// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/mmu.c * * Copyright (C) 1995-2005 Russell King */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fault.h" #include "mm.h" extern unsigned long __atags_pointer; /* * empty_zero_page is a special page that is used for * zero-initialized data and COW. */ struct page *empty_zero_page; EXPORT_SYMBOL(empty_zero_page); /* * The pmd table for the upper-most set of pages. */ pmd_t *top_pmd; pmdval_t user_pmd_table = _PAGE_USER_TABLE; #define CPOLICY_UNCACHED 0 #define CPOLICY_BUFFERED 1 #define CPOLICY_WRITETHROUGH 2 #define CPOLICY_WRITEBACK 3 #define CPOLICY_WRITEALLOC 4 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; static unsigned int ecc_mask __initdata = 0; pgprot_t pgprot_user; pgprot_t pgprot_kernel; EXPORT_SYMBOL(pgprot_user); EXPORT_SYMBOL(pgprot_kernel); struct cachepolicy { const char policy[16]; unsigned int cr_mask; pmdval_t pmd; pteval_t pte; }; static struct cachepolicy cache_policies[] __initdata = { { .policy = "uncached", .cr_mask = CR_W|CR_C, .pmd = PMD_SECT_UNCACHED, .pte = L_PTE_MT_UNCACHED, }, { .policy = "buffered", .cr_mask = CR_C, .pmd = PMD_SECT_BUFFERED, .pte = L_PTE_MT_BUFFERABLE, }, { .policy = "writethrough", .cr_mask = 0, .pmd = PMD_SECT_WT, .pte = L_PTE_MT_WRITETHROUGH, }, { .policy = "writeback", .cr_mask = 0, .pmd = PMD_SECT_WB, .pte = L_PTE_MT_WRITEBACK, }, { .policy = "writealloc", .cr_mask = 0, .pmd = PMD_SECT_WBWA, .pte = L_PTE_MT_WRITEALLOC, } }; #ifdef CONFIG_CPU_CP15 static unsigned long initial_pmd_value __initdata = 0; /* * Initialise the cache_policy variable with the initial state specified * via the "pmd" value. This is used to ensure that on ARMv6 and later, * the C code sets the page tables up with the same policy as the head * assembly code, which avoids an illegal state where the TLBs can get * confused. See comments in early_cachepolicy() for more information. */ void __init init_default_cache_policy(unsigned long pmd) { int i; initial_pmd_value = pmd; pmd &= PMD_SECT_CACHE_MASK; for (i = 0; i < ARRAY_SIZE(cache_policies); i++) if (cache_policies[i].pmd == pmd) { cachepolicy = i; break; } if (i == ARRAY_SIZE(cache_policies)) pr_err("ERROR: could not find cache policy\n"); } /* * These are useful for identifying cache coherency problems by allowing * the cache or the cache and writebuffer to be turned off. (Note: the * write buffer should not be on and the cache off). */ static int __init early_cachepolicy(char *p) { int i, selected = -1; for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { int len = strlen(cache_policies[i].policy); if (memcmp(p, cache_policies[i].policy, len) == 0) { selected = i; break; } } if (selected == -1) pr_err("ERROR: unknown or unsupported cache policy\n"); /* * This restriction is partly to do with the way we boot; it is * unpredictable to have memory mapped using two different sets of * memory attributes (shared, type, and cache attribs). We can not * change these attributes once the initial assembly has setup the * page tables. */ if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", cache_policies[cachepolicy].policy); return 0; } if (selected != cachepolicy) { unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); cachepolicy = selected; flush_cache_all(); set_cr(cr); } return 0; } early_param("cachepolicy", early_cachepolicy); static int __init early_nocache(char *__unused) { char *p = "buffered"; pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); early_cachepolicy(p); return 0; } early_param("nocache", early_nocache); static int __init early_nowrite(char *__unused) { char *p = "uncached"; pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); early_cachepolicy(p); return 0; } early_param("nowb", early_nowrite); #ifndef CONFIG_ARM_LPAE static int __init early_ecc(char *p) { if (memcmp(p, "on", 2) == 0) ecc_mask = PMD_PROTECTION; else if (memcmp(p, "off", 3) == 0) ecc_mask = 0; return 0; } early_param("ecc", early_ecc); #endif #else /* ifdef CONFIG_CPU_CP15 */ static int __init early_cachepolicy(char *p) { pr_warn("cachepolicy kernel parameter not supported without cp15\n"); return 0; } early_param("cachepolicy", early_cachepolicy); static int __init noalign_setup(char *__unused) { pr_warn("noalign kernel parameter not supported without cp15\n"); return 1; } __setup("noalign", noalign_setup); #endif /* ifdef CONFIG_CPU_CP15 / else */ #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE static struct mem_type mem_types[] __ro_after_init = { [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | L_PTE_SHARED, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, .domain = DOMAIN_IO, }, [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PROT_SECT_DEVICE, .domain = DOMAIN_IO, }, [MT_DEVICE_CACHED] = { /* ioremap_cache */ .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, .domain = DOMAIN_IO, }, [MT_DEVICE_WC] = { /* ioremap_wc */ .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PROT_SECT_DEVICE, .domain = DOMAIN_IO, }, [MT_UNCACHED] = { .prot_pte = PROT_PTE_DEVICE, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, .domain = DOMAIN_IO, }, [MT_CACHECLEAN] = { .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, .domain = DOMAIN_KERNEL, }, #ifndef CONFIG_ARM_LPAE [MT_MINICLEAN] = { .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, .domain = DOMAIN_KERNEL, }, #endif [MT_LOW_VECTORS] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_RDONLY, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_VECTORS, }, [MT_HIGH_VECTORS] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_USER | L_PTE_RDONLY, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_VECTORS, }, [MT_MEMORY_RWX] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RW] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_XN, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RO] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_XN | L_PTE_RDONLY, .prot_l1 = PMD_TYPE_TABLE, #ifdef CONFIG_ARM_LPAE .prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2, #else .prot_sect = PMD_TYPE_SECT, #endif .domain = DOMAIN_KERNEL, }, [MT_ROM] = { .prot_sect = PMD_TYPE_SECT, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RWX_NONCACHED] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_MT_BUFFERABLE, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RW_DTCM] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_XN, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RWX_ITCM] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_RW_SO] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_MT_UNCACHED | L_PTE_XN, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | PMD_SECT_UNCACHED | PMD_SECT_XN, .domain = DOMAIN_KERNEL, }, [MT_MEMORY_DMA_READY] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_XN, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_KERNEL, }, }; const struct mem_type *get_mem_type(unsigned int type) { return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; } EXPORT_SYMBOL(get_mem_type); static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) { return &bm_pte[pte_index(addr)]; } static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) { return pte_offset_kernel(dir, addr); } static inline pmd_t * __init fixmap_pmd(unsigned long addr) { return pmd_off_k(addr); } void __init early_fixmap_init(void) { pmd_t *pmd; /* * The early fixmap range spans multiple pmds, for which * we are not prepared: */ BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) != FIXADDR_TOP >> PMD_SHIFT); pmd = fixmap_pmd(FIXADDR_TOP); pmd_populate_kernel(&init_mm, pmd, bm_pte); pte_offset_fixmap = pte_offset_early_fixmap; } /* * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). * As a result, this can only be called with preemption disabled, as under * stop_machine(). */ void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) { unsigned long vaddr = __fix_to_virt(idx); pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); /* Make sure fixmap region does not exceed available allocation. */ BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START); BUG_ON(idx >= __end_of_fixed_addresses); /* We support only device mappings before pgprot_kernel is set. */ if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0)) return; if (pgprot_val(prot)) set_pte_at(NULL, vaddr, pte, pfn_pte(phys >> PAGE_SHIFT, prot)); else pte_clear(NULL, vaddr, pte); local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); } static pgprot_t protection_map[16] __ro_after_init = { [VM_NONE] = __PAGE_NONE, [VM_READ] = __PAGE_READONLY, [VM_WRITE] = __PAGE_COPY, [VM_WRITE | VM_READ] = __PAGE_COPY, [VM_EXEC] = __PAGE_READONLY_EXEC, [VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, [VM_EXEC | VM_WRITE] = __PAGE_COPY_EXEC, [VM_EXEC | VM_WRITE | VM_READ] = __PAGE_COPY_EXEC, [VM_SHARED] = __PAGE_NONE, [VM_SHARED | VM_READ] = __PAGE_READONLY, [VM_SHARED | VM_WRITE] = __PAGE_SHARED, [VM_SHARED | VM_WRITE | VM_READ] = __PAGE_SHARED, [VM_SHARED | VM_EXEC] = __PAGE_READONLY_EXEC, [VM_SHARED | VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, [VM_SHARED | VM_EXEC | VM_WRITE] = __PAGE_SHARED_EXEC, [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __PAGE_SHARED_EXEC }; DECLARE_VM_GET_PAGE_PROT /* * Adjust the PMD section entries according to the CPU in use. */ static void __init build_mem_type_table(void) { struct cachepolicy *cp; unsigned int cr = get_cr(); pteval_t user_pgprot, kern_pgprot, vecs_pgprot; int cpu_arch = cpu_architecture(); int i; if (cpu_arch < CPU_ARCH_ARMv6) { #if defined(CONFIG_CPU_DCACHE_DISABLE) if (cachepolicy > CPOLICY_BUFFERED) cachepolicy = CPOLICY_BUFFERED; #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) if (cachepolicy > CPOLICY_WRITETHROUGH) cachepolicy = CPOLICY_WRITETHROUGH; #endif } if (cpu_arch < CPU_ARCH_ARMv5) { if (cachepolicy >= CPOLICY_WRITEALLOC) cachepolicy = CPOLICY_WRITEBACK; ecc_mask = 0; } if (is_smp()) { if (cachepolicy != CPOLICY_WRITEALLOC) { pr_warn("Forcing write-allocate cache policy for SMP\n"); cachepolicy = CPOLICY_WRITEALLOC; } if (!(initial_pmd_value & PMD_SECT_S)) { pr_warn("Forcing shared mappings for SMP\n"); initial_pmd_value |= PMD_SECT_S; } } /* * Strip out features not present on earlier architectures. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those * without extended page tables don't have the 'Shared' bit. */ if (cpu_arch < CPU_ARCH_ARMv5) for (i = 0; i < ARRAY_SIZE(mem_types); i++) mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) for (i = 0; i < ARRAY_SIZE(mem_types); i++) mem_types[i].prot_sect &= ~PMD_SECT_S; /* * ARMv5 and lower, bit 4 must be set for page tables (was: cache * "update-able on write" bit on ARM610). However, Xscale and * Xscale3 require this bit to be cleared. */ if (cpu_is_xscale_family()) { for (i = 0; i < ARRAY_SIZE(mem_types); i++) { mem_types[i].prot_sect &= ~PMD_BIT4; mem_types[i].prot_l1 &= ~PMD_BIT4; } } else if (cpu_arch < CPU_ARCH_ARMv6) { for (i = 0; i < ARRAY_SIZE(mem_types); i++) { if (mem_types[i].prot_l1) mem_types[i].prot_l1 |= PMD_BIT4; if (mem_types[i].prot_sect) mem_types[i].prot_sect |= PMD_BIT4; } } /* * Mark the device areas according to the CPU/architecture. */ if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { if (!cpu_is_xsc3()) { /* * Mark device regions on ARMv6+ as execute-never * to prevent speculative instruction fetches. */ mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; /* Also setup NX memory mapping */ mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN; } if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { /* * For ARMv7 with TEX remapping, * - shared device is SXCB=1100 * - nonshared device is SXCB=0100 * - write combine device mem is SXCB=0001 * (Uncached Normal memory) */ mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; } else if (cpu_is_xsc3()) { /* * For Xscale3, * - shared device is TEXCB=00101 * - nonshared device is TEXCB=01000 * - write combine device mem is TEXCB=00100 * (Inner/Outer Uncacheable in xsc3 parlance) */ mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); } else { /* * For ARMv6 and ARMv7 without TEX remapping, * - shared device is TEXCB=00001 * - nonshared device is TEXCB=01000 * - write combine device mem is TEXCB=00100 * (Uncached Normal in ARMv6 parlance). */ mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); } } else { /* * On others, write combining is "Uncached/Buffered" */ mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; } /* * Now deal with the memory-type mappings */ cp = &cache_policies[cachepolicy]; vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; #ifndef CONFIG_ARM_LPAE /* * We don't use domains on ARMv6 (since this causes problems with * v6/v7 kernels), so we must use a separate memory type for user * r/o, kernel r/w to map the vectors page. */ if (cpu_arch == CPU_ARCH_ARMv6) vecs_pgprot |= L_PTE_MT_VECTORS; /* * Check is it with support for the PXN bit * in the Short-descriptor translation table format descriptors. */ if (cpu_arch == CPU_ARCH_ARMv7 && (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { user_pmd_table |= PMD_PXNTABLE; } #endif /* * ARMv6 and above have extended page tables. */ if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { #ifndef CONFIG_ARM_LPAE /* * Mark cache clean areas and XIP ROM read only * from SVC mode and no access from userspace. */ mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; #endif /* * If the initial page tables were created with the S bit * set, then we need to do the same here for the same * reasons given in early_cachepolicy(). */ if (initial_pmd_value & PMD_SECT_S) { user_pgprot |= L_PTE_SHARED; kern_pgprot |= L_PTE_SHARED; vecs_pgprot |= L_PTE_SHARED; mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S; mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED; mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; } } /* * Non-cacheable Normal - intended for memory areas that must * not cause dirty cache line writebacks when used */ if (cpu_arch >= CPU_ARCH_ARMv6) { if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { /* Non-cacheable Normal is XCB = 001 */ mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERED; } else { /* For both ARMv6 and non-TEX-remapping ARMv7 */ mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_TEX(1); } } else { mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; } #ifdef CONFIG_ARM_LPAE /* * Do not generate access flag faults for the kernel mappings. */ for (i = 0; i < ARRAY_SIZE(mem_types); i++) { mem_types[i].prot_pte |= PTE_EXT_AF; if (mem_types[i].prot_sect) mem_types[i].prot_sect |= PMD_SECT_AF; } kern_pgprot |= PTE_EXT_AF; vecs_pgprot |= PTE_EXT_AF; /* * Set PXN for user mappings */ user_pgprot |= PTE_EXT_PXN; #endif for (i = 0; i < 16; i++) { pteval_t v = pgprot_val(protection_map[i]); protection_map[i] = __pgprot(v | user_pgprot); } mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | kern_pgprot); mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd; mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot; mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; mem_types[MT_ROM].prot_sect |= cp->pmd; switch (cp->pmd) { case PMD_SECT_WT: mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; break; case PMD_SECT_WB: case PMD_SECT_WBWA: mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; break; } pr_info("Memory policy: %sData cache %s\n", ecc_mask ? "ECC enabled, " : "", cp->policy); for (i = 0; i < ARRAY_SIZE(mem_types); i++) { struct mem_type *t = &mem_types[i]; if (t->prot_l1) t->prot_l1 |= PMD_DOMAIN(t->domain); if (t->prot_sect) t->prot_sect |= PMD_DOMAIN(t->domain); } } #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (!pfn_valid(pfn)) return pgprot_noncached(vma_prot); else if (file->f_flags & O_SYNC) return pgprot_writecombine(vma_prot); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); #endif #define vectors_base() (vectors_high() ? 0xffff0000 : 0) static void __init *early_alloc(unsigned long sz) { void *ptr = memblock_alloc(sz, sz); if (!ptr) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, sz, sz); return ptr; } static void *__init late_alloc(unsigned long sz) { void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM, get_order(sz)); if (!ptdesc || !pagetable_pte_ctor(ptdesc)) BUG(); return ptdesc_to_virt(ptdesc); } static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot, void *(*alloc)(unsigned long sz)) { if (pmd_none(*pmd)) { pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); __pmd_populate(pmd, __pa(pte), prot); } BUG_ON(pmd_bad(*pmd)); return pte_offset_kernel(pmd, addr); } static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) { return arm_pte_alloc(pmd, addr, prot, early_alloc); } static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, const struct mem_type *type, void *(*alloc)(unsigned long sz), bool ng) { pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); do { set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), ng ? PTE_EXT_NG : 0); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); } static void __init __map_init_section(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys, const struct mem_type *type, bool ng) { pmd_t *p = pmd; #ifndef CONFIG_ARM_LPAE /* * In classic MMU format, puds and pmds are folded in to * the pgds. pmd_offset gives the PGD entry. PGDs refer to a * group of L1 entries making up one logical pointer to * an L2 table (2MB), where as PMDs refer to the individual * L1 entries (1MB). Hence increment to get the correct * offset for odd 1MB sections. * (See arch/arm/include/asm/pgtable-2level.h) */ if (addr & SECTION_SIZE) pmd++; #endif do { *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); phys += SECTION_SIZE; } while (pmd++, addr += SECTION_SIZE, addr != end); flush_pmd_entry(p); } static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys, const struct mem_type *type, void *(*alloc)(unsigned long sz), bool ng) { pmd_t *pmd = pmd_offset(pud, addr); unsigned long next; do { /* * With LPAE, we must loop over to map * all the pmds for the given range. */ next = pmd_addr_end(addr, end); /* * Try a section mapping - addr, next and phys must all be * aligned to a section boundary. */ if (type->prot_sect && ((addr | next | phys) & ~SECTION_MASK) == 0) { __map_init_section(pmd, addr, next, phys, type, ng); } else { alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys), type, alloc, ng); } phys += next - addr; } while (pmd++, addr = next, addr != end); } static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys, const struct mem_type *type, void *(*alloc)(unsigned long sz), bool ng) { pud_t *pud = pud_offset(p4d, addr); unsigned long next; do { next = pud_addr_end(addr, end); alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); phys += next - addr; } while (pud++, addr = next, addr != end); } static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, unsigned long end, phys_addr_t phys, const struct mem_type *type, void *(*alloc)(unsigned long sz), bool ng) { p4d_t *p4d = p4d_offset(pgd, addr); unsigned long next; do { next = p4d_addr_end(addr, end); alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); phys += next - addr; } while (p4d++, addr = next, addr != end); } #ifndef CONFIG_ARM_LPAE static void __init create_36bit_mapping(struct mm_struct *mm, struct map_desc *md, const struct mem_type *type, bool ng) { unsigned long addr, length, end; phys_addr_t phys; pgd_t *pgd; addr = md->virtual; phys = __pfn_to_phys(md->pfn); length = PAGE_ALIGN(md->length); if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", (long long)__pfn_to_phys((u64)md->pfn), addr); return; } /* N.B. ARMv6 supersections are only defined to work with domain 0. * Since domain assignments can in fact be arbitrary, the * 'domain == 0' check below is required to insure that ARMv6 * supersections are only allocated for domain 0 regardless * of the actual domain assignments in use. */ if (type->domain) { pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", (long long)__pfn_to_phys((u64)md->pfn), addr); return; } if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", (long long)__pfn_to_phys((u64)md->pfn), addr); return; } /* * Shift bits [35:32] of address into bits [23:20] of PMD * (See ARMv6 spec). */ phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); pgd = pgd_offset(mm, addr); end = addr + length; do { p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); int i; for (i = 0; i < 16; i++) *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | (ng ? PMD_SECT_nG : 0)); addr += SUPERSECTION_SIZE; phys += SUPERSECTION_SIZE; pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; } while (addr != end); } #endif /* !CONFIG_ARM_LPAE */ static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, void *(*alloc)(unsigned long sz), bool ng) { unsigned long addr, length, end; phys_addr_t phys; const struct mem_type *type; pgd_t *pgd; type = &mem_types[md->type]; #ifndef CONFIG_ARM_LPAE /* * Catch 36-bit addresses */ if (md->pfn >= 0x100000) { create_36bit_mapping(mm, md, type, ng); return; } #endif addr = md->virtual & PAGE_MASK; phys = __pfn_to_phys(md->pfn); length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", (long long)__pfn_to_phys(md->pfn), addr); return; } pgd = pgd_offset(mm, addr); end = addr + length; do { unsigned long next = pgd_addr_end(addr, end); alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); phys += next - addr; addr = next; } while (pgd++, addr != end); } /* * Create the page directory entries and any necessary * page tables for the mapping specified by `md'. We * are able to cope here with varying sizes and address * offsets, and we take full advantage of sections and * supersections. */ static void __init create_mapping(struct map_desc *md) { if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", (long long)__pfn_to_phys((u64)md->pfn), md->virtual); return; } if (md->type == MT_DEVICE && md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", (long long)__pfn_to_phys((u64)md->pfn), md->virtual); } __create_mapping(&init_mm, md, early_alloc, false); } void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, bool ng) { #ifdef CONFIG_ARM_LPAE p4d_t *p4d; pud_t *pud; p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); if (WARN_ON(!p4d)) return; pud = pud_alloc(mm, p4d, md->virtual); if (WARN_ON(!pud)) return; pmd_alloc(mm, pud, 0); #endif __create_mapping(mm, md, late_alloc, ng); } /* * Create the architecture specific mappings */ void __init iotable_init(struct map_desc *io_desc, int nr) { struct map_desc *md; struct vm_struct *vm; struct static_vm *svm; if (!nr) return; svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); if (!svm) panic("%s: Failed to allocate %zu bytes align=0x%zx\n", __func__, sizeof(*svm) * nr, __alignof__(*svm)); for (md = io_desc; nr; md++, nr--) { create_mapping(md); vm = &svm->vm; vm->addr = (void *)(md->virtual & PAGE_MASK); vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); vm->phys_addr = __pfn_to_phys(md->pfn); vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; vm->flags |= VM_ARM_MTYPE(md->type); vm->caller = iotable_init; add_static_vm_early(svm++); } } void __init vm_reserve_area_early(unsigned long addr, unsigned long size, void *caller) { struct vm_struct *vm; struct static_vm *svm; svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); if (!svm) panic("%s: Failed to allocate %zu bytes align=0x%zx\n", __func__, sizeof(*svm), __alignof__(*svm)); vm = &svm->vm; vm->addr = (void *)addr; vm->size = size; vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; vm->caller = caller; add_static_vm_early(svm); } #ifndef CONFIG_ARM_LPAE /* * The Linux PMD is made of two consecutive section entries covering 2MB * (see definition in include/asm/pgtable-2level.h). However a call to * create_mapping() may optimize static mappings by using individual * 1MB section mappings. This leaves the actual PMD potentially half * initialized if the top or bottom section entry isn't used, leaving it * open to problems if a subsequent ioremap() or vmalloc() tries to use * the virtual space left free by that unused section entry. * * Let's avoid the issue by inserting dummy vm entries covering the unused * PMD halves once the static mappings are in place. */ static void __init pmd_empty_section_gap(unsigned long addr) { vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); } static void __init fill_pmd_gaps(void) { struct static_vm *svm; struct vm_struct *vm; unsigned long addr, next = 0; pmd_t *pmd; list_for_each_entry(svm, &static_vmlist, list) { vm = &svm->vm; addr = (unsigned long)vm->addr; if (addr < next) continue; /* * Check if this vm starts on an odd section boundary. * If so and the first section entry for this PMD is free * then we block the corresponding virtual address. */ if ((addr & ~PMD_MASK) == SECTION_SIZE) { pmd = pmd_off_k(addr); if (pmd_none(*pmd)) pmd_empty_section_gap(addr & PMD_MASK); } /* * Then check if this vm ends on an odd section boundary. * If so and the second section entry for this PMD is empty * then we block the corresponding virtual address. */ addr += vm->size; if ((addr & ~PMD_MASK) == SECTION_SIZE) { pmd = pmd_off_k(addr) + 1; if (pmd_none(*pmd)) pmd_empty_section_gap(addr); } /* no need to look at any vm entry until we hit the next PMD */ next = (addr + PMD_SIZE - 1) & PMD_MASK; } } #else #define fill_pmd_gaps() do { } while (0) #endif #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) static void __init pci_reserve_io(void) { struct static_vm *svm; svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); if (svm) return; vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); } #else #define pci_reserve_io() do { } while (0) #endif #ifdef CONFIG_DEBUG_LL void __init debug_ll_io_init(void) { struct map_desc map; debug_ll_addr(&map.pfn, &map.virtual); if (!map.pfn || !map.virtual) return; map.pfn = __phys_to_pfn(map.pfn); map.virtual &= PAGE_MASK; map.length = PAGE_SIZE; map.type = MT_DEVICE; iotable_init(&map, 1); } #endif static unsigned long __initdata vmalloc_size = 240 * SZ_1M; /* * vmalloc=size forces the vmalloc area to be exactly 'size' * bytes. This can be used to increase (or decrease) the vmalloc * area - the default is 240MiB. */ static int __init early_vmalloc(char *arg) { unsigned long vmalloc_reserve = memparse(arg, NULL); unsigned long vmalloc_max; if (vmalloc_reserve < SZ_16M) { vmalloc_reserve = SZ_16M; pr_warn("vmalloc area is too small, limiting to %luMiB\n", vmalloc_reserve >> 20); } vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET); if (vmalloc_reserve > vmalloc_max) { vmalloc_reserve = vmalloc_max; pr_warn("vmalloc area is too big, limiting to %luMiB\n", vmalloc_reserve >> 20); } vmalloc_size = vmalloc_reserve; return 0; } early_param("vmalloc", early_vmalloc); phys_addr_t arm_lowmem_limit __initdata = 0; void __init adjust_lowmem_bounds(void) { phys_addr_t block_start, block_end, memblock_limit = 0; u64 vmalloc_limit, i; phys_addr_t lowmem_limit = 0; /* * Let's use our own (unoptimized) equivalent of __pa() that is * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. * The result is used as the upper bound on physical memory address * and may itself be outside the valid range for which phys_addr_t * and therefore __pa() is defined. */ vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET - PAGE_OFFSET + PHYS_OFFSET; /* * The first usable region must be PMD aligned. Mark its start * as MEMBLOCK_NOMAP if it isn't */ for_each_mem_range(i, &block_start, &block_end) { if (!IS_ALIGNED(block_start, PMD_SIZE)) { phys_addr_t len; len = round_up(block_start, PMD_SIZE) - block_start; memblock_mark_nomap(block_start, len); } break; } for_each_mem_range(i, &block_start, &block_end) { if (block_start < vmalloc_limit) { if (block_end > lowmem_limit) /* * Compare as u64 to ensure vmalloc_limit does * not get truncated. block_end should always * fit in phys_addr_t so there should be no * issue with assignment. */ lowmem_limit = min_t(u64, vmalloc_limit, block_end); /* * Find the first non-pmd-aligned page, and point * memblock_limit at it. This relies on rounding the * limit down to be pmd-aligned, which happens at the * end of this function. * * With this algorithm, the start or end of almost any * bank can be non-pmd-aligned. The only exception is * that the start of the bank 0 must be section- * aligned, since otherwise memory would need to be * allocated when mapping the start of bank 0, which * occurs before any free memory is mapped. */ if (!memblock_limit) { if (!IS_ALIGNED(block_start, PMD_SIZE)) memblock_limit = block_start; else if (!IS_ALIGNED(block_end, PMD_SIZE)) memblock_limit = lowmem_limit; } } } arm_lowmem_limit = lowmem_limit; high_memory = __va(arm_lowmem_limit - 1) + 1; if (!memblock_limit) memblock_limit = arm_lowmem_limit; /* * Round the memblock limit down to a pmd size. This * helps to ensure that we will allocate memory from the * last full pmd, which should be mapped. */ memblock_limit = round_down(memblock_limit, PMD_SIZE); if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { if (memblock_end_of_DRAM() > arm_lowmem_limit) { phys_addr_t end = memblock_end_of_DRAM(); pr_notice("Ignoring RAM at %pa-%pa\n", &memblock_limit, &end); pr_notice("Consider using a HIGHMEM enabled kernel.\n"); memblock_remove(memblock_limit, end - memblock_limit); } } memblock_set_current_limit(memblock_limit); } static __init void prepare_page_table(void) { unsigned long addr; phys_addr_t end; /* * Clear out all the mappings below the kernel image. */ #ifdef CONFIG_KASAN /* * KASan's shadow memory inserts itself between the TASK_SIZE * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. */ for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); /* * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes * equal to MODULES_VADDR and then we exit the pmd clearing. If we * are using a thumb-compiled kernel, there there will be 8MB more * to clear as KASan always offset to 16 MB below MODULES_VADDR. */ for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); #else for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); #endif #ifdef CONFIG_XIP_KERNEL /* The XIP kernel is mapped in the module area -- skip over it */ addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; #endif for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); /* * Find the end of the first block of lowmem. */ end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; if (end >= arm_lowmem_limit) end = arm_lowmem_limit; /* * Clear out all the kernel space mappings, except for the first * memory bank, up to the vmalloc region. */ for (addr = __phys_to_virt(end); addr < VMALLOC_START; addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); } #ifdef CONFIG_ARM_LPAE /* the first page is reserved for pgd */ #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) #else #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) #endif /* * Reserve the special regions of memory */ void __init arm_mm_memblock_reserve(void) { /* * Reserve the page tables. These are already in use, * and can only be in node 0. */ memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); #ifdef CONFIG_SA1111 /* * Because of the SA1111 DMA bug, we want to preserve our * precious DMA-able memory... */ memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); #endif } /* * Set up the device mappings. Since we clear out the page tables for all * mappings above VMALLOC_START, except early fixmap, we might remove debug * device mappings. This means earlycon can be used to debug this function * Any other function or debugging method which may touch any device _will_ * crash the kernel. */ static void __init devicemaps_init(const struct machine_desc *mdesc) { struct map_desc map; unsigned long addr; void *vectors; /* * Allocate the vector page early. */ vectors = early_alloc(PAGE_SIZE * 2); early_trap_init(vectors); /* * Clear page table except top pmd used by early fixmaps */ for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); if (__atags_pointer) { /* create a read-only mapping of the device tree */ map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); map.virtual = FDT_FIXED_BASE; map.length = FDT_FIXED_SIZE; map.type = MT_MEMORY_RO; create_mapping(&map); } /* * Map the cache flushing regions. */ #ifdef FLUSH_BASE map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); map.virtual = FLUSH_BASE; map.length = SZ_1M; map.type = MT_CACHECLEAN; create_mapping(&map); #endif #ifdef FLUSH_BASE_MINICACHE map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); map.virtual = FLUSH_BASE_MINICACHE; map.length = SZ_1M; map.type = MT_MINICLEAN; create_mapping(&map); #endif /* * Create a mapping for the machine vectors at the high-vectors * location (0xffff0000). If we aren't using high-vectors, also * create a mapping at the low-vectors virtual address. */ map.pfn = __phys_to_pfn(virt_to_phys(vectors)); map.virtual = 0xffff0000; map.length = PAGE_SIZE; #ifdef CONFIG_KUSER_HELPERS map.type = MT_HIGH_VECTORS; #else map.type = MT_LOW_VECTORS; #endif create_mapping(&map); if (!vectors_high()) { map.virtual = 0; map.length = PAGE_SIZE * 2; map.type = MT_LOW_VECTORS; create_mapping(&map); } /* Now create a kernel read-only mapping */ map.pfn += 1; map.virtual = 0xffff0000 + PAGE_SIZE; map.length = PAGE_SIZE; map.type = MT_LOW_VECTORS; create_mapping(&map); /* * Ask the machine support to map in the statically mapped devices. */ if (mdesc->map_io) mdesc->map_io(); else debug_ll_io_init(); fill_pmd_gaps(); /* Reserve fixed i/o space in VMALLOC region */ pci_reserve_io(); /* * Finally flush the caches and tlb to ensure that we're in a * consistent state wrt the writebuffer. This also ensures that * any write-allocated cache lines in the vector page are written * back. After this point, we can start to touch devices again. */ local_flush_tlb_all(); flush_cache_all(); /* Enable asynchronous aborts */ early_abt_enable(); } static void __init kmap_init(void) { #ifdef CONFIG_HIGHMEM pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), PKMAP_BASE, _PAGE_KERNEL_TABLE); #endif early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, _PAGE_KERNEL_TABLE); } static void __init map_lowmem(void) { phys_addr_t start, end; u64 i; /* Map all the lowmem memory banks. */ for_each_mem_range(i, &start, &end) { struct map_desc map; pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n", (long long)start, (long long)end); if (end > arm_lowmem_limit) end = arm_lowmem_limit; if (start >= end) break; /* * If our kernel image is in the VMALLOC area we need to remove * the kernel physical memory from lowmem since the kernel will * be mapped separately. * * The kernel will typically be at the very start of lowmem, * but any placement relative to memory ranges is possible. * * If the memblock contains the kernel, we have to chisel out * the kernel memory from it and map each part separately. We * get 6 different theoretical cases: * * +--------+ +--------+ * +-- start --+ +--------+ | Kernel | | Kernel | * | | | Kernel | | case 2 | | case 5 | * | | | case 1 | +--------+ | | +--------+ * | Memory | +--------+ | | | Kernel | * | range | +--------+ | | | case 6 | * | | | Kernel | +--------+ | | +--------+ * | | | case 3 | | Kernel | | | * +-- end ----+ +--------+ | case 4 | | | * +--------+ +--------+ */ /* Case 5: kernel covers range, don't map anything, should be rare */ if ((start > kernel_sec_start) && (end < kernel_sec_end)) break; /* Cases where the kernel is starting inside the range */ if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) { /* Case 6: kernel is embedded in the range, we need two mappings */ if ((start < kernel_sec_start) && (end > kernel_sec_end)) { /* Map memory below the kernel */ map.pfn = __phys_to_pfn(start); map.virtual = __phys_to_virt(start); map.length = kernel_sec_start - start; map.type = MT_MEMORY_RW; create_mapping(&map); /* Map memory above the kernel */ map.pfn = __phys_to_pfn(kernel_sec_end); map.virtual = __phys_to_virt(kernel_sec_end); map.length = end - kernel_sec_end; map.type = MT_MEMORY_RW; create_mapping(&map); break; } /* Case 1: kernel and range start at the same address, should be common */ if (kernel_sec_start == start) start = kernel_sec_end; /* Case 3: kernel and range end at the same address, should be rare */ if (kernel_sec_end == end) end = kernel_sec_start; } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) { /* Case 2: kernel ends inside range, starts below it */ start = kernel_sec_end; } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) { /* Case 4: kernel starts inside range, ends above it */ end = kernel_sec_start; } map.pfn = __phys_to_pfn(start); map.virtual = __phys_to_virt(start); map.length = end - start; map.type = MT_MEMORY_RW; create_mapping(&map); } } static void __init map_kernel(void) { /* * We use the well known kernel section start and end and split the area in the * middle like this: * . . * | RW memory | * +----------------+ kernel_x_start * | Executable | * | kernel memory | * +----------------+ kernel_x_end / kernel_nx_start * | Non-executable | * | kernel memory | * +----------------+ kernel_nx_end * | RW memory | * . . * * Notice that we are dealing with section sized mappings here so all of this * will be bumped to the closest section boundary. This means that some of the * non-executable part of the kernel memory is actually mapped as executable. * This will only persist until we turn on proper memory management later on * and we remap the whole kernel with page granularity. */ #ifdef CONFIG_XIP_KERNEL phys_addr_t kernel_nx_start = kernel_sec_start; #else phys_addr_t kernel_x_start = kernel_sec_start; phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); phys_addr_t kernel_nx_start = kernel_x_end; #endif phys_addr_t kernel_nx_end = kernel_sec_end; struct map_desc map; /* * Map the kernel if it is XIP. * It is always first in the modulearea. */ #ifdef CONFIG_XIP_KERNEL map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); map.virtual = MODULES_VADDR; map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; map.type = MT_ROM; create_mapping(&map); #else map.pfn = __phys_to_pfn(kernel_x_start); map.virtual = __phys_to_virt(kernel_x_start); map.length = kernel_x_end - kernel_x_start; map.type = MT_MEMORY_RWX; create_mapping(&map); /* If the nx part is small it may end up covered by the tail of the RWX section */ if (kernel_x_end == kernel_nx_end) return; #endif map.pfn = __phys_to_pfn(kernel_nx_start); map.virtual = __phys_to_virt(kernel_nx_start); map.length = kernel_nx_end - kernel_nx_start; map.type = MT_MEMORY_RW; create_mapping(&map); } #ifdef CONFIG_ARM_PV_FIXUP typedef void pgtables_remap(long long offset, unsigned long pgd); pgtables_remap lpae_pgtables_remap_asm; /* * early_paging_init() recreates boot time page table setup, allowing machines * to switch over to a high (>4G) address space on LPAE systems */ static void __init early_paging_init(const struct machine_desc *mdesc) { pgtables_remap *lpae_pgtables_remap; unsigned long pa_pgd; u32 cr, ttbcr, tmp; long long offset; if (!mdesc->pv_fixup) return; offset = mdesc->pv_fixup(); if (offset == 0) return; /* * Offset the kernel section physical offsets so that the kernel * mapping will work out later on. */ kernel_sec_start += offset; kernel_sec_end += offset; /* * Get the address of the remap function in the 1:1 identity * mapping setup by the early page table assembly code. We * must get this prior to the pv update. The following barrier * ensures that this is complete before we fixup any P:V offsets. */ lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); pa_pgd = __pa(swapper_pg_dir); barrier(); pr_info("Switching physical address space to 0x%08llx\n", (u64)PHYS_OFFSET + offset); /* Re-set the phys pfn offset, and the pv offset */ __pv_offset += offset; __pv_phys_pfn_offset += PFN_DOWN(offset); /* Run the patch stub to update the constants */ fixup_pv_table(&__pv_table_begin, (&__pv_table_end - &__pv_table_begin) << 2); /* * We changing not only the virtual to physical mapping, but also * the physical addresses used to access memory. We need to flush * all levels of cache in the system with caching disabled to * ensure that all data is written back, and nothing is prefetched * into the caches. We also need to prevent the TLB walkers * allocating into the caches too. Note that this is ARMv7 LPAE * specific. */ cr = get_cr(); set_cr(cr & ~(CR_I | CR_C)); ttbcr = cpu_get_ttbcr(); /* Disable all kind of caching of the translation table */ tmp = ttbcr & ~(TTBCR_ORGN0_MASK | TTBCR_IRGN0_MASK); cpu_set_ttbcr(tmp); flush_cache_all(); /* * Fixup the page tables - this must be in the idmap region as * we need to disable the MMU to do this safely, and hence it * needs to be assembly. It's fairly simple, as we're using the * temporary tables setup by the initial assembly code. */ lpae_pgtables_remap(offset, pa_pgd); /* Re-enable the caches and cacheable TLB walks */ cpu_set_ttbcr(ttbcr); set_cr(cr); } #else static void __init early_paging_init(const struct machine_desc *mdesc) { long long offset; if (!mdesc->pv_fixup) return; offset = mdesc->pv_fixup(); if (offset == 0) return; pr_crit("Physical address space modification is only to support Keystone2.\n"); pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); pr_crit("feature. Your kernel may crash now, have a good day.\n"); add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); } #endif static void __init early_fixmap_shutdown(void) { int i; unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); pte_offset_fixmap = pte_offset_late_fixmap; pmd_clear(fixmap_pmd(va)); local_flush_tlb_kernel_page(va); for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { pte_t *pte; struct map_desc map; map.virtual = fix_to_virt(i); pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); /* Only i/o device mappings are supported ATM */ if (pte_none(*pte) || (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) continue; map.pfn = pte_pfn(*pte); map.type = MT_DEVICE; map.length = PAGE_SIZE; create_mapping(&map); } } /* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */ void __init paging_init(const struct machine_desc *mdesc) { void *zero_page; #ifdef CONFIG_XIP_KERNEL /* Store the kernel RW RAM region start/end in these variables */ kernel_sec_start = CONFIG_PHYS_OFFSET & SECTION_MASK; kernel_sec_end = round_up(__pa(_end), SECTION_SIZE); #endif pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n", kernel_sec_start, kernel_sec_end); prepare_page_table(); map_lowmem(); memblock_set_current_limit(arm_lowmem_limit); pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit); /* * After this point early_alloc(), i.e. the memblock allocator, can * be used */ map_kernel(); dma_contiguous_remap(); early_fixmap_shutdown(); devicemaps_init(mdesc); kmap_init(); tcm_init(); top_pmd = pmd_off_k(0xffff0000); /* allocate the zero page. */ zero_page = early_alloc(PAGE_SIZE); bootmem_init(); empty_zero_page = virt_to_page(zero_page); __flush_dcache_folio(NULL, page_folio(empty_zero_page)); } void __init early_mm_init(const struct machine_desc *mdesc) { build_mem_type_table(); early_paging_init(mdesc); } void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval, unsigned int nr) { unsigned long ext = 0; if (addr < TASK_SIZE && pte_valid_user(pteval)) { if (!pte_special(pteval)) __sync_icache_dcache(pteval); ext |= PTE_EXT_NG; } for (;;) { set_pte_ext(ptep, pteval, ext); if (--nr == 0) break; ptep++; pteval = pte_next_pfn(pteval); } }