, }; /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing. * tb must hold RTA_MAX+1 elements. */ static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack, struct nlattr **tb, struct rtmsg **rtm, struct mctp_dev **mdev, mctp_eid_t *daddr_start) { struct net *net = sock_net(skb->sk); struct net_device *dev; unsigned int ifindex; int rc; rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX, rta_mctp_policy, extack); if (rc < 0) { NL_SET_ERR_MSG(extack, "incorrect format"); return rc; } if (!tb[RTA_DST]) { NL_SET_ERR_MSG(extack, "dst EID missing"); return -EINVAL; } *daddr_start = nla_get_u8(tb[RTA_DST]); if (!tb[RTA_OIF]) { NL_SET_ERR_MSG(extack, "ifindex missing"); return -EINVAL; } ifindex = nla_get_u32(tb[RTA_OIF]); *rtm = nlmsg_data(nlh); if ((*rtm)->rtm_family != AF_MCTP) { NL_SET_ERR_MSG(extack, "route family must be AF_MCTP"); return -EINVAL; } dev = __dev_get_by_index(net, ifindex); if (!dev) { NL_SET_ERR_MSG(extack, "bad ifindex"); return -ENODEV; } *mdev = mctp_dev_get_rtnl(dev); if (!*mdev) return -ENODEV; if (dev->flags & IFF_LOOPBACK) { NL_SET_ERR_MSG(extack, "no routes to loopback"); return -EINVAL; } return 0; } static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = { [RTAX_MTU] = { .type = NLA_U32 }, }; static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RTA_MAX + 1]; struct nlattr *tbx[RTAX_MAX + 1]; mctp_eid_t daddr_start; struct mctp_dev *mdev; struct rtmsg *rtm; unsigned int mtu; int rc; rc = mctp_route_nlparse(skb, nlh, extack, tb, &rtm, &mdev, &daddr_start); if (rc < 0) return rc; if (rtm->rtm_type != RTN_UNICAST) { NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST"); return -EINVAL; } mtu = 0; if (tb[RTA_METRICS]) { rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS], rta_metrics_policy, NULL); if (rc < 0) return rc; if (tbx[RTAX_MTU]) mtu = nla_get_u32(tbx[RTAX_MTU]); } rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu, rtm->rtm_type); return rc; } static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RTA_MAX + 1]; mctp_eid_t daddr_start; struct mctp_dev *mdev; struct rtmsg *rtm; int rc; rc = mctp_route_nlparse(skb, nlh, extack, tb, &rtm, &mdev, &daddr_start); if (rc < 0) return rc; /* we only have unicast routes */ if (rtm->rtm_type != RTN_UNICAST) return -EINVAL; rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST); return rc; } static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt, u32 portid, u32 seq, int event, unsigned int flags) { struct nlmsghdr *nlh; struct rtmsg *hdr; void *metrics; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags); if (!nlh) return -EMSGSIZE; hdr = nlmsg_data(nlh); hdr->rtm_family = AF_MCTP; /* we use the _len fields as a number of EIDs, rather than * a number of bits in the address */ hdr->rtm_dst_len = rt->max - rt->min; hdr->rtm_src_len = 0; hdr->rtm_tos = 0; hdr->rtm_table = RT_TABLE_DEFAULT; hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */ hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */ hdr->rtm_type = rt->type; if (nla_put_u8(skb, RTA_DST, rt->min)) goto cancel; metrics = nla_nest_start_noflag(skb, RTA_METRICS); if (!metrics) goto cancel; if (rt->mtu) { if (nla_put_u32(skb, RTAX_MTU, rt->mtu)) goto cancel; } nla_nest_end(skb, metrics); if (rt->dev) { if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex)) goto cancel; } /* TODO: conditional neighbour physaddr? */ nlmsg_end(skb, nlh); return 0; cancel: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct mctp_route *rt; int s_idx, idx; /* TODO: allow filtering on route data, possibly under * cb->strict_check */ /* TODO: change to struct overlay */ s_idx = cb->args[0]; idx = 0; rcu_read_lock(); list_for_each_entry_rcu(rt, &net->mctp.routes, list) { if (idx++ < s_idx) continue; if (mctp_fill_rtinfo(skb, rt, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWROUTE, NLM_F_MULTI) < 0) break; } rcu_read_unlock(); cb->args[0] = idx; return skb->len; } /* net namespace implementation */ static int __net_init mctp_routes_net_init(struct net *net) { struct netns_mctp *ns = &net->mctp; INIT_LIST_HEAD(&ns->routes); INIT_HLIST_HEAD(&ns->binds); mutex_init(&ns->bind_lock); INIT_HLIST_HEAD(&ns->keys); spin_lock_init(&ns->keys_lock); WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET)); return 0; } static void __net_exit mctp_routes_net_exit(struct net *net) { struct mctp_route *rt; rcu_read_lock(); list_for_each_entry_rcu(rt, &net->mctp.routes, list) mctp_route_release(rt); rcu_read_unlock(); } static struct pernet_operations mctp_net_ops = { .init = mctp_routes_net_init, .exit = mctp_routes_net_exit, }; static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = { {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0}, {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0}, {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0}, }; int __init mctp_routes_init(void) { int err; dev_add_pack(&mctp_packet_type); err = register_pernet_subsys(&mctp_net_ops); if (err) goto err_pernet; err = rtnl_register_many(mctp_route_rtnl_msg_handlers); if (err) goto err_rtnl; return 0; err_rtnl: unregister_pernet_subsys(&mctp_net_ops); err_pernet: dev_remove_pack(&mctp_packet_type); return err; } void mctp_routes_exit(void) { rtnl_unregister_many(mctp_route_rtnl_msg_handlers); unregister_pernet_subsys(&mctp_net_ops); dev_remove_pack(&mctp_packet_type); } #if IS_ENABLED(CONFIG_MCTP_TEST) #include "test/route-test.c" #endif