// SPDX-License-Identifier: GPL-2.0 #include #include #include #include "test_send_signal_kern.skel.h" #include "io_helpers.h" static int sigusr1_received; static void sigusr1_handler(int signum) { sigusr1_received = 8; } static void sigusr1_siginfo_handler(int s, siginfo_t *i, void *v) { sigusr1_received = (int)(long long)i->si_value.sival_ptr; } static void test_send_signal_common(struct perf_event_attr *attr, bool signal_thread, bool remote) { struct test_send_signal_kern *skel; struct sigaction sa; int pipe_c2p[2], pipe_p2c[2]; int err = -1, pmu_fd = -1; volatile int j = 0; int retry_count; char buf[256]; pid_t pid; int old_prio; if (!ASSERT_OK(pipe(pipe_c2p), "pipe_c2p")) return; if (!ASSERT_OK(pipe(pipe_p2c), "pipe_p2c")) { close(pipe_c2p[0]); close(pipe_c2p[1]); return; } pid = fork(); if (!ASSERT_GE(pid, 0, "fork")) { close(pipe_c2p[0]); close(pipe_c2p[1]); close(pipe_p2c[0]); close(pipe_p2c[1]); return; } if (pid == 0) { /* install signal handler and notify parent */ if (remote) { sa.sa_sigaction = sigusr1_siginfo_handler; sa.sa_flags = SA_RESTART | SA_SIGINFO; ASSERT_NEQ(sigaction(SIGUSR1, &sa, NULL), -1, "sigaction"); } else { ASSERT_NEQ(signal(SIGUSR1, sigusr1_handler), SIG_ERR, "signal"); } close(pipe_c2p[0]); /* close read */ close(pipe_p2c[1]); /* close write */ /* boost with a high priority so we got a higher chance * that if an interrupt happens, the underlying task * is this process. */ if (!remote) { errno = 0; old_prio = getpriority(PRIO_PROCESS, 0); ASSERT_OK(errno, "getpriority"); ASSERT_OK(setpriority(PRIO_PROCESS, 0, -20), "setpriority"); } /* notify parent signal handler is installed */ ASSERT_EQ(write(pipe_c2p[1], buf, 1), 1, "pipe_write"); /* make sure parent enabled bpf program to send_signal */ ASSERT_EQ(read(pipe_p2c[0], buf, 1), 1, "pipe_read"); /* wait a little for signal handler */ for (int i = 0; i < 1000000000 && !sigusr1_received; i++) { j /= i + j + 1; if (remote) sleep(1); else if (!attr) /* trigger the nanosleep tracepoint program. */ usleep(1); } buf[0] = sigusr1_received; ASSERT_EQ(sigusr1_received, 8, "sigusr1_received"); ASSERT_EQ(write(pipe_c2p[1], buf, 1), 1, "pipe_write"); /* wait for parent notification and exit */ ASSERT_EQ(read(pipe_p2c[0], buf, 1), 1, "pipe_read"); /* restore the old priority */ if (!remote) ASSERT_OK(setpriority(PRIO_PROCESS, 0, old_prio), "setpriority"); close(pipe_c2p[1]); close(pipe_p2c[0]); exit(0); } close(pipe_c2p[1]); /* close write */ close(pipe_p2c[0]); /* close read */ skel = test_send_signal_kern__open_and_load(); if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) goto skel_open_load_failure; /* boost with a high priority so we got a higher chance * that if an interrupt happens, the underlying task * is this process. */ if (remote) { errno = 0; old_prio = getpriority(PRIO_PROCESS, 0); ASSERT_OK(errno, "getpriority"); ASSERT_OK(setpriority(PRIO_PROCESS, 0, -20), "setpriority"); } if (!attr) { err = test_send_signal_kern__attach(skel); if (!ASSERT_OK(err, "skel_attach")) { err = -1; goto destroy_skel; } } else { if (!remote) pmu_fd = syscall(__NR_perf_event_open, attr, pid, -1 /* cpu */, -1 /* group id */, 0 /* flags */); else pmu_fd = syscall(__NR_perf_event_open, attr, getpid(), -1 /* cpu */, -1 /* group id */, 0 /* flags */); if (!ASSERT_GE(pmu_fd, 0, "perf_event_open")) { err = -1; goto destroy_skel; } skel->links.send_signal_perf = bpf_program__attach_perf_event(skel->progs.send_signal_perf, pmu_fd); if (!ASSERT_OK_PTR(skel->links.send_signal_perf, "attach_perf_event")) goto disable_pmu; } /* wait until child signal handler installed */ ASSERT_EQ(read(pipe_c2p[0], buf, 1), 1, "pipe_read"); /* trigger the bpf send_signal */ skel->bss->signal_thread = signal_thread; skel->bss->sig = SIGUSR1; if (!remote) { skel->bss->target_pid = 0; skel->bss->pid = pid; } else { skel->bss->target_pid = pid; skel->bss->pid = getpid(); } /* notify child that bpf program can send_signal now */ ASSERT_EQ(write(pipe_p2c[1], buf, 1), 1, "pipe_write"); for (retry_count = 0;;) { /* For the remote test, the BPF program is triggered from this * process but the other process/thread is signaled. */ if (remote) { if (!attr) { for (int i = 0; i < 10; i++) usleep(1); } else { for (int i = 0; i < 100000000; i++) j /= i + 1; } } /* wait for result */ err = read_with_timeout(pipe_c2p[0], buf, 1, 100); if (err == -EAGAIN && retry_count++ < 10000) continue; break; } if (!ASSERT_GE(err, 0, "reading pipe")) goto disable_pmu; if (!ASSERT_GT(err, 0, "reading pipe error: size 0")) { err = -1; goto disable_pmu; } ASSERT_EQ(buf[0], 8, "incorrect result"); /* notify child safe to exit */ ASSERT_EQ(write(pipe_p2c[1], buf, 1), 1, "pipe_write"); disable_pmu: close(pmu_fd); destroy_skel: test_send_signal_kern__destroy(skel); /* restore the old priority */ if (remote) ASSERT_OK(setpriority(PRIO_PROCESS, 0, old_prio), "setpriority"); skel_open_load_failure: close(pipe_c2p[0]); close(pipe_p2c[1]); wait(NULL); } static void test_send_signal_tracepoint(bool signal_thread, bool remote) { test_send_signal_common(NULL, signal_thread, remote); } static void test_send_signal_perf(bool signal_thread, bool remote) { struct perf_event_attr attr = { .freq = 1, .sample_freq = 1000, .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_CLOCK, }; test_send_signal_common(&attr, signal_thread, remote); } static void test_send_signal_nmi(bool signal_thread, bool remote) { struct perf_event_attr attr = { .freq = 1, .sample_freq = 1000, .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, }; int pmu_fd; /* Some setups (e.g. virtual machines) might run with hardware * perf events disabled. If this is the case, skip this test. */ pmu_fd = syscall(__NR_perf_event_open, &attr, 0 /* pid */, -1 /* cpu */, -1 /* group_fd */, 0 /* flags */); if (pmu_fd == -1) { if (errno == ENOENT || errno == EOPNOTSUPP) { printf("%s:SKIP:no PERF_COUNT_HW_CPU_CYCLES\n", __func__); test__skip(); return; } /* Let the test fail with a more informative message */ } else { close(pmu_fd); } test_send_signal_common(&attr, signal_thread, remote); } void test_send_signal(void) { if (test__start_subtest("send_signal_tracepoint")) test_send_signal_tracepoint(false, false); if (test__start_subtest("send_signal_perf")) test_send_signal_perf(false, false); if (test__start_subtest("send_signal_nmi")) test_send_signal_nmi(false, false); if (test__start_subtest("send_signal_tracepoint_thread")) test_send_signal_tracepoint(true, false); if (test__start_subtest("send_signal_perf_thread")) test_send_signal_perf(true, false); if (test__start_subtest("send_signal_nmi_thread")) test_send_signal_nmi(true, false); /* Signal remote thread and thread group */ if (test__start_subtest("send_signal_tracepoint_remote")) test_send_signal_tracepoint(false, true); if (test__start_subtest("send_signal_perf_remote")) test_send_signal_perf(false, true); if (test__start_subtest("send_signal_nmi_remote")) test_send_signal_nmi(false, true); if (test__start_subtest("send_signal_tracepoint_thread_remote")) test_send_signal_tracepoint(true, true); if (test__start_subtest("send_signal_perf_thread_remote")) test_send_signal_perf(true, true); if (test__start_subtest("send_signal_nmi_thread_remote")) test_send_signal_nmi(true, true); }