// SPDX-License-Identifier: GPL-2.0 //! Implementation of [`Vec`]. use super::{ allocator::{KVmalloc, Kmalloc, Vmalloc}, layout::ArrayLayout, AllocError, Allocator, Box, Flags, }; use core::{ fmt, marker::PhantomData, mem::{ManuallyDrop, MaybeUninit}, ops::Deref, ops::DerefMut, ops::Index, ops::IndexMut, ptr, ptr::NonNull, slice, slice::SliceIndex, }; /// Create a [`KVec`] containing the arguments. /// /// New memory is allocated with `GFP_KERNEL`. /// /// # Examples /// /// ``` /// let mut v = kernel::kvec![]; /// v.push(1, GFP_KERNEL)?; /// assert_eq!(v, [1]); /// /// let mut v = kernel::kvec![1; 3]?; /// v.push(4, GFP_KERNEL)?; /// assert_eq!(v, [1, 1, 1, 4]); /// /// let mut v = kernel::kvec![1, 2, 3]?; /// v.push(4, GFP_KERNEL)?; /// assert_eq!(v, [1, 2, 3, 4]); /// /// # Ok::<(), Error>(()) /// ``` #[macro_export] macro_rules! kvec { () => ( $crate::alloc::KVec::new() ); ($elem:expr; $n:expr) => ( $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) ); ($($x:expr),+ $(,)?) => ( match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), Err(e) => Err(e), } ); } /// The kernel's [`Vec`] type. /// /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec`. /// /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist. /// /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::`; no memory is allocated. /// /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the /// capacity of the vector (the number of elements that currently fit into the vector), its length /// (the number of elements that are currently stored in the vector) and the `Allocator` type used /// to allocate (and free) the backing buffer. /// /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts /// and manually modified. /// /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements /// are added to the vector. /// /// # Invariants /// /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for /// zero-sized types, is a dangling, well aligned pointer. /// /// - `self.len` always represents the exact number of elements stored in the vector. /// /// - `self.layout` represents the absolute number of elements that can be stored within the vector /// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the /// backing buffer to be larger than `layout`. /// /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer /// was allocated with (and must be freed with). pub struct Vec { ptr: NonNull, /// Represents the actual buffer size as `cap` times `size_of::` bytes. /// /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of /// elements we can still store without reallocating. layout: ArrayLayout, len: usize, _p: PhantomData, } /// Type alias for [`Vec`] with a [`Kmalloc`] allocator. /// /// # Examples /// /// ``` /// let mut v = KVec::new(); /// v.push(1, GFP_KERNEL)?; /// assert_eq!(&v, &[1]); /// /// # Ok::<(), Error>(()) /// ``` pub type KVec = Vec; /// Type alias for [`Vec`] with a [`Vmalloc`] allocator. /// /// # Examples /// /// ``` /// let mut v = VVec::new(); /// v.push(1, GFP_KERNEL)?; /// assert_eq!(&v, &[1]); /// /// # Ok::<(), Error>(()) /// ``` pub type VVec = Vec; /// Type alias for [`Vec`] with a [`KVmalloc`] allocator. /// /// # Examples /// /// ``` /// let mut v = KVVec::new(); /// v.push(1, GFP_KERNEL)?; /// assert_eq!(&v, &[1]); /// /// # Ok::<(), Error>(()) /// ``` pub type KVVec = Vec; // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. unsafe impl Send for Vec where T: Send, A: Allocator, { } // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. unsafe impl Sync for Vec where T: Sync, A: Allocator, { } impl Vec where A: Allocator, { #[inline] const fn is_zst() -> bool { core::mem::size_of::() == 0 } /// Returns the number of elements that can be stored within the vector without allocating /// additional memory. pub fn capacity(&self) -> usize { if const { Self::is_zst() } { usize::MAX } else { self.layout.len() } } /// Returns the number of elements stored within the vector. #[inline] pub fn len(&self) -> usize { self.len } /// Forcefully sets `self.len` to `new_len`. /// /// # Safety /// /// - `new_len` must be less than or equal to [`Self::capacity`]. /// - If `new_len` is greater than `self.len`, all elements within the interval /// [`self.len`,`new_len`) must be initialized. #[inline] pub unsafe fn set_len(&mut self, new_len: usize) { debug_assert!(new_len <= self.capacity()); self.len = new_len; } /// Returns a slice of the entire vector. #[inline] pub fn as_slice(&self) -> &[T] { self } /// Returns a mutable slice of the entire vector. #[inline] pub fn as_mut_slice(&mut self) -> &mut [T] { self } /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a /// dangling raw pointer. #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { self.ptr.as_ptr() } /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw /// pointer. #[inline] pub fn as_ptr(&self) -> *const T { self.ptr.as_ptr() } /// Returns `true` if the vector contains no elements, `false` otherwise. /// /// # Examples /// /// ``` /// let mut v = KVec::new(); /// assert!(v.is_empty()); /// /// v.push(1, GFP_KERNEL); /// assert!(!v.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Creates a new, empty `Vec`. /// /// This method does not allocate by itself. #[inline] pub const fn new() -> Self { // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet, // - `ptr` is a properly aligned dangling pointer for type `T`, // - `layout` is an empty `ArrayLayout` (zero capacity) // - `len` is zero, since no elements can be or have been stored, // - `A` is always valid. Self { ptr: NonNull::dangling(), layout: ArrayLayout::empty(), len: 0, _p: PhantomData::, } } /// Returns a slice of `MaybeUninit` for the remaining spare capacity of the vector. pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit] { // SAFETY: // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is // guaranteed to be part of the same allocated object. // - `self.len` can not overflow `isize`. let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit; // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated // and valid, but uninitialized. unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } } /// Appends an element to the back of the [`Vec`] instance. /// /// # Examples /// /// ``` /// let mut v = KVec::new(); /// v.push(1, GFP_KERNEL)?; /// assert_eq!(&v, &[1]); /// /// v.push(2, GFP_KERNEL)?; /// assert_eq!(&v, &[1, 2]); /// # Ok::<(), Error>(()) /// ``` pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { self.reserve(1, flags)?; // SAFETY: // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is // guaranteed to be part of the same allocated object. // - `self.len` can not overflow `isize`. let ptr = unsafe { self.as_mut_ptr().add(self.len) }; // SAFETY: // - `ptr` is properly aligned and valid for writes. unsafe { core::ptr::write(ptr, v) }; // SAFETY: We just initialised the first spare entry, so it is safe to increase the length // by 1. We also know that the new length is <= capacity because of the previous call to // `reserve` above. unsafe { self.set_len(self.len() + 1) }; Ok(()) } /// Creates a new [`Vec`] instance with at least the given capacity. /// /// # Examples /// /// ``` /// let v = KVec::::with_capacity(20, GFP_KERNEL)?; /// /// assert!(v.capacity() >= 20); /// # Ok::<(), Error>(()) /// ``` pub fn with_capacity(capacity: usize, flags: Flags) -> Result { let mut v = Vec::new(); v.reserve(capacity, flags)?; Ok(v) } /// Creates a `Vec` from a pointer, a length and a capacity using the allocator `A`. /// /// # Examples /// /// ``` /// let mut v = kernel::kvec![1, 2, 3]?; /// v.reserve(1, GFP_KERNEL)?; /// /// let (mut ptr, mut len, cap) = v.into_raw_parts(); /// /// // SAFETY: We've just reserved memory for another element. /// unsafe { ptr.add(len).write(4) }; /// len += 1; /// /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it /// // from the exact same raw parts. /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; /// /// assert_eq!(v, [1, 2, 3, 4]); /// /// # Ok::<(), Error>(()) /// ``` /// /// # Safety /// /// If `T` is a ZST: /// /// - `ptr` must be a dangling, well aligned pointer. /// /// Otherwise: /// /// - `ptr` must have been allocated with the allocator `A`. /// - `ptr` must satisfy or exceed the alignment requirements of `T`. /// - `ptr` must point to memory with a size of at least `size_of::() * capacity` bytes. /// - The allocated size in bytes must not be larger than `isize::MAX`. /// - `length` must be less than or equal to `capacity`. /// - The first `length` elements must be initialized values of type `T`. /// /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for /// `cap` and `len`. pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { let layout = if Self::is_zst() { ArrayLayout::empty() } else { // SAFETY: By the safety requirements of this function, `capacity * size_of::()` is // smaller than `isize::MAX`. unsafe { ArrayLayout::new_unchecked(capacity) } }; // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are // covered by the safety requirements of this function. Self { // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid // memory allocation, allocated with `A`. ptr: unsafe { NonNull::new_unchecked(ptr) }, layout, len: length, _p: PhantomData::, } } /// Consumes the `Vec` and returns its raw components `pointer`, `length` and `capacity`. /// /// This will not run the destructor of the contained elements and for non-ZSTs the allocation /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the /// elements and free the allocation, if any. pub fn into_raw_parts(self) -> (*mut T, usize, usize) { let mut me = ManuallyDrop::new(self); let len = me.len(); let capacity = me.capacity(); let ptr = me.as_mut_ptr(); (ptr, len, capacity) } /// Ensures that the capacity exceeds the length by at least `additional` elements. /// /// # Examples /// /// ``` /// let mut v = KVec::new(); /// v.push(1, GFP_KERNEL)?; /// /// v.reserve(10, GFP_KERNEL)?; /// let cap = v.capacity(); /// assert!(cap >= 10); /// /// v.reserve(10, GFP_KERNEL)?; /// let new_cap = v.capacity(); /// assert_eq!(new_cap, cap); /// /// # Ok::<(), Error>(()) /// ``` pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { let len = self.len(); let cap = self.capacity(); if cap - len >= additional { return Ok(()); } if Self::is_zst() { // The capacity is already `usize::MAX` for ZSTs, we can't go higher. return Err(AllocError); } // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the // multiplication by two won't overflow. let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?; // SAFETY: // - `ptr` is valid because it's either `None` or comes from a previous call to // `A::realloc`. // - `self.layout` matches the `ArrayLayout` of the preceding allocation. let ptr = unsafe { A::realloc( Some(self.ptr.cast()), layout.into(), self.layout.into(), flags, )? }; // INVARIANT: // - `layout` is some `ArrayLayout::`, // - `ptr` has been created by `A::realloc` from `layout`. self.ptr = ptr.cast(); self.layout = layout; Ok(()) } } impl Vec { /// Extend the vector by `n` clones of `value`. pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { if n == 0 { return Ok(()); } self.reserve(n, flags)?; let spare = self.spare_capacity_mut(); for item in spare.iter_mut().take(n - 1) { item.write(value.clone()); } // We can write the last element directly without cloning needlessly. spare[n - 1].write(value); // SAFETY: // - `self.len() + n < self.capacity()` due to the call to reserve above, // - the loop and the line above initialized the next `n` elements. unsafe { self.set_len(self.len() + n) }; Ok(()) } /// Pushes clones of the elements of slice into the [`Vec`] instance. /// /// # Examples /// /// ``` /// let mut v = KVec::new(); /// v.push(1, GFP_KERNEL)?; /// /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; /// assert_eq!(&v, &[1, 20, 30, 40]); /// /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); /// # Ok::<(), Error>(()) /// ``` pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> { self.reserve(other.len(), flags)?; for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { slot.write(item.clone()); } // SAFETY: // - `other.len()` spare entries have just been initialized, so it is safe to increase // the length by the same number. // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` // call. unsafe { self.set_len(self.len() + other.len()) }; Ok(()) } /// Create a new `Vec` and extend it by `n` clones of `value`. pub fn from_elem(value: T, n: usize, flags: Flags) -> Result { let mut v = Self::with_capacity(n, flags)?; v.extend_with(n, value, flags)?; Ok(v) } } impl Drop for Vec where A: Allocator, { fn drop(&mut self) { // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant. unsafe { ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( self.as_mut_ptr(), self.len, )) }; // SAFETY: // - `self.ptr` was previously allocated with `A`. // - `self.layout` matches the `ArrayLayout` of the preceding allocation. unsafe { A::free(self.ptr.cast(), self.layout.into()) }; } } impl From> for Vec where A: Allocator, { fn from(b: Box<[T; N], A>) -> Vec { let len = b.len(); let ptr = Box::into_raw(b); // SAFETY: // - `b` has been allocated with `A`, // - `ptr` fulfills the alignment requirements for `T`, // - `ptr` points to memory with at least a size of `size_of::() * len`, // - all elements within `b` are initialized values of `T`, // - `len` does not exceed `isize::MAX`. unsafe { Vec::from_raw_parts(ptr as _, len, len) } } } impl Default for KVec { #[inline] fn default() -> Self { Self::new() } } impl fmt::Debug for Vec { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl Deref for Vec where A: Allocator, { type Target = [T]; #[inline] fn deref(&self) -> &[T] { // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` // initialized elements of type `T`. unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } } } impl DerefMut for Vec where A: Allocator, { #[inline] fn deref_mut(&mut self) -> &mut [T] { // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` // initialized elements of type `T`. unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } } } impl Eq for Vec where A: Allocator {} impl, A> Index for Vec where A: Allocator, { type Output = I::Output; #[inline] fn index(&self, index: I) -> &Self::Output { Index::index(&**self, index) } } impl, A> IndexMut for Vec where A: Allocator, { #[inline] fn index_mut(&mut self, index: I) -> &mut Self::Output { IndexMut::index_mut(&mut **self, index) } } macro_rules! impl_slice_eq { ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => { $( impl PartialEq<$rhs> for $lhs where T: PartialEq, { #[inline] fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } } )* } } impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec, Vec, [A: Allocator] Vec, &[U], [A: Allocator] Vec, &mut [U], [A: Allocator] &[T], Vec, [A: Allocator] &mut [T], Vec, [A: Allocator] Vec, [U], [A: Allocator] [T], Vec, [A: Allocator, const N: usize] Vec, [U; N], [A: Allocator, const N: usize] Vec, &[U; N], } impl<'a, T, A> IntoIterator for &'a Vec where A: Allocator, { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec where A: Allocator, { type Item = &'a mut T; type IntoIter = slice::IterMut<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector. /// /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the /// [`IntoIterator`] trait). /// /// # Examples /// /// ``` /// let v = kernel::kvec![0, 1, 2]?; /// let iter = v.into_iter(); /// /// # Ok::<(), Error>(()) /// ``` pub struct IntoIter { ptr: *mut T, buf: NonNull, len: usize, layout: ArrayLayout, _p: PhantomData, } impl IntoIter where A: Allocator, { fn into_raw_parts(self) -> (*mut T, NonNull, usize, usize) { let me = ManuallyDrop::new(self); let ptr = me.ptr; let buf = me.buf; let len = me.len; let cap = me.layout.len(); (ptr, buf, len, cap) } /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`. /// /// # Examples /// /// ``` /// let v = kernel::kvec![1, 2, 3]?; /// let mut it = v.into_iter(); /// /// assert_eq!(it.next(), Some(1)); /// /// let v = it.collect(GFP_KERNEL); /// assert_eq!(v, [2, 3]); /// /// # Ok::<(), Error>(()) /// ``` /// /// # Implementation details /// /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait /// in the kernel, namely: /// /// - Rust's specialization feature is unstable. This prevents us to optimize for the special /// case where `I::IntoIter` equals `Vec`'s `IntoIter` type. /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator` /// doesn't require this type to be `'static`. /// - `FromIterator::from_iter` does return `Self` instead of `Result`, hence /// we can't properly handle allocation failures. /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation /// flags. /// /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a /// `Vec` again. /// /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing /// buffer. However, this backing buffer may be shrunk to the actual count of elements. pub fn collect(self, flags: Flags) -> Vec { let old_layout = self.layout; let (mut ptr, buf, len, mut cap) = self.into_raw_parts(); let has_advanced = ptr != buf.as_ptr(); if has_advanced { // Copy the contents we have advanced to at the beginning of the buffer. // // SAFETY: // - `ptr` is valid for reads of `len * size_of::()` bytes, // - `buf.as_ptr()` is valid for writes of `len * size_of::()` bytes, // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to // each other, // - both `ptr` and `buf.ptr()` are properly aligned. unsafe { ptr::copy(ptr, buf.as_ptr(), len) }; ptr = buf.as_ptr(); // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`. let layout = unsafe { ArrayLayout::::new_unchecked(len) }; // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be // smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves // it as it is. ptr = match unsafe { A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags) } { // If we fail to shrink, which likely can't even happen, continue with the existing // buffer. Err(_) => ptr, Ok(ptr) => { cap = len; ptr.as_ptr().cast() } }; } // SAFETY: If the iterator has been advanced, the advanced elements have been copied to // the beginning of the buffer and `len` has been adjusted accordingly. // // - `ptr` is guaranteed to point to the start of the backing buffer. // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`. // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original // `Vec`. unsafe { Vec::from_raw_parts(ptr, len, cap) } } } impl Iterator for IntoIter where A: Allocator, { type Item = T; /// # Examples /// /// ``` /// let v = kernel::kvec![1, 2, 3]?; /// let mut it = v.into_iter(); /// /// assert_eq!(it.next(), Some(1)); /// assert_eq!(it.next(), Some(2)); /// assert_eq!(it.next(), Some(3)); /// assert_eq!(it.next(), None); /// /// # Ok::<(), Error>(()) /// ``` fn next(&mut self) -> Option { if self.len == 0 { return None; } let current = self.ptr; // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr` // by one guarantees that. unsafe { self.ptr = self.ptr.add(1) }; self.len -= 1; // SAFETY: `current` is guaranteed to point at a valid element within the buffer. Some(unsafe { current.read() }) } /// # Examples /// /// ``` /// let v: KVec = kernel::kvec![1, 2, 3]?; /// let mut iter = v.into_iter(); /// let size = iter.size_hint().0; /// /// iter.next(); /// assert_eq!(iter.size_hint().0, size - 1); /// /// iter.next(); /// assert_eq!(iter.size_hint().0, size - 2); /// /// iter.next(); /// assert_eq!(iter.size_hint().0, size - 3); /// /// # Ok::<(), Error>(()) /// ``` fn size_hint(&self) -> (usize, Option) { (self.len, Some(self.len)) } } impl Drop for IntoIter where A: Allocator, { fn drop(&mut self) { // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant. unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) }; // SAFETY: // - `self.buf` was previously allocated with `A`. // - `self.layout` matches the `ArrayLayout` of the preceding allocation. unsafe { A::free(self.buf.cast(), self.layout.into()) }; } } impl IntoIterator for Vec where A: Allocator, { type Item = T; type IntoIter = IntoIter; /// Consumes the `Vec` and creates an `Iterator`, which moves each value out of the /// vector (from start to end). /// /// # Examples /// /// ``` /// let v = kernel::kvec![1, 2]?; /// let mut v_iter = v.into_iter(); /// /// let first_element: Option = v_iter.next(); /// /// assert_eq!(first_element, Some(1)); /// assert_eq!(v_iter.next(), Some(2)); /// assert_eq!(v_iter.next(), None); /// /// # Ok::<(), Error>(()) /// ``` /// /// ``` /// let v = kernel::kvec![]; /// let mut v_iter = v.into_iter(); /// /// let first_element: Option = v_iter.next(); /// /// assert_eq!(first_element, None); /// /// # Ok::<(), Error>(()) /// ``` #[inline] fn into_iter(self) -> Self::IntoIter { let buf = self.ptr; let layout = self.layout; let (ptr, len, _) = self.into_raw_parts(); IntoIter { ptr, buf, len, layout, _p: PhantomData::, } } }